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We show that disordered Hat phases in crystal surfaces are equivalent to valence-bond-type
phases in integer and half-integer spin quantum chains. In the quantum spin representation the
disordered Aat phase represents a Quid-type phase with long-range antiferromagnetic spin order.
This order is stabilized dynamically by the hopping of the particles and short-range spin-exchange
interactions. The mass of Neel solitons is finite. Numerical finite-size-scaling results confirm this.
We identify the order parameter of the valence-bond phase. The Haldane conjecture suggests a fun-

damental difference between half-integer and integer antiferromagnetic Heisenberg spin chains. We
find that disordered Aat phases are realized in both cases, have exactly the same type of long-range
antiferromagnetic spin order, and are stabilized by exactly the same mechanism. They differ only in
the mathematical formulation of broken symmetry in the spin representation. We suggest experi-
mental methods of observing disordered Aat phases in crystal surfaces.

I. INTRODUCTION

Spin quantum chains have been a focus of research for
many years. In 1983 Haldane' predicted that, contrary
to the spin- —, chain, the spin-1 chain is not massless at its
isotropic Heisenberg antiferromagnetic (HAF) point but
is in a phase with a finite-mass gap, different from the
Neel phase with long-range antiferromagnetic (AF) or-
der. More generally, he predicted that all AF isotropic
Heisenberg chains with integer spin s are massive. Half-
integer chains are expected to be massless at their HAF
point. This prediction is based on a mapping of the spin
chains in the limit of large s onto the nonlinear o. model.

Subsequently, numerous numerical calculations have
checked this mass gap for the s =1 case. Although con-
troversial at first, it is now commonly agreed that the nu-

merical evidence supports the conjecture. Last year
AfAeck et al. , followed by others, suggested that the
ground state has a valence-bond solid (VBS) character.
They showed that at a special point in the phase diagram
of the spin-1 chain, not too far from the HAF point, the
exact ground state can be written as a VBS state. This re-
sult has triggered general interest in quantum spin chains
because VBS states have a Jastrow wave-function struc-
ture and therefore striking similarities with the Laughlin
wave function used to explain the fractional quantum
Hall effect. Moreover, VBS states are proposed to ex-
plain high- T, superconductivity.

In this paper we show that the disordered fiat (DOF)
phase which we discovered earlier in the context of the
statistical mechanics of two-dimensional (2D) surface-
roughening transitions is equivalent to these VBS-type
phases in 1D quantum chains. The virtue of this
equivalence is that it provides simple physical insight into
the nature of the ground state in VBS phases, the mecha-

nism that stabilizes them, and it allows us to identify the
correlation functions, order parameters, and particle and
soliton masses (interface free energies) that distinguish
this phase from the other phases.

We will interpret spin-s chains for integer spin s as di-
luted spin-(s —

—,') chains. The site is empty, the S„'=0
state, or occupied by a spin-(s —

—,') particle, with the
states S„'=+1,+2, . . .+s representing the spin of the
particle.

These particles form a solid, fluid, or dilute gas with or
without long-range AF spin order in various regions of
the phase diagram. We will show that they form a fluid
with long-range antiferromagnetic (AF) spin order in the
VBS phase. This interpretation elucidates the properties
of the spin-s chain and VBS phases considerably because
it is close to the statistical mechanical crystal surface rep-
resentation of the model ~ The steps in crystal surface
configurations are the world lines of these spin-(s —

—,
'

)

particles.
VBS phases are not disordered; they have long-range

AF spin order, similar to the Neel phase (the solid phase
with AF spin order), but the positional disorder of the
particles in the DOF phase makes it more dificult to
identify the order. We define the order parameter of the
VBS phase in Sec. IV, show that Neel solitons have a
finite mass in the DOF phase, and calculate this soliton
mass numerically by finite-size scaling.

In Sec. II we review the properties of the DOF phase
in crystal surfaces and the mechanism that stabilizes it.
We give a simple, but general, entropy argument, fol-
lowed by a more detailed argument that uses a decompo-
sition of the restricted solid-on-solid (RSOS) model into
an Ising model and a six-vertex model. The latter eluci-
dates the structure of the RSOS model phase diagram.
We introduce order parameters, correlation functions,
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and interface free energies that distinguish between the
rough, the DOF, and the Aat crystal phases. We deter-
mine the scaling properties of the preroughening transi-
tion and the locations of the phase boundaries between
the DOF, flat, and rough crystal phases in the RSOS
model numerically from the finite-size-scaling behavior of
these interface free energies. Finally we suggest methods
to observe preroughening and DOF phases experimental-
ly.

In Sec. III we discuss the equivalence between the 2D
RSOS model and the spin-1 quantum chain, using the
transfer matrix formalism. In the RSOS model the steps
in the surface are restricted to height changes 6h =0,+1.
More generally, solid-on-solid (SOS) models where the
steps are restricted to 6h =0, +1,+2, . . . +s are
equivalent to integer spin-s chains. Half-integer spin
chains are equivalent to body-centered solid-on-solid
(BCSOS) models that describe the roughening of surfaces
with a body-centered-type structure.

In Sec. IV we discuss the phase diagram of the spin-1
quantum chain. The spin-1 chain corresponds to the
RSOS model in the very anisotropic lattice limit. There-
fore, the structure of its phase diagram is identical to that
of the RSOS model on an isotropic lattice (Sec. II). We
repeat the explanation of this structure, but now from the
perspective of the spin-1 chain as a diluted spin- —, chain.
The spin- —, particles form a solid, fluid, or gas, with or
without long-range order of their spins: the Oat crystal
surface phase represents the dilute gas phase (the disor-
dered singlet phase); the DOF phase represents a fiuid
with AF ordered spins (the VBS phase); the RSOS rough
phase represents a Quid phase with massless spin wave ex-
citations; the BCSOS Aat phase represents a solid with
long-range AF spin order (the Neel phase); the BCSOS
stepped phase [where the surface decomposes into (1,1)
and (1,—1) facets] represents a solid with long-range fer-
romagnetic ordered spins; and finally, the BCSOS rough
phase represents a solid with massless spin-wave excita-
tions. Next, we translate the correlation functions, order
parameters, and interface free energies, of Sec. II, that
distinguish between the VBS phase and these other
phases into the spin-1 formulation, and present additional
numerical evidence confirming our identification of the
VBS phase.

In Sec. V we discuss the connection between the VBS
state and the DOF phase. AfBeck et al. discovered that
the VBS state is the ground state at a point in the phase
diagram of the spin-1 chain, not too far from the Heisen-
berg AF (HAF) point. They expect it to be a good ap-
proximation of the ground state at the HAF point. We
show that the VBS ground state exhibits the properties of
the DOF phase. The spin- —,

' particles are placed com-

pletely at random in the VBS state, but maintain perfect
long-range AF spin order. The positional disorder is
maximal and the AF spin order is perfect. The VBS state
is the prototype state for the DOF phase. From the re-
normalization transformation point of view, the exactly
soluble VBS point must play the role of fixed point of the
DOF phase (all the points inside the DOF phase must
flow to it under scale transformations).

In the diluted spin- —,
' formulation the VBS ground state

obtains the character of a noninteracting lattice gas. This
simplifies the calculation of the correlation functions to
the extent that they become trivial. We evaluate all the
correlation functions and interface free energies defined
in Secs. II and IV at the VBS point.

In Sec. VI we discuss the differences between integer
and half-integer spin chains. The Haldane conjecture is
often paraphrased as stating that in integer spin chains
the HAF point is massive, and in half-integer spin chains
massless. This seems to say that DOF phases are absent
in half-integer spin chains, which contradicts physical in-
tuition. Half-integer spin chains are equivalent to body-
centered solid-on-solid (BCSOS) models, that describe the
roughening of crystal surfaces with a body-centered-type
structure. DOF phases must be realized in these surfaces
as well according to our general entropy argument
presented in Sec. II ~ There can be no fundamental
difference between SOS models and BCSOS models, i.e.,
integer and half-integer spin chains.

It is no surprise that the exact soluble spin- —,
' chain,

does not exhibit a DOF phase; the HAF point belongs to
the rough phase. The interactions are restricted to
nearest neighbors. The steps in the BCSOS model are
composite objects, i.e., $ f and $ $ excitations with
respect to the perfectly ordered Neel ground state.
Therefore, according to our discussion in Sec. II, the in-
teractions between the spins do not have enough range to
stabilize a DOF phase.

Indeed, if we extend the range of the interactions, we
find a DOF phase. In Sec. VI we show that the VBS
ground state at the exactly soluble spin- —,

' point of Ma-
jumdar and Ghosh belongs to the DOF phase. This VBS
state plays the role of the prototype DOF state (the fixed
point of the DOF phase), in analogy with the VBS
ground state in the spin-1 chain. Steps are placed again
completely at random, but maintain perfect AF order.

The only difference between DOF phases in the half-
integer and integer spin representation is the presence
and absence, respectively, of a ground-state degeneracy
conjugate to this long-range order. The ground state is
twofold degenerate in DOF phases in half-integer spin
chains, but nondegenerate in integer spin chains (Sec. VI).
This is a peculiarity of the quantum spin formulation.
The DOF phase (and also the fiat crystal phase) has a
conventional ground-state degeneracy, a spontaneously
broken symmetry, and a local order parameter in both
the SOS and BCSOS model (Sec. II). However, in the
spin-1 formulation we lose knowledge of the absolute
height of the crystal surface (the surface configuration is
represented by the steps in the surface), and as a result we
lose the ground-state degeneracy of the DOF phase (and
also of the RSOS fiat phase). This suggests that in the
spin-1 formulation the DOF phase obtains the semimys-
terious property of being a fiuid state with long-range or-
der without a ground-state degeneracy. In the spin-1 rep-
resentation we can still calculate the absolute value of its
order parameter (it becomes a string operator), but not its
sign. This type of long-range order is known as off-
diagonal long-range order in the quantum Hall effect. '

On the other hand, the crystal surface is corrugated in
body-centered-type surfaces. This implies a twofold de-
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generacy of the ground state of the DOF phase (and also
of the BCSOS Hat phase) in half-integer spin chains. This
degeneracy couples to the parity of the height of the sur-
face (i.e., whether the average height of the surface is an
even or odd integer plus —,'). The corrugation of the sur-

face in the BCSOS model acts like a local variable that
keeps track of the parity of the average height of the sur-
face. This aspect is sufficient to be able to express the or-
der parameters of the BCSOS Aat and DOF phase in
terms of local spin operators.

In the final analysis the content of the Haldane conjec-
ture is quite limited. DOF phases are realized in integer
and half-integer spin chains alike. They have exactly the
same type of long-range order, are stabilized by exactly
the same physical mechanism, have exactly the same
properties, and the phase diagrams of integer and half-
integer spin chains look alike. The only difference is that
in half-integer spin chains the long-range AF order of the
"spins" (the l1 and l1 excitations with respect to the
perfectly ordered Neel ground state) can be expressed in
terms of a local order parameter, while in integer-spin
chains this information is lost.

II. DISORDERED FLAT PHASES
IN CRYSTAL SURFACES

A. Surface roughening

The roughening of crystal surfaces is conventionally
described by solid-on-solid (SOS) models. " The surface is

FIG. 1. Rectangular lattice with column heights h;, step vari-
ables S;„and vertices R.

characterized by means of integer-valued column height
variables h, defined on a two-dimensional lattice. We
consider the so-called restricted solid-on-solid (RSOS)
model, which is the special SOS model where nearest-
neighbor columns r and r' are allowed to differ by at most
1, h, —h, =0, +1. In other words, where only steps of
height 1 are allowed.

The most general RSOS model Hamiltonian with in-
teractions between the four heights h„h2, h3, and h4,
around each vertex R, see Fig. 1, can be written as'
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with 5(x)=1 for x=0 and 5(x)=0 for x&0. All ener-
gies are measured in units of 1/kz T, and we have chosen
a square lattice. Throughout this section the interactions
are isotropic, L']"'=L']" and L2 '=L2", but this is not
essential, and in the following sections anisotropy will
play an important role. Figure 2 shows the phase dia-

gram of the RSOS model in the (K,L2) subspace with
Q=L, =0.

First we summarize brieAy the conventional roughen-
ing theory, as realized, e.g. , in models with only nearest-
neighbor interactions (along the K axis in Fig. 2). At low
temperatures (K))0) the surface is Aat. It contains a
few thermodynamically excited terraces where the sur-
face is higher or lower (by one unit); see Fig. 3(a). Ther-
modynamic excitations are of order k~ T. The free ener-

gy of a terrace is proportional to its step length ~g. g is
the average terrace diameter and is proportional to the
correlation length. We measure all free energies in units

(a) (b)
FIG. 2. Phase diagram of the RSOS model with nearest-

neighbor interactions K and step repulsion Lz=Lz =Lz and
the coupling constants Q =LI' =L',"=0.

FICs. 3. Typical configurations in the RSOS flat phase (a), the
disordered flat (DOF) phase (b), and RSOS rough phase (c).
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of k~T. Therefore the terrace size and step free energy g
are related as egg= l. At low temperatures these ter-
races are small and few, but their number and typical size
increases with temperature. At first, meander entropy is
the dominant factor in reducing the step free energy, un-
til reaching temperatures where the terraces start to com-
municate with each other. From there on the topological
rules that govern how steps can intertwine and the sym-
metries associated with the short-range interactions be-
tween steps become the limiting factors in the increase in
entropy. As always, these topological rules and sym-
metries determine the universality class of the transition.

At high temperatures, in the rough phase about K =0,
the surface resembles a terraced mountainlike landscape;
see Fig. 3(c). At large length scales the discreteness of
the step heights has become irrelevant, and the surface
can be described by the Gaussian model. " In other
words, it has the same properties as a transverse vibrating
elastic network. The free energy of the capillary waves is
gapless. The surface is fully characterized by the so-
called roughness parameter, K ', which is the inverse of
the coupling constant of this effective G-aussian model.
The height-height correlations diverge logarithmically
with an amplitude proportional to the roughness parame-
ter,

((h —h ) )= ln(r) .
mK

(2.2)

The above conventional scenario applies when the
hard-core repulsion part of the interactions between the
steps dominates. We found a new phase in between the
rough and flat crystal phase by simply increasing the
range of the interactions in the RSOS model. We named
this new phase the disordered fiat (DOF) phase because
the surface remains flat on average although it contains a
disordered array of steps. The step free energy has al-
ready vanished, but the steps have long-range up-down-
up-down order. Figure 3(b) shows a typical configura-
tion. The steps are disordered positionally but up and
down steps alternate. Beyond the multicritical point L in
Fig. 2 the transition takes place in two stages: first the
preroughening transition between the flat and DOF
phase, followed by the roughening transition between the
DOF and rough phase.

It is advantagous to characterize the configurations of
the crystal surface by steps instead of column heights.
The steps form closed loops. They follow the bonds of
lattice 2), dual to the lattice formed by the sites of the
height variables, X. Associate a step variable

S, , =h, —h, =0, +1

Conventionally, the transition between the flat and rough
phases is a single transition, and belongs to the
Kosterlitz-Thouless (KT) universality class. " At the KT
transition the roughness parameter takes the universal
value K =~/2. This has been well established numeri-
cally"' and also experimentally, ' ' but most of this
earlier numerical work was restricted to SOS models with
only nearest-neighbor interactions.

B. Disordered Bat phases

h+

(b) 0 (c) L1

h+1

FIG. 4. Repulsive (L2) and attractive (L&) interactions be-
tween steps originating from further-than-nearest-neighbor in-
teractions between the column heights. The dashed circle
denotes the interaction range.

n (o)

n (b)

FIG. 5. Surface configurations with nested up-down steps (a)
and up-up steps (b).

with each bond of 2). It is important to distinguish be-
tween up and down steps, because S, , = —S, , In Fig.
3 we denote this by placing arrows along the steps. In
the direction along the arrow the height to the left of the
step is (one unit) lower. At each intersection of steps the
fiux of arrows must be equal to zero, because g& S... =0
along every closed contour of lattice X. Later, in Secs.
III—V, these step variables become quantum spins. In the
DOF phase the steps, S, , =+1 states, have long-range
AF order but are positionally disordered.

The DOF phase is stabilized by a combination of step
entropy and step interactions. Nearest-neighbor (NN) in-
teractions are blind to the arrows. They contribute only
to the step energy. Further-than-NN interactions, like
L, and L2 in the RSOS model, look across more than one
step. Lz represents a short-range repulsion between steps
with parallel arrows and L, a short-range attraction be-
tween steps with opposite arrows; see Fig. 4. Consider
the extreme case where the repulsion is infinitely strong,
L2~~, and attraction is absent, L& =0. Steps with
parallel arrows are forbidden to approach each other
closer than the interaction range, while steps with anti-
parallel arrows can approach each other at will. The
steps have more meander entropy in configurations where
the steps have alternating up-down-up order [Fig. 5(a)]
than in configurations where neighboring steps have
parallel arrows [Fig. 5(b)]. This shows that the DOF
structure is favored by a combination of entropy and
further-than-nearest-neighbor interactions.

Notice that these further-than-nearest-neighbor in-
teractions are simply ferromagnetic [not competing ones
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as in, e.g., the axial next-nearest-neighbor Ising model' ],
and that they must be a common feature of experimental
systems. Also notice that this entropy effect plays a role
only at temperatures high enough such that the terraces
intertwine.

C. Diluted six-vertex model representation

This argument is general, independent of the SOS mod-
el description, but is not conclusive because it does not
tell whether the effect is strong enough to stabilize the
long-range AF step order of the DOF phase. A stronger
argument is obtained by rewriting the RSOS model as an
Ising model coupled to a six-vertex model. Assign an Is-
ing spin o.,=+I to each column height: or=exp(i~h, ).
It represents the parity of the column height. An Ising
Bloch wall represents the presence of a step between two
nearest-neighbor columns. We introduce a six-vertex
model on the lattice formed by the Ising-Bloch walls to
represent whether a step is up or down. We multiply the
Boltzmann weight of each Ising configuration with the
partition function of a six-vertex model defined on the
Ising-Bloch wall lattice. This is a trace over all arrow
configurations on the Ising-Bloch walls such that at each
Bloch wall intersection the Aux of the arrows is equal to
zero. In this formulation the RSOS model partition func-
tion reads

ZRsos X exp[ Hl(& L i L i Q)]

with

Zsix-vertex( [ ~rI &L 2 &L 2 (2.3a)

Hl —g [—,'K(1 —o,o.2)+ —,'K(1 —c72o 3)+ ,'L I"'( I —a, t7—3)

R

+ ,'L'i" (1—r72t74—)+4Q(l —o io 3)(1—o2o'4)] .

(2.3b)

FIG. 6. Atom configuration in body-centered-type surfaces,
and definition of step variables 6h =S;,=+1 in the BCSOS
model.

differ in height by one, h, —h, =+1. When formulated
in terms of step variables this leads immediately to the
six-vertex model.

D. Phase diagram of the RSOS model

Equation (2.3) clarifies the general structure of the
phase diagram of the RSOS model, Fig. 2. The coupling
constants K, L", , L'„and Q govern the Ising-type order.
They control the density and positional order of the steps
(the vertical direction in Fig. 2). The coupling constants
L 2 and L 2 govern the six-vertex-type order. They
represent the conventional interactions between arrows at
intersections in the six-vertex model [see Fig. 7(a)]. They
control the long-range AF order in the steps (the horizon-
tal direction in Fig. 2).

The Ising spins are antiferromagnetically (AF) ordered

(a)

It is a bond diluted six-vertex model on a lattice that is
not rigid but has annealed fluctuations in its shape and
number of bonds. At all times the lattice shape remains
compatible with long-range AF arrow order because
every Ising-Bloch wall lattice can be interpreted as an ar-
ray of closed loops and therefore maintains the two-
sublattice structure essential for unfrustrated AF arrow
order.

It is noteworthy that the six-vertex model serves as a
model for surface roughening in its own right. It is
equivalent to the so-called body-centered solid-on-solid
(BCSOS) model, ' which describes surfaces with a body-
centered type of structure such as (110) faces of fcc crys-
tals like Cu and Ni. The atoms in the next layer are not
placed on top of those in the previous layer, but above
the plaquettes (see Fig. 6). In the BCSOS model this is
modeled by assigning even values of the column heights
to one sublattice and odd values to the other sublattice,
i.e., by demanding that all nearest-neighbor columns

(x)
e -L2 (I)-L2e

(b)

XVX
Zt Zt

-2 2 2 -2

FIG. 7. (a) Conventional Boltzmann weights in the six-vertex
madel. (b) Boltzmann weights of the six-vertex model
equivalent to the polygon problem (defined in the Appendix).
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in the limit K~ —~, see Fig. 2. Each bond contains an
Ising-Bloch wall. The model reduces to the exactly solu-
ble six-vertex model on a square lattice. Each bond is
occupied by an up or down step. From the exact solution
it follows that for

exp( L2I—"'
) +exp ( L2'"—) ( l

the arrows have long-range AF order. This is the BCSOS
flat phase. The column heights alternate between two
values. For

of the roughening transition. However, the missing bond
excitations renormalize the roughness parameter of the
BCSOS rough phase. They reduce the roughness of the
surface. Numerical results along the K axis confirm
this. ' However, surprisingly, they do not renormalize
the roughness parameter in the direct vicinity of the KT
transition; we find that the K.T transition line is exactly
located at

exp( L2—')+exp( L'2"—) =1

exp( —L~z"')+exp( L2"—
) ) I

the arrows are disordered, but with massless spin-wave
excitations. This is the BCSOS rough phase where the
steps form valleys and mountains on all length scales.
The roughening transition takes place at

exp( Lz' '
) + ex—p( L~2'I ) =—l

Q i& Q &i ] i& Q i& ]

&i Q is ] v Q

0 i( li Q

-1 i~ 0 &i

Qv-]v

—]i& Q

-2 ih -1

-1«0 ~i-] ~i Q

Q ii Q ii ] ~i Q i~ ]

v Q «1 )I Q

0 i~ v 0 ii

] &i Q i( Q

Q i&

1 'i Q i( ]

Qii ]

i II 0

FIG. 8. Surface configurations in the BCSOS rough phase (a)
and BCSOS Oat phase (b).

and is a KT transition.
The Ising spins remain AF ordered for finite values of

K ((O. The Bloch walls still form a square array, but
with missing bonds (closed loops) at length scales smaller
than the Ising correlation length (see Fig. 8). Such imper-
fections cannot change the long-distance behavior of the
BCSOS rough and flat phases, nor the universality class

for finite values of K up to point L (see also the Appen-
dix).

The Ising spins disorder along the AF Ising critical line
S M I(s-ee F-ig. 2). Only the Ising type of degrees become
critical. Therefore this transition line must belong to the
conventional Ising universality class (except at the mul-
ticritical point M). The only effect of the critical fiuctua-
tions of the Ising spins on the roughening degrees of free-
dom is a logarithmic singularity in the roughness param-
eter along the S-I segment inside the rough phase. '

The Ising spins must be disordered for K=O. The
Ising-Bloch walls form a disordered array. For increas-
ing K this array contains an increasing number of discon-
nected finite pieces, but it always includes one infinitely
large connected backbone cluster. This backbone cluster
must exist, because otherwise the Ising spins would have
long-range ferromagnetic order. Consider one specific
Ising-Bloch wall configuration. Each finite cluster acts as
an independent six-vertex model. Its arrows are disor-
dered for all values of L2, because finite systems cannot
maintain long-range order. So the six-vertex model
defined on the backbone cluster is solely responsible for
the long-range order in the DOF phase. In general the
universality class of a phase transition does not change
with the shape of the underlying lattice. Therefore the
six-vertex model on the backbone should undergo a con-
ventional roughening transition. Its rough phase at small
values of L2 represents the conventional rough phase of
the RSOS model [Fig. 3(c)]. Its flat phase at large values
of L2 represents the DOF phase [Fig. 3(b)]. This estab-
lishes the long-range order of the DOF phase: the sur-
face contains a disordered array of steps, but remains flat
on average because the height fluctuations are limited by
the long-range AF arrow order on the backbone.

The backbone disintegrates, along the critical line
A-L-P. The Ising and six-vertex type of degrees of free-
dom become critical simultaneously. Therefore this tran-
sition does not belong to the Ising model universality
class. For small values of I 2, along the RSOS rough seg-
ment R-L, it is a KT transition. This follows from the
conventional KT renormalization theory for SOS mod-
els. " At large values of L2, along the DOF segment L-P,
this is the novel preroughening transition which we intro-
duced earlier.

The Ising spins have ferromagnetic long-range order
for E ))0, beyond the critical line R-L-P. This is the
RSOS fiat phase [see Fig. 3(a)]. The six-vertex lattice has
fallen apart completely. Only finite Ising-Bloch wall lat-
tices (disconnected terraces) remain. On each the six-
vertex arrows are disordered for all finite values of L2.
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E. Order parameters

It is important to define order parameters that distin-
guish between the DOF phase and the other phases. Con-
sider the spin-spin correlation function of the Ising de-
grees of freedom (the parity of the column heights),

GH(r„—ro)=(o., o., ) =(exp[i'(h, —h, )]) . (2.4)

The Ising spins are disordered in the DOF phase and the
RSOS rough phase, but ordered in the RSOS Aat phase.
GH decays exponentially to zero in the DOF phase and to
zero as a power law in the RSOS rough phase, but decays
exponentially to the square of the Ising magnetization,

p = ( exp(i~h, ) ), (2.5)

in the RSOS Aat phase. The Ising spins are AF ordered
in the BCSOS Aat and rough phase. There, GII decays
exponentially to the square of the staggered magnetiza-
tion

The surface is Aat because each of these finite disordered
six-vertex models represents only a local excitation with
respect to the infinitely large cluster of ferromagnetically
ordered Ising spins, which has taken over the role of
infinite backbone, that keeps the height Auctuations
finite.

A convenient way to summarize the structure of the
phase diagram is to view it as a superposition of the con-
ventional phase diagram of the Ising model with interac-
tions K, L i, L i, and Q, ' and the phase diagram of the
six-vertex model with interactions L2 and L2. Most of
the transitions in the phase diagram are driven by only
the Ising or only the six-vertex degrees of freedom and
therefore retain their conventional type of scaling behav-
ior and critical exponents. The KT transition line R-L
and the preroughening transition line L-P (they replace
the ferromagnetic critical line of the conventional Ising
model), and the isolated multicritical point M are the
only exceptions.

For the stability of the DOF-type long-range order it is
essential that the backbone cluster of Ising-Bloch walls
has dimensionality D =2. It must span the entire lattice
like a percolating network because a finite lattice cannot
maintain long-range order. The Auctuations and random
shape of the backbone does not matter because the lattice
remains compatible with the AF long-range arrow order
at all times. It is also important that the spatial Auctua-
tions in the lattice cutoff are bounded by the Ising corre-
lation length. It is likely that all these conditions are
satisfied. Moreover, our numerical results discussed
below confirm it. It is possible to visualize more compli-
cated types of phases, for example, DOF phases where
the arrows have a higher order periodicity. We have no
positive evidence for the presence of such generalized
DOF phases in Fig. 2. Our numerical results leave room
for it in the vicinity of the multicritical point L, but the
slow numerical convergence that we encounter there is
consistent with the expected interference between
preroughening and KT roughening.

p, =(exp[in(x+y+h, )]), (2.6)

where r'„a nearest-neighbor site to the left (above) site r„
on the square lattice. The phase factor contributes a plus
(minus) sign to the correlation function when the height
difference between sites r„and ro is even or odd. The
steps have long-range AF arrow order in the DOF phase,
and also in the BCSOS Aat phase. The steps have
predominantly parallel (antiparallel) arrows if this height
diA'erence is even (odd). G, decays exponentially to zero
in the RSOS Aat phase, and to zero as a power law in the
RSOS rough phase, but exponentially to the square of the
order parameter

P = ( exp( i~h, )(h, —h, . ) ) (2.&)

in the DOF and BCSOS flat phases.
These three order parameters allow us to distinguish

between the DOF phase and the other phases: in the
RSOS Aat phase only p is nonzero; in the DOF phase
only g is nonzero; and in the BCSOS Oat phase both P
and p, are nonzero. Conjugate to these three order pa-
rameters are three types of interfaces. They are the focus
of our numerical work.

Consider an ensemble where the average height is
fixed, e.g. , by fixing the total number of particles. Sup-
pose that the global average height is an integer, ( h ) = n

The RSOS flat phase contains one single phase. The
average height is a half-integer in the DOF phase. There-
fore, the surface phase separates into DOF phases with
average height (h ) =n+ —,

' and (h ) =n —
—,'. The order

parameter P, Eq. (2.8), changes sign across the Neel-type
interface between these phases. This type of interface
consists of a neighboring pair of steps with parallel ar-
rows.

The opposite happens when the global average height
is fixed to be a half integer, (h ) =n+ —,'. Now the DOF
phase contains a single phase, and phase-separation
occurs at the RSOS Aat side. RSOS flat phases with aver-
age height (h ) =n and (h ) =n+ 1 coexist, separated by
interfaces where the order parameter p, Eq. (2.5), changes
sign. This type of interface consists of a line of antiferro-
magnetic Ising bonds. Phase separation takes place at
both sides of the preroughening transition for general
values of (h ).

The translation symmetry along the surface becomes
spontaneously broken in the BCSOS Aat and BCSOS
rough phase. The Ising spins obtain long-range AF or-
der. The heights on one sublattice become predominant-
ly even and predominantly odd at the other. The ground
state is twofold degenerate. The ensemble with fixed glo-
bal height is grand canonical with respect to this type of
order, but an interface can be imposed by means of
boundary conditions (as discussed below). The order pa-
rameter p, , see Eq. (2.6), changes sign across this type of

with x and y the coordinates of the sites on the square lat-
tice, r=(x,y).

Consider the step-step correlation function

G, (r„—ro) = ( (h, —h, )exp[i~(h, —h, ) ](h, —h, ) ),rn n 0 0 &o

(2.7)
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interface. It consists of a line of ferromagnetic Ising
bonds, i.e., a line of missing bonds in the six-vertex lat-
tice.

F. Interface free energies

We study the presence of long-range AF order in the
DOF phase numerically from the finite-size-scaling be-
havior of these three types of interfaces. We determine
the free energy in semi-infinite strips with periodic
boundary conditions hzy hz+& y+a, with a=0, 1,2,
and antiperiodic boundary conditions h = —h +&
+a, with a =0, 1 [where a is unique only mod(2)]. Define
iI

—(a) as the difference in free energy between these
boundary conditions and periodic boundary conditions
with a =0. With the help of diagrams like the ones
shown in Fig. 9, it is easy to show that these free energy
differences are related to the Ising and six-vertex type in-
terface free energies defined previously as

(2.9)

The + (
—

) signs apply to even (odd) strip widths N. The
various i),—(a) refiect the difterent boundary conditions
that can be imposed to a six-vertex model on a perfect
square lattice (and therefore also on the random Ising-
Bloch-wall lattice). rll is the free energy of an Ising-
Bloch wall, and ql" the free energy of a line of ferromag-
netic bonds in the AF ordered Ising phase. Notice that
the (+,2) boundary condition imposes two Ising-Bloch
walls into the systems, which unlike the conventional Is-
ing model cannot annihilate each other since they carry
parallel arrows.

The free energy of an Ising-Bloch-wall, gI, is conjugate
to p, and is nonzero only inside the RSOS Oat phase. The
free energy of a line of vacancies gl" is conjugate to p„
and is nonzero only inside the BCSOS Hat and BCSOS
rough phases. The free energies of the Neel-type inter-
faces i),+(I) and rI, (1) (the six-vertex-type degrees of
freedom), are conjugate to g, and are nonzero only in the
DOF and BCSOS Aat phase.

The step free energies scale as the inverse of the strip
width X, with universal amplitudes, in the two rough
phases. The six-vertex sector renormalizes into the
Gaussian model according to the conventional KT renor-
malization arguments. This implies that the g,

—(a) scale
as i),+(a)= ,'K —a N ' and i), (a)= '7rN— ', with K
the roughness parameter defined in Eq. (2.2). The Bloch-
wall free energy is equal to zero, Ngl =0, in both rough
phases, but the free energy of a line of vacancies is finite
in the BCSOS rough phase, gz")0, and zero in the
RSOS rough phase.

K becomes equal to ~/2 at the KT roughening transi-
tion line L M B.-Th-e separation, in Eq. (2.9), between
Ising- and six-vertex-type degrees of freedom becomes
meaningless along the other roughening transition line
R-L, but the universal amplitudes take the same univer-
sal values: i)+(a ) = —,'Kga N ' and g (a ) =—'wN
with K =

—,
' ~. Figure 10 shows the lines where

Ni)+(2) =w for successive finite strip widths N between 2
and 8. These lines must converge in the thermodynamic
limit to the roughening transition line (the line R L M B---
in Fig. 2). In the Appendix we prove that i)+(1)=i) (1)
along the line exp( L2 ) =—2 for all values of N.
i)+(I)=—,'K /N is smaller than il (1)= ~wN inside the
rough phase, because K & —,'~. They become equal at the
roughening transition (where K =

—,'~). This implies that
the two rough phases must terminate at the exp(L2) ~2
side of the phase diagram, or, most likely, that the
roughening line L M Bcoincide-s w-ith exp(L2)=2 (see
the Appendix). Notice (see Fig. 10) that the finite size ap-
proximants for this segment of this roughening line are
located at the "wrong" side exp(Lz) ~ 2, but converge in

a manner consistent with a location at exp(Li ) =2.
The AF Ising transition line is the threshold where gl"

vanishes. We use the conventional analysis to determine
the location of this line. ' The sequence of lines where
Ni)l" for successive strip widths (N=4, 6, 8, 10) cross
must converge to the AF Ising critical line. We obtain

from rI+(I) —~i)+(2) inside the rough phase and

from it (1) on the fiat side [see Eq. (2.9)]. We find that

P..O

1.8

C4
1.4

1.2

L &
(~) (-.o) (b) (., ~) (~) (-,O) (d) (-,&) exp(L)

FIG. 9. Topological frustrations induced by the boundary
conditions h( y) —A( +~y)+a for (+,a)=(+,0), (+,1),
( —,0), and ( —,1).

FIG. 10. Finite-size-scaling estimates of the KT roughening
line, i.e., lines where Ng+(2)=~ for successive strip widths N
from 2 to 8.



40 PREROUGHENING TRANSITIONS IN CRYSTAL SURFACES. . . 4717

gz" scales indeed as Xg~"=2~xH with the correct value
of the magnetic critical exponent of the Ising model,
xH= —,'. For example, we find at point S in Fig. 2

xH =0.1245+0.001, ' and at point I (by extrapolation of
the results in Fig. 11),xI, =0.1245+0.001. We also deter-
mine the value of the central charge c of conformal
theory. The free energy for periodic boundary condi-
tions (PBC) must scale as fPBC =f„+,'c~N—.At
point S we find c=1.50+0.01 in accordance with the
above description of the transition as an Ising model
(c =

—,
'

) superimposed to a Gaussian model (c = 1). Simi-

larly, segment M-I represents a critical Ising model cou-
pled to noncritical six-vertex degrees of freedom, i.e.,
c =—'. Indeed we find c =0.50+0.01 at point I. Surpris-
ingly', the Ising and six-vertex degrees of freedom do not
seem to couple at the multicritical point M either (see
Fig. 2). Preliminary results indicate that c =1.5 and no
apparent singularities different from Ising.

G. The preroughening transition

phase where ill vanishes and il, (1) becomes nonzero.
This implies [see Eq. (2.9)] that il (1) vanishes [because
rI, (0) remains zero], and that il (0) becomes finite. This
is indeed what happens [see Figs. 11(d) and 11(c)]. This is
conclusive evidence for the existence of the DOF phase
and our interpretation of its character (positional disor-
der with long-range AF step order).

The central charge can be obtained again from the
finite-size-scaling behavior of fpgc We find

c = 1.00+0.01 at point P. This suggests that the
preroughening transition line is a critical line with con-
tinuously varying exponents. We determine the tempera-
ture critical exponent yT at point P from the finite-size-
scaling behavior of the temperature derivative of these
quantities; we find yT =0.292+0.005. So the specific-heat
singularity is extremely weak,

a=2 —2/yT= —4. 85+0. 1 .

The numerical values for the universal finite-size-scaling
amplitudes of the interface free energies at point P are

The most exciting aspect of the phase diagram is the
presence of the preroughening transition line I.-P. This
is a new type of surface transition. The preroughening
line is the threshold between the RSOS Oat and DOF

and

Ni)+(1) =0.920+0.005,

Nil (2)=3.677+0.005 .
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FICr. 11. Finite-size-scaling behavior of the surface tensions g—(a)=S—(a)/N for strip widths N=2, 4, 6, 8, 10 along the line

L2~ ~ in Fig. 2, for (+,a)=(+, 1), (+,2), ( —,0), and ( —,1).
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It is impossible to say with certainty from the present nu-
merical data whether the critical exponents vary continu-
ously along the preroughening line. The convergence be-
comes too slow close to the multicritical point L; slow
convergence is consistent with the crossover to KT
roughening. If indeed the exponents vary continuously,
then yT varies from yT=O at point L (its value at KT
roughening, assuming continuity across point L ) to
yT =0.30 at point P, and a similar continuous variation in
the preceding universal amplitudes.

We have no exact analytical results yet about the scal-
ing properties of the preroughening transition. However,
the above numerical results give a hint. The structure of
the phase diagram close to the multicritical point L
somewhat resembles a so-called "critical fan, " like the
one in, e.g., the Ashkin-Teller model. In that case the
preroughening line would renormalize to the Gaussian
model, with a continuously varying K )—,'m. In that case
the universal amplitudes should still be Gaussian, i.e.,
Nri+(a )=—,'a Ks. This works. Our numerical values at
point P obey

ri+(2)/g+(1) =4.00+0.01,

with K =1.54+0.01. Moreover, the energy operator
should remain the same as along the roughening line P-L,
i.e., exp(i2~h, ). The exp(iqh, ) operators have critical
exponents

x =2—y =q /(4mK )

in the Gaussian model. ' This together with the earlier
value of K predicts that

yT=2 —m. /K =0.29+0.01,
which is consistent with our numerical result quoted
above. Also our numerical values for the universal am-
plitudes of the antiperiodic boundary conditions,

(0)=0.785+0.005,

portional to the inverse of the roughness parameter K of
Eq. (2.2). Another macroscopic manifestation of sur-
face roughening is the change in the growth rate as func-
tion of oversaturation. Below the roughening transition
the crystal grows via nucleation of terraces. The growth
rate depends exponentially on the oversaturation. The
growth is linear in the rough phase. The rate becomes
proportional to the oversaturation, because the particles
can adhere at the steps (see, e.g. , Gallet et al. ' ).

Studies of these two macroscopic effects for He crys-
tals in coexistence with their superAuid' are among the
most detailed experimental confirmations of the KT na-
ture of the surface roughening transition. In the presence
of a DOF phase these two effects must take place at
different temperatures. The growth changes from nu-
cleation to linear growth at the preroughening transition,
while the crystal facet does not disappear until the
roughening transition (with the same universal jump in
the curvature as before).

Surface roughening has also been studied in detail for
metal surfaces, in particular for vicinal surfaces of Ni and
Cu. ' In the rough phase the line shapes are power laws.
They are determined by the correlation functions

Gq(r)=(exp[iq[h(ro+r) —h(rz)]J ) —r (2.10a)

with x =q /(4vrK ). Using this, the roughness parame-
ter K has been extracted from line shapes in atomic
beam experiments for Ni(1 1m ) surfaces. ' These experi-
ments confirm the KT nature of the roughening transi-
tion; at the temperature where the power law ceases to be
a good fit to the line shape the roughness parameter takes
the predicted universal value, K =~/2.

The DOF phase can be observed from the line shape in
this type of atomic beam and x-ray experiments as fol-
lows. The Ising-type correlation function Eq. (2.4),
which couples to the parity, corresponds to the correla-
tion function in Eq. (2.10a) at the anti-Bragg angle q =sr.
So G (r) decays exponentially to a constant in the fiat
crystal phase,

and

(1)=0.785+0.005

G (r)-exp —a — +p

but exponentially to zero in the DOF phase

(2.10b)

are consistent with the Gaussian value Ng —+(a ) = —,'m. So
the operators along the preroughening line seem to obey
the Gaussian-type operator algebra.

7"

G (r)-exp —a— (2.10c)

G (r) decays as a power law at the preroughening tem-
perature,

H. Suggestions for experiments 2x
G (r)-r (2.10d)

Preroughening and the DOF phase have not been stud-
ied experimentally yet. We close this section by pointing
out several possible experimental ways to observe
preroughening. One of the macroscopic manifestations
of surface roughening is the vanishing of crystal facets
with increasing temperature. The size of a facet is pro-
portional to the step free energy g+(1). q+(I) vanishes
at the roughening transition, and the crystal obtains a
finite curvature. The jump in curvature is universal, pro-

and the parity order parameter p of Eq. (2.5) vanishes as

p-(T T)~— (2.1 1)

and y T
=2 —x ~ . Then P= (2 —y ) /y T varies continu-

Assume that along the preroughening line the aforemen-
tioned Gaussian operator algebra applies, i.e., that

x =2—y =q /(4~Kg)
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ously along the preroughening line between the values
P=1.46+0.06 at point P in Fig. 2 (where E =1.84
+0.01) and P= ~ at the multicritical point L. The
preroughening transition is followed at higher tempera-
tures by a conventional roughening transition. There the
line-shape changes into the power law Eq. (2.10a), with
the usual universal value Kg =

—,'m at Tz.
It is difficult to predict which experimental systems ex-

hibit preroughening. The multicritical point L, where
the DOF phase becomes stable, is located in Fig. 2 at
L2/K =1.23+0.04. In general one might expect that the
interactions of an experimental system can be cast ap-
proximately into a Hamiltonian of the form

FIG. 12. Diagonal lattice setup used in the transfer matrix.
The dashed lines connect column height variables that belong to
the same time slice.

H= g V(~r r'~)[h(r—) —h(r')] (2.12)

E and L2 in Eq. (2.1) are related to V(r ) as K = V(1) and
L2 =4V(&2). L& is equal to zero in Fig. 2, but equal to
L, = ,'L2 = V—(&2)in Eq. (2.12). L, renormalizes the step
energy K; roughly as K,z-—K+2L&. So in systems like
Eq. (2.12) a DOF phase can be expected if L2/K, (r

—l.23,
i.e., if V(&2)/V(1) =0.8. In other words, we expect the
onset of a DOF phase if the combined strength of all the
further than nearest-neighbor interactions (within the in-
teraction range) is approximately equal to the nearest-
neighbor strength. It is not clear to us whether this is
satisfied in He. It might be satisfied in metals, because
the observation of nonzero roughening temperatures in
higher-order vicinal metal surfaces, like Ni(llm) and
Cu(1 1m ), for I=3,5, 7, . . . ,

' implies that the steps in-
teract over large distances.

III. EQUIVALENCE BETWEEN SOS MODELS
AND SPIN QUANTUM CHAINS

A. Transfer matrix of the RSOS model

In this section we derive in detail the equivalence be-
tween the RSOS model and the spin-1 chain using the
transfer matrix formalism. We choose the transfer ma-
trix of the RSOS model in the diagonal direction as indi-
cated in Fig. 12 by the dashed lines. The column heights
h,' represent the heights h„one unit of "time" later. The
transfer matrix has the form

T= + T, (n)Tz(n)TJ(n) + T, (n)TI((n)TI(n)
71 Qddn even

where

rJ =exp( —L',"),
r2 =exp( L2" ),—
q=exp( —Q) —1 .

(3.3)

The operators h„and p„obey the conventional scalar
commutation relation [h„,p ]=i5„,but with as a con-
straint that the eigenvalues of h„are integers, and ac-
cordingly the spectrum ofp„ is periodic, 0 &p„&2m. The
P(k, 1 ) are projection operators that enforce the step-one
constraint: P(k, l)=1 if ~k —

l~ (1 and P(k, l)=0 other-
wise.

Next, introduce the spin-1 algebra,

S„'=h„+,—h„,
S„—S„+

J =2P(h„+J,h„)P(h„,h„J )e
(3.4)

+(2L(x) JL(x) )(SzSz )2I

T,(n)= Il+ —,'rJ[1+q5(~S„'+S„' J ~

—1)]

(3.&)

with S„"=—,'(S„++S„), S~=(1/2i)(S„+—S„), and
[S„",S~ ]=iS„'5 „. S„'=0 represents the absence and
S„'=+1 (

—1) the presence of an up (down) step, at the
bond between sites n and n + 1 in Fig. 12. In terms of the
spin-1 operators the transfer matrix reads

T~( n ) =exp I
—K [(S„' J ) + (S„') ]I,

T (n)=expI L',"'[(S' ) +—(S') ] ,'L'"'S'S'——

with

T~(n )=expI —K[5(~h„+J—h„~ —1)

+5( ~h„J—h„I —1)]I,
TI (n ) =exp[ —L' 5( Ih„+ J

—h„, I

—1)

L2"'5( ~h„+,—h„—, ~

—2)],
T, (n ) =P(h„+„h„)P(h„,h„, )

X I I+2rJ[1+q5(~h„+J —h„J~ —1)]

X cos(p„)+2r2cos( 2p„)],

(3.1)

(3.2)

X (S„S„J+S„S„J)
+ —,

J r2[(S„+S„:J ) +(S„S„,) ] I .

B. The spin-1 quantum Hamiltonian

The logarithm of the transfer matrix H = —ln( T ),
defines the one-dimensional quantum problem associated
with the RSOS model. The ground-state energy of H is
proportional to the free energy. The quantum Auctua-
tions play the role of the thermodynamic fluctuations.
The reduced Hamiltonian H~ is obtained by ignoring
that the factors in the right-hand side in Eq. (3.1) do not
commute,
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Hg = g {—
—,'r3(S„S„,+S„S„+,) ——,'r2[(S„+S„:,) +(S„S„+,) ]

——2(r~ —r, )[S„'S„',(S„+S„:,+S„S„+,, +(S„+S„:,+S„S„+,)S„'S„' ) ]

+D(S„') +JS„'S„' i+8,(S„'S„' i ) ], (3.6)

with

r3= (1+q )r, ,

D=2(K+LI '),
J—1L(~)

2 2

(21 (x) ] L (I)
)1 p 2 (3.7)

n is empty, and S„'= + 1, —1 the state where site n is oc-
cupied by a spin- —, particle with, respectively, spin-up or
spin-down. The steps in the crystal surface configura-
tions represent the world lines of these spin- —,

' particles.
The vertical direction in Fig. 3 and Fig. 9 now plays the
role of (imaginary) time.

C. SOS models in general

Hz becomes exactly equal to H = —ln( T ) in the so-called
time continuum limit where K, L', ', L z ', ~„~2, and ~3

go to zero simultaneously with fixed ratios. This corre-
sponds to the limit where the 2D lattice becomes very an-
isotropic; L'&" and Lz" go to infinity. In most statistical-
mechanics models the universality class of the phase tran-
sitions and the general structure of the phase diagram do
not change in this limit (see, e.g. , Refs. 16 and 26). Lat-
tice anisotropy is associated with the stress tensor, and
this is a redundant operator for most phase transitions.
This aspect plays an important role also in the recent ap-
plications of conformal theory to 2D critical phenome-
na.

However, there are exceptions. The structure of the
phase diagram changes quite dramatica11y in cases where
the ground state modulates in the timelike direction.
This is the reason why we choose the diagonal direction
setup of the transfer matrix; it allows us to consider the
BCSOS-type ground state at negative values of K. In our
setup the topology of the phase diagrams of the spin-1
Hamiltonian Eq. (3.6) (the very anisotropic RSOS model)
and the isotropic RSOS model, Eq. (2.1), are the same as
long as the next-nearest-neighbor interactions are fer-
romagnetic in the timelike direction, 0 & ~& 1 and
0&~, &1.

Equation (3.6) is the most general spin-1 Hamiltonian,
with only nearest-neighbor interactions between the
spins, which conserves the total spin and is invariant un-
der spin reversal. It is the unique reduced Hamiltonian
of the transfer matrix of the RSOS model Eq. (2.1). The
reverse is not true. There are many ways to discretize
time in the Feynman path integral. The spin-1 Hamil-
tonian Eq. (3.6) is equivalent to many (slightly different)
RSOS models. Indeed, the interactions in our RSOS
model, Eq. (2.1), are somewhat different from the ones
obtained in earlier work where time was discretized in
the spin-1 model by means of the Trotter formula.

In Sec. II we found that the phase diagram of the
RSOS model becomes completely transparent if we inter-
pret the RSOS model as an annealed bond-diluted six-
vertex model. Similarly, in the next section we will find
that the phase diagram of the quantum chains become
much more transparent if we interpret Eq. (3.6) as the
Hamiltonian of a diluted spin- —, chain instead of a chain
of spin-1 objects. Let S, =0 represent the state where site

The derivation presented here can be generalized to
SOS models in general. SOS models where the step
heights are less restricted, e.g. , to

6h =0, ~ 1,+2, . . . , +s,
are equivalent to quantum chains with larger integer
spin s. They can be interpreted as describing diluted
spin-(s —

—,') chains with analogous dynamics as in Eq.
(3.6). Again the steps in the surface play the role of the
world lines of these particles.

Quantum chains with half-integer spins are equivalent
to body-centered solid-on-solid (BCSOS) models. BCSOS
models describe surfaces with body-centered type of sym-
metry such as Ni(110) and Cu(110). We refer to the
literature for the well-known equivalence, using the same
procedure as described here, between the BCSOS model
(the six-vertex model) and the spin- —,

' quantum chain'
[or simply set K~ —~ in Eqs. (2.1) and (3.7)]. The gen-
eralization to half-integer spin chains with larger spin is
straightforward.

IV. THE PHASE DIAGRAM
OF THE SPIN-1 QUANTUM CHAIN

A. Diluted spin- —' representation

In this section we explain the phase diagram of the
spin-1 chain. The structure becomes quite transparent if
we interpret the spin-1 chain as a gas of spin- —, particles.
The world lines of these particles are the direct analogues
of the steps in the 2D crystal surface in the statistical-
mechanical RSOS model representation. The Heisenberg
antiferromagnetic (HAF) point lies inside the DOF
phase. This clarifies the so-called Haldane conjecture.
Moreover, in Secs. V and VI we show that valence bond
solid (VBS) type phases in quantum spin chains are
equivalent to disordered flat (DOF) phases. This
identification with the DOF phase implies that at the
HAF point and the VBS phase the spins have long-range
order. The spin- —, particles are in a fluid (positional
disordered) state but maintain long-range AF spin order.
Neel solitons have finite mass. Using the results of Sec.
II, we identify order parameters that distinguish the VBS
phase from the other phases. This interpretation of the
model as a diluted spin- —, chain explains the physical
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mechanism responsible for the stability of the VBS phase.
Equation (3.6) is the most general spin-1 quantum

chain Hamiltonian with only nearest-neighbor interac-
tions and dynamics that conserve the total z component
of the spin. Likewise, Eq. (2.1) is the most general RSOS
model where steps only interact when they meet at the
vertex sites R (see Fig. 1). The phase diagram of the
RSOS model is six dimensional because Eq. (2.1) contains
six coupling constants. The phase diagram of the spin-1
chain, Eq. (3.6), is five dimensional. It is contained in the
RSOS model as the limit where the lattice becomes ex-
tremely anisotropic (see Sec. III 8). Or alternatively, the
RSOS model can be viewed as a discretized time generali-
zation of the spin-1 quantum chain; the extra sixth cou-
pling constant represents the timelike lattice constant.

In Sec. II we found that the phase diagram of the
RSOS model becomes completely transparent if we inter-
pret the RSOS model as an annealed bond-diluted six-
vertex model, i.e., a six-vertex model defined on an en-
semble of lattices formed by the Bloch walls of an Ising
model. The coupling constants K, L', L',", and Q in

Eq. (2.1) govern the Ising-type order, i.e., the average
structure of the annealed six-vertex model lattice,
whereas L ~

' and L'z" govern the six-vertex-type order.
To reformulate this into spin-1 language we interpret

the spin-1 model as a one-dimensional gas of spin- —, parti-
cles. S,'=0 represents the state where site n is empty,
and S„'= + 1, —1 the state where site n is occupied by a
spin- —, particle with, respectively, spin-up or spin-down.

The step excitations on the crystal surface represent
the world lines of these spin- —,

' particles. The vertical
direction in Fig. 3 and Fig. 9 now plays the role of (imagi-
nary) time. The Ising-Bloch walls represent the presence
of spin- —,

' particles and the arrows of the six-vertex model
represent their spin.

From this perspective Eq. (3.6) is indeed the most gen-
eral Hamiltonian with nearest-neighbor interactions.
There are only four characteristic configurations for
nearest-neighbor sites: (S„',S„',)=(0,0), (+,0), (+,+),
or (+,—). Hence we need three terms in H that com-
mute with S„'. D to represent the chemical potential of
the spin- —,

' particles, J to represent the interactions be-
tween the spins of the particles, and 6 to represent a
soft-core repulsion between the particles at nearest-
neighbor sites. Furthermore, there are only three charac-
teristic dynamical processes: a particle pair with oppo-
site spin can be created or annihilated at nearest-neighbor
sites with probability r&, e.g. , (0,0)~(+,—), a particle
pair at nearest-neighbor sites can exchange their spins
with probability rz, e.g. , (+, —

)—+( —,+ ), a particle can
hop to a nearest-neighbor site with probability ~3, e.g. ,
(0, + )~(+,0).

B. Phase diagram of the spin-1 chain

Figure 2 shows the phase diagram of the RSOS model
in the subspace where the lattice is isotropic,
Lz =L'z ' =L'" and L

&

=L j"' =L'" and steps with
parallel arrows repel each other, Lz & 0, while steps with
antiparallel arrows do not attract each other, L, =Q =0

(see Sec. IIB). During the last 5 years there have been
many numerical studies of the spin-1 quantum chain.
Most have focused on the special case where
7 p 6 T3 Ti 0. These results lead to the schematic
phase diagram shown in Fig. 13. In Fig. 13(a) we label all
the phases according to the RSOS model representation
(compare with Fig. 2), in Fig. 13(b) according to the con-
ventional spin-1 nomenclature, and in Fig. 13(c) accord-
ing to the interpretation of the spin-1 model as a gas of
spin- —,

' particles. For the first time we obtain a
comprehensive understanding of this phase diagram.
Moreover, some aspects had been unclear up to now. In
particular, the existence of the transition line L, -X had
been acknowledged only recently, but its nature (it is
the preroughening transition) and the distinction between
the two singlet phases, the RSOS Oat phase and the DOF
phase, remained obscure. Another important detail is the
exact location of the "roughening" transition line
L-M-B. We will show that it exactly coincides with the
D axis. Previous numerical studies placed it at the J&0
side.

In Sec. II we mentioned that it is useful to view the
phase diagram as a superposition of the familiar phase di-
agrams of the Ising model and the six-vertex model. All
differences in structure between Figs. 2 and 13 can be
completely understood from this. For example, the ab-
sence of the multicritical point X and a first-order transi-
tion line between the RSOS and BCSOS Aat phases
beyond X, in Fig. 2 rejects the absence of next-nearest-
neighbor interactions L

&
and four-spin interactions Q in

the Ising sector.
In Sec. II we discussed the structure of the phase dia-

gram from the surface roughening perspective. For clari-
ty we now repeat this discussion using the diluted spin- —,

chain interpretation.
The density of spin- —, particles is controlled in Figs. 2

and 13 by the coupling constant along the vertical axes,
K and D, respectively, while the order of their spins is
controlled by the coupling constant along the horizontal
axis, Lz and J, respectively.

In the limit D~ —~ each site is occupied, and the
spin-1 quantum Hamiltonian, Eq. (3.6), reduces to the ex-
actly soluble spin- —,

' quantum chain (the six-vertex mod-
el). The particles form a solid.

The BCSOS fiat phase at J ))0 and D ((0 (the Neel
phase), represents a solid of spin- —,

' particles with long-
range spatial order and also long-range AF spin order.
At finite values of D not every site is occupied (there are
holes), but until the Ising transition line, the particles
maintain their positional solid-type order. It is a solid
with virtual excitations of bound hole pairs (the Ising dy-
namics allows particles to be annihilated or created at
nearest-neighbor sites only in pairs).

The BCSOS rough phase at J=0 and D « 0,
represents a solid of spin- —,

' particles, with long-range po-
sitional order, but massless spin-wave excitations. The
spin exchange J between the particles at nearest-neighbor
sites is too weak to stabilize AF or F long-range spin or-
der.

The BCSOS stepped phase, at J «0, represents a solid
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0

+BCSOS ROUGH ~ma s s less

(a)
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(b)

0

massless~ spinwave
sol icl

FIG. 13. Phase diagram of the spin-1 Hamiltonian with particle fugacity D and AF spin interaction J, with ~3= 1, using the RSOS
model language (a), the spin-1 nomenclature (b), and the interpretation of the spin-1 chain as a diluted spin- —chain (c}.
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C. Order parameters

It is important to translate the order parameters which
we defined in Sec. II to distinguish between the DOF
phase and the RSOS Aat phase into the spin-1 language.
Both are so-called singlet phases, where

m = (o~s„'~0) =o . (4.1)

This simply states that both describe Aat crystal surfaces.
The translation symmetry in the vertical-z direction,
h —+h+1, is spontaneously broken in both phases, with

of spin- —,
' particles with perfect ferromagnetic spin order.

This phase is perfectly ordered because the ferromagnetic
ground state is frozen with respect to each of the three
types of dynamical processes.

The hole-pairs unbind at the Ising transition line
N-M-A. The solid melts into a fluid, a dense state
without positional order. The RSOS rough phase, at
J=0 and D =0, represents a fluid of particles with mass-
less spin-wave excitations. The disordered fiat (DOF)
phase, at J ))0 and D =0, which we will identify in Sec.
V with the VBS phase, represents a Auid of spin- —,

' parti-
cles, with long-range AF spin order.

This Auid collapses at the KT line F-L and the
preroughening transition line L-N. The RSOS Aat phase,
at D ))0, represents a gas with only virtual excitations of
bound pairs of spin- —, particles with opposite spin. (They
are the terraces in the crystal surface. ) This gas is too di-
lute to be able to sustain long-range spin order, or mass-
less spin waves.

The line L M Bi-s a-Kosterlitz-Thouless (KT) transi-
tion line, in accordance with our separation of positional
(Ising) and spin- —,

' (six-vertex) types of degrees of freedom.
In the RSOS model interpretation this is simply the
roughening transition. From the spin-1 chain perspective
this transition is driven by the "umklapp excitations" in
the spin- —,

' sector.
The line F-A-B, where the spin- —,

' particles freeze into
the perfectly F ordered state, is a KDP type first-order
transition.

The gas phase (RSOS fiat phase) contains bound pairs
of spin- —, particles with opposite spin. These bound pairs
unbind along its phase boundary. To the left of point F
and to the right of point N this is a simple first-order
transition. Along the F-L segment this is the convention-
al Kosterlitz-Thouless type roughening transition, in ac-
cordance with conventional renormalization arguments
for the RSOS model" (i.e., the continuum limit which
maps the spin-1 quantum chain into the quantum sine-
Gordon model '). The line L Nis the novel pr-eroughen-
ing transition. In Sec. II we discussed its scaling proper-
ties, and found that it almost certainly is a line with con-
tinuously varying critical exponents (with central charge
c= 1). The particles unbind into a random (fiuid) type
structure, but maintain long-range AF spin order. At
first sight this transition resembles a conventional Ising
transition, but the extra spin degrees of freedom. carried
by the Ising-Bloch walls weaken the transition consider-
ably (see Sec. II G).

an average integer height h in the RSOS Aat phase and
average half-integer height h in the DOF phase.

It is impossible to define local order parameters that
distinguish these two phases. The local order parameters
of Sec. II E become nonlocal string operators in the spin-
1 formulation (where the surface configuration is charac-
terized by the steps). Recall the Ising-type order parame-
ter p, Eq. (2.5), which is finite in the RSOS fiat phase and
zero everywhere else. The limiting value of the parity
correlation function, Eq. (2.4),

n+n0

GH(n ) = 0 exp

iver

g S' 0
m=n 0

(4.2)

n

p= 0 exp i~hp exp i~ SM 0
m =1

(4.3)

with hp the height of the column at the seam between
spins S& and S&. It is necessary to enlarge the Hilbert
space with this variable, hp. It ensures that the mapping
from column height configurations to spin configurations
is one to one. hp changes by one when a particle passes
by or a particle pair is being created or annihilated at the
seam; e.g. , hp changes into hp+1 when a spin- —,

' particle
with down spin moves from site N to 1. The information
about the absolute height of the surface is lost in the spin
representation in the absence of hp, and the sign of p be-
comes meaningless (see also Sec. VI A).

Similarly, the order parameter P, Eq. (2.8), which van-
ishes everywhere except in the DOF and BCSOS Aat
phase becomes

n

0 exp(ixhx)exp ix X SM S„* 0)
m =1

(4.4)

and its square is the limiting value of the correlation
function, Eq. (2.7),

n+n0

G, (n)= 0 S„' exp im g S' S„'+„0
m=n 0

(4.5)

Finally, the order parameter p„Eq. (2.6), which vanishes
everywhere except inside the BCSOS Aat phase, also be-
comes nonlocal,

n

p, = 0 exp i7Thp —1 "exp i~ S~ 0
m=1

(4.6)

The translation symmetry is broken in the direction along
the surface in the BCSOS Aat phase. Therefore we can
use the staggered magnetization as a local parameter:

(4.7)

The order parameter p, couples only to the positional or-
der and iti only to the spin- —,

' order, but m, couples to

is equal to p . So we can determine the absolute value of
p, i.e., the presence of Ising spin order, but we cannot
determine the sign of p (distinguish between the two fer-
romagnetic Ising ground states). p can be written as
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both: m, =p, P. For example, the AF spin order becomes
perfect in the limit J~~, /=+1. There, ~m, ~

is equal
to ~p, ~, and decreases for increasing D until it vanishes at
the AF Ising transition point I, while the order parame-
ter P remains nonzero inside the DOF phase. Similarly,
the particle order becomes perfect (the solid) in the limit
D —+ —oo, p, =+1. There, ~m, ~

is equal to ~g~, and de-
creases for decreasing J until it vanishes at the KT transi-
tion line at J=O, while p, remains nonzero inside the
BCSOS rough phase.

D. Mass gaps

We do not calculate these correlation functions numer-
ically. Instead we focus on the mass gaps conjugate to
these order parameters, the mass of the spin- —,

' particles
and Neel solitons. These are the interface free energies
of Sec. IIF. We study the finite-size-scaling properties
of the ground-state energies of chains with lengths
N =2,4, . . . , 12, for periodic boundary conditions
S„'+&= +5„' with total magnetization g„S„'=0, 1,2,
and for antiperiodic boundary conditions S„'+&=—S„'
with total magnetization g„S„'=0,1 [mod(2)]. The mass
gaps are the differences in these ground-state energies

phase). r) (1)=gq+g, (0), which represents the particle
mass, must be zero inside the AF ordered fiuid (DOF Bat
phase) and be nonzero inside the gas phase (DOF phase).
This is indeed what happens. Figure 11 shows the scaling
behavior across the preroughening transition in the iso-
tropic RSOS model of Fig. 2 in the limit L2~ ~. As
predicted, Ng (1) shown in Fig. 11(d) diverges in the
RSOS Aat phase and vanishes in the DOF phase, while
Ng (0) shown in Fig. 11(c), vanishes in the RSOS Aat
phase and diverges in the DOF phase.

Figure 14 shows how the same quantities behave in the
spin-1 chain along the dashed line in the phase diagram
Fig. 13. The results converge less rapidly, because of the
nearness of the KT and AF Ising transition lines. In the
RSOS model we decided to study a cut through the six-
dimensional phase diagram, where the multicritical point
X has moved to infinity, to minimize this type of interfer-
ence. However, the results support that the spin-wave
mass gap, rl, (1), is nonzero in the VBS phase and zero
inside the disordered singlet phase, and that the particle
mass, gz, is zero inside the VBS phase and nonzero inside
the disordered singlet phase.

rI
—

( a ) =E (a ) E+—(0) . —

Figure 9 shows the world lines of the topologically in-
duced frustrations and Eq. (2.9) gives the separation be-
tween positional and spin type masses.

The Ising-type surface tension ql, see Eq. (2.9),
represents the mass of the spin- —,

' particles in the gas
phase (the RSOS Iiat phase), and is conjugate to the order
parameter p. It vanishes at the transition line
F-R -L-P-N, and is zero everywhere else.

The surface tension gl" represents the mass of a hole
inside the two solid phases (the BCSOS liat and BCSOS
rough phase), and is conjugate to the order parameter p, .
It vanishes at the Ising transition line 3-S-M-I-N, and is
zero everywhere else.

The surface tensions q,
—represent the mass of a Neel

soliton inside the AF spin ordered Quid and solid phase
(the DOF and BCSOS fiat phase), and are conjugate to
the order parameter g. They vanish along the
preroughening line L-P-N, and roughening line L-M-B,
and are zero everywhere else.

In Sec. II we describe in detail how we use these prop-
erties to determine the phase boundaries in Fig. 2. We do
not repeat this calculation for Fig. 13, because most
phase boundaries have been studied extensively by many
earlier numerical studies of the spin-1 chain. The only
exception is the preroughening transition and the nature
of the DOF phase.

In Sec. II we present numerical evidence for the ex-
istence of the DOF phase and the validity of our interpre-
tation of it by calculating the finite-size-scaling behavior
of q (1) and rl (0) across the preroughening line. See
Eq. (2.9): g (0)=g, (1), which represents the Neel soli-
ton mass, must be zero inside the gas phase (RSOS liat
phase) and be nonzero inside the AF ordered Iiuid (DOF

I
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FIG. 14. Finite-size-scaling behavior of the sorface tensions
(o)=S (0)/N, and g (1)=S (1)/N, along the dashed line

in Fig. 13, for strip widths N =4,6, 8, 10, 12.



40 PREROUGHENING TRANSITIONS IN CRYSTAL SURFACES. . . 4725

K. Exact location of the KT transition

Most of the recent interest in the ground-state proper-
ties of the spin-1 quantum chain has been triggered by
the Haldane conjecture, ' which states that the energy
spectrum at the Heisenberg AF (HAF) point is not mass-
less, but that there is an energy gap between the ground
state and the first excited state. At first this conjecture
was controversial, but more recent numerical studies
have demonstrated quite convincingly the presence of a
finite mass gap at this point. The point (J,D)=(1,0) in
Fig. 13 corresponds to the HAF point. This point clearly
lies inside the DOF phase.

We will now remove any remaining doubt that the
HAF point might belong to the massless rough phase, by
showing that the roughening line L-M-B must be located
to the left or (most likely) exactly at the D axis. In the
Appendix we prove that i)+( I)=i) (1) in the subspace

exp( L2 '
) +—exp( Lz'" ) =—1,

for all values of the strip width N. It must be true that
inside the rough phase Nq+(I ) =vK /2, with K (vr/2,
and Ng (1)=vm/4. With v a common scale factor (pro-
portional to the spin-wave velocity) which is equal to
v= 1 in the isotropic lattice. So il+(1) and i) —(1)
cannot be equal inside the rough phase; except at the
roughening transition itself where Kg =m /2. This implies
in Fig. 2 that the roughening line L-M-B must be located
at exp(Lz) ~ 2 and most likely exactly at exp(L2) =2 (see
the Appendix). It implies that in Fig. 13 the KT-
transition line L-M-B must be located at the J (0 side of
the phase diagram, and most likely that it coincides with
the D axis. Recall that

~2 =exp( L~~" ) =0—
and J= ,'L ~2 ', hence —exp( L~2"' ) = 1—corresponds to
J=0. Most numerical studies place this transition line at
the J)0 side (the wrong side), ' but this is consistent
with our own numerical work for the RSOS model, Fig.
10, and slow numerical convergence.

The value of v is unknown because the spin-1 chain
corresponds to a RSOS model on an extremely anisotrop-
ic lattice (v= 1 on an isotropic lattice). Therefore the
condition Ni)+(2) =m cannot be used any longer to deter-
mine the location of the roughening line numerically (as
we did in Fig. 10). We would have to use ratios; e.g. ,

Nrl+(2)/Nri (1)=4

or

Nrl+( I )/Ng (1)=1 .

The latter yields trivially the line D =0 for all N because
of the symmetry relation just stated.

F. Quantum fluid with long-range AF spin order

It is surprising that a Quid can sustain long-range AF
spin order in the presence of only short-range interac-
tions. The AF spin interaction is short ranged. Outside
this range the particles do not have any energetic prefer-

ence for AF spin order. The long-range AF spin order is
stabilized by a combination of the kinetic energy and
short-range repulsion between parallel spins. The parti-
cles collide often enough that they prefer that their spins
are AF ordered. This is the direct analog of our entropy
argument. The spins prefer the AF ordered state because
that gives them more positional entropy (zero point
motion); see Sec. II B and Fig. 5.

Recall the more detailed argument for the presence of
long-range order in the DOF phase in Sec. II. We de-
scribed the positional and spin- —, degrees of freedom in
terms of Ising and six-vertex degrees of freedom. We
found that the presence of an infinitely large backbone in
the ensemble of six-vertex lattices is essential for sustain-
ing long-range AF spin order. Systems on finite lattices
cannot maintain long-range order and a spontaneous bro-
ken symmetry. This backbone lattice represents a collec-
tion of intertwining spin- —, particle world lines that spans
the entire space-time in the path integral. Particles at op-
posite sites of the chain communicate with each other (al-
though in between them particle pairs are being created
and annihilated all the time). Information of the collec-
tive choice of the preferred spin direction is transferred
across the chain by a sequence of advanced and retarded
collisions.

G. An exact soluble line

Finally, consider the multicritical point M; see Figs. 2
and 13. The central charge at this point is c=1.5 be-
cause it represents a simple Ising transition (c =0.5) su-
perimposed on a roughening transition (c=1.0). This
point has been identified with the Wess-Zumino-Witten
model by Haldane and Aleck. It is noteworthy in this
context that the RSOS model, i.e., the spin-1 chain wi. th
discretized time, contains the exactly soluble 19-vertex
model solved by Zamolodchikov and Fateev. The in-
teresting aspect of this exact solution is that the exactly
soluble subspace lies inside the surface of AF Ising-type
critical points. Moving through the exactly soluble sub-
space is like moving along the line 3-S-M-N in Figs. 2
and 13. This path crosses multicritical points of type M
and N, but without a singularity in the free energy at
point M. ' '

V. THE VBS STATE IN THE SPIN-1 CHAIN

A. The VBS state

Recently, Aleck et al. showed that at a specific point
of the phase diagram of the spin-1 quantum chain the ex-
act ground state is a valence bond solid (VBS) state.
Furthermore, this point is close to the Heisenberg (HAF)
point, and therefore they suggest that also at the HAF
point the ground state is described approximately by the
VBS state.

In the preceding section we showed that the HAF
point lies inside the DOF phase from the perspective of
crystal surface roughening. Now we will demonstrate
that the exactly soluble VBS point is part of the DOF
phase as well. We will find that the VBS ground state has
exactly the type of long-range order and disorder that we
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associate with the DOF phase. Moreover, we will
demonstrate that at this point the AF spin order is per-
fect and that the positional disorder is maximal. This
suggests that the exactly soluble VBS point plays the role
of Axed point of the DOF phase, that in renormalization
transformations the VBS point in the phase diagram
serves as the sink of the RT flow inside the DOF phase.

Aleck et al. represent the VBS state as follows. They
express the spin-1 variables as a sum of two spin- —,

' vari-
ables. Let g &

denote a spin-1 state in terms of sym-
metrized spin- —,

' variables, i.e.,

H= g —,'S„S„,+ —,'(S„S„))+ —,
' . (5.3)

H = g —,', (S„+S„+,) [(S„+S„+,)
—2] . (5.4)

We refer to the papers by Aleck et al. and Arovas et
al. for more details.

This Hamiltonian is equivalent to the sum of projection
operators that project onto the spin-2 contribution for
every pair of nearest-neighbor spins,

q„=I++&,

g+ =P +=(I+—&+I ——&)/&2, (5.1) B. Noninteracting lattice gas with perfect AF spin order

XE I 7+1P.a. N 1P n
(5.2)

where periodic boundary conditions are implied.
AfBeck et al. show that this state is the ground state

for the Hamiltonian

In the VBS state each spin- —,
' is contracted with a spin- —,

'

at a neighbor site into a singlet state, a so-called valence
bond. Define the antisymmetric tensor e ~, e++ =e
=0 and e+ = —e +=1. Contractions of two spin- —,

'

variables into a singlet state can be written as
2 '~ e ~Iag&, where summation over repeated indices is
implied. The contractions are chosen such that every
spin-1 is connected to both its neighbors by a valence
bond. The VBS state can be written as

Notice that the hopping probability is negative in Eq.
(5.3). To make contact with the HAF point in Fig. 13 we
need to make the hopping probability positive. This is
achieved by a rotation S '~—+ —S"', S'~S' at every

~Z 3 f33+4
odd site n. Consider a section e ' 'P

& e ' ' of the VBS

state. For a4=P2=+ the spin is in the S'=+1 state and
the two e contribute a plus sign. For a4= —P2=+ the
spin is in the S'=0 state and the two e contribute a
minus sign. The spin rotation transforms this into a plus
sign because the rotation is equivalent to assigning a
minus sign to the S'=0 state; see Eq. (5.1). The rotation
is therefore equivalent to symmetrizing the tensors at
both sides of each rotated spin, e++ =e =0 and
e+ =e =1. For even chain lengths X all e's become
symmetric. For odd chain lengths one antisymmetric
tensor remains. Its location is arbitrary by gauge invari-
ance.

Under the rotation the Hamiltonian in Eq. (5.3) trans-
forms into the form

H = g —', + —,', S„'S„'+,+ —,'(S„'S„'+) ) —
—,
' (S„') —

—,'(S„+S„+,+S„S„+) )+ —,', [(S„+S„+,) + (S„S„++,) ]

—
—,', [S„'S„'+,(S„+S„+,+S„S„++,)+(S„+S„+) +S„S„++,)S„'S„'+,] . (5.5)

Compare this with Eq. (3.6). The two dynamical process-
es associated with the particle density (particle hopping
and particle-pair creation and annihilation) obtain posi-
tive probabilities. The third dynamical process, spin ex-
change, retains its negative probability. Therefore the
VBS point remains in a region of the phase diagram of
the RSOS model with negative Boltzmann weights.

The spin rotation has simplified the VBS state. The
cumbersome signs, associated with the antisymmetric na-
ture of VBS state, have vanished. Diagrammatically we
can represent the VBS state now as follows: denote a
S„'= + 1 state by a pair of plus signs (+ + ), the S„'= —1

state by two minus signs (
——), and the S„'=0 state by a

plus minus pair (+ —). The VBS state is the superposi-
tion of all possible states with a (++), (+—), or (

——)

at each site such that every + is matched by a —at the
nearest-neighbor site. These are the valence bonds. Fig-
ure 15 shows an example of such a state.

This matching rule implies that a (++) must be fol-
lowed by a ( ——), immediately or after an intermediate
string of (+—)'s. In other words, a particle with an up
spin, S'=+ 1 (a up step in the crystal surface interpreta-
tion), must be followed by a particle with a down spin,S'= —1 (a down step). The AF spin order of particles is
perfect, but the distance between particles, represented
by the length of the string of intermediate S„'=0, is arbi-
trary. This is exactly the type of long-range AF spin or-
der and positional disorder that we associate with the
DOF phase.

The VBS state can be written as
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I y „&=&2looo. . . &

2M" y Iol lool. . . &,

with

M=2, 4, 6, permuatlons (5.6a)

I fvBs &—
M=2, 4, 6, .

2M" g Iol lool. . . &,
perm uatlons

(5.7a)

&2lol lool. . . &
= Iot Soot. . . &+ I01100S. . . &,

(5.6b)

where 1 (0) denotes an occupied (empty) site, i.e.,
S„'=+1 (S„'=0). The first summation is over occupation
numbers, M =2, 4, 6, . . . , N. The occupation number
must be even because the spins of the particles have per-
fect AF order, and we assume periodic boundary condi-
tions. The second summation is over all possible
configurations of the M occupied sites. Each configura-
tion represents two different spin states because the AF
spins order is twofold degenerate [see Eq. (5.6b)]. Each
particle (S~=+I) has a fugacity &2. This originates
from the &2 normalization of the g &

in Eq. (5.1). The
n n

vacuum, M =0, has an anomalous weight 2, because then
. a (+,—) is located at each site, and it is possible to link

them in two ways.
Equation (5.6) applies to even chain lengths. For even

values of N all the e tensors become symmetric under the
spin rotation discussed above, but for odd chain lengths
one tensor remains antisymmetric. For odd values of N
the VBS state can be written as

advantage. It shows most clearly that the VBS state has
the properties of a noninteracting lattice gas. This ex-
plains the extremely short correlation length in the VBS
state. For example, the norm of the VBS state is identical
to the partition function of a noninteracting lattice gas
with fugacity z =2,

M=2, 4, 6, .

N
2M i (3N+3)M

(5.8a)

for even chain lengths N, and

& fvBsl PvBs & X
M=2, 4, 6,

N
2M & (3NM (5.8b)

for odd chain lengths N.

C. Order parameters and mass gaps

The preceeding property makes it very easy to calcu-
late all the correlation functions associated with the order
and disorder of the DOF phase defined in the preceding
sections. ANeck et a/. have already calculated most of
these correlation functions. In our lattice-gas formula-
tion the calculation becomes completely trivial. For sim-

plicity we present the calculation for even chain lengths
only.

Define the following sums,

with

&2101lool. . . & =101' i, ollol'. . . &
—Iog polloi. . . & .

(5.7b)

Z0(N) =
M=0, 2,4,

N
2

(5.9)

The vacuum contribution has disappeared because its two
terms now have opposite signs, and cancel. Also the two
spin states in Eq. (5.7b) have opposite signs. The location
of the remaining antisymmetric e is denoted by II. Its lo-
cation is gauge invariant, but must be selected to specify
a sign convention: the sign is + ( —) when the first S'WO
to the right of

II is S'= 1 (S'= —1).
It is easy to check by substitution that Eq. (5.6) is

indeed an eigenstate of Eq. (5.5). The proof and formula-
tion by AIIIeck et al. using Eq. (5.3), and also by Arovas
et al." (they use the Schwinger boson formalism), are
mathematically more elegant, but Eq. (5.6) has another

sur f'ac e

Z1(N) =
M=1, 3, 5,

N
2 M e

Using the binomial expansion,

P(a, b ) =(a +b )
M=0, 1,2, 3, . . . , N

N
Mb N —M

M

(5.10)

these sums can be evaluated trivially:

Z (N0)=[P(2, 1)+P(—2, 1)]/2=[3 +( —1)N]/2
(5.1 1)

Z, (N)=[P(2, 1)—P( —2, 1)]/2=[3 —( —1) ]/2 .

In the VBS state the expectation values for finding a par-
ticle or a vacancy are equal to

0 1 -] sp)n
(+ +) (- +) (- -) (+ -) (+ -) (+ +) (- -) valence

bonds

2Z, (N 1)—
&ol(s„')'Io& =

0
(5.12)

FIG. 15. Typical (side view) configuration in the DOF phase
for the RSOS model, as seen from, respectively, the crystal sur-

face, spin-1, and VBS perspective.

Zo(N —1)
&Ol[1 —(s„')']Io&=

0

=1
3

The probability of finding particles with parallel spins
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2[1+( I)n3 —n +1]

4Zo(n —1)ZO(N n ——1)
P n

Z (N)+1
2[1 ( I)n3 —n+1]

(5.13)

in the limit 1V~~ . The arrows in the VBS state
have perfect AF order; therefore PF,„,„(n)=0 and

AF, odd(+ )

The particle density-density and spin-spin correlation
functions, can be expressed in these four probabilities.
The density-density correlation function is equal to

. (Ol[S„' S„' „] lo&=P,„,„(n)+P, (n)

+PF,dd ( n ) +PAF,„,„(n ) = —,

(5.14)

This is simply the square of the particle density, Eq.
(5.12), and confirms that the particle positions are com-
pletely uncorrelated. The spin-spin correlation function
is equal to

(ols„'s„',„lo&=P„,„,„(n)—P „.„(n)

at site no and site no+ n with an odd number of particles
in between them, PF,dd(n ), and the probability of finding
particles with opposite spins at site no and site no+n
with an even number of particles in between them,
PAF, „,„(n ), are equal to

4Z, (n —1)Z, (N n ——1)
P n

Z (N)+1

Zo(n )Zo(N —n)+ 1
P,„,„(n )= lim =

—,
' [1+( —1)"3 "],x ~ Zo(N)+1

GH(n ) =P,„,„—P,dd
= (

—1)"3 (5.18)

This correlation function decays to zero at large dis-
tances. The Ising spin magnetization p [see Eq. (4.3)] is
equal to zero. This illustrates once more that the VBS
point belongs to the DOF phase, and not to the RSOS fiat
phase (the disordered singlet phase). In the latter p is
nonzero (see Sec. II E).

It is also easy to calculate the interface free energies
il

—(a ) defined in Secs. II and IV. Consider the ground-
state energies Eo (a ) for periodic and antiperiodic bound-
ary conditions (S„'=+S„'+A ) with magnetization a =0, 1.
Recall the definition il

+—(a ) =ED (a ) Eo+ (0).—
The ( —,1) boundary condition does not impose a topo-

logical frustration onto the AF spin order [see Fig. 9(d)].
The exact ground state for the ( —,1) boundary condition
is again a VBS state. This VBS state contains an odd
number of particles:

l WvBs &

M=1, 3, 5, PermuatIOnS
lollool . . . &,

(5.19a)

(5.17)
Z, (n)Z, (N —n)

P,dd(n )= lim =
—,'[1—

(
—1)"3 "] .

A ~ Zo(N)+ 1

The correlation function GH(n ), defined in Eqs. (2.4) and
(4.2), couples to the parity of the column heights in the
crystal surface (see Sec. II E) and is equal to

+PF,dd(n ) PAF,„,„(n )—
4( 1)II3 Il

3
(5.15)

So the order parameter m, [see Eq. (4.7)] is equal to zero,
as expected. The correlation length is extremely short,
g= I/in(3), which is not surprising given the lack of in-
teractions in this lattice-gas-type state.

The fact that the spin-spin correlation decays to zero at
large distances, might mislead one to believe that the
VBS state lacks long-range spin order. This correlation
function mixes positional and spin-type order (see Sec.
IV C). To exhibit the AF spin order of the particles prop-
erly you must consider the correlation function G, (n ) in
Eq. (4.5). G, (n ) can be expressed in the above four prob-
abilities too;

F, (~ )+ AF, odd(+ ) PF, odd(

PAF, even(+ ) 9 (5.16)

The absence of any distance dependence illustrates that
the AF spin order is perfect. The spin-type order param-
eter lid of the DOF phase, see Eq. (4.4), is equal to lit l

= —',.
This is simply the probability to find the site occupied;
see Eq. (5.12).

The probability of finding an even and an odd number
of particles between sites no and no+ n is equal to

with

&21011001.. . &
=

1
o t colloq. . . &+ los tollo t. . . &,

(5.19b)

with
ll

the seam across which the particles see each other
with reversed spin. This state has the same energy as the
VBS state for the (+,0) boundary condition, Eq. (5.6).
Therefore Eo (1)=ED (0), not only in the thermodynam-
ic limit, but also for all finite N. This confirms, see Eq.
(2.9), that the mass of the particles and vacancies, ill and
gz", are indeed equal to zero.

We are not aware of any simple form of the ground
state for the (+, 1) and ( —,0) boundary conditions. Nu-
merically, by solving finite chains up to %= 10 we find

that Eo (1) and Eo (0) differ slightly, but become rapidly
identical in the thermodynamic limit. This is expected,
because the soliton sees itself repeated over a distance X
for the (+,1) boundary condition, but it sees itself re-
versed for the ( —,0) boundary condition (an t t pair sees
a 41 pair). The soliton must have finite width, because
the correlation length inside the DOF phase is finite.
Therefore Eo+(1) must become equal to Eo (0) in the
limit of infinite chain length. By extrapolation of the nu-
rnerical results for N=2, 4, . . . , 12 we find that the Neel
soliton mass is equal to il+(I) =il (0)=2. 10066.
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D. Role of the VBS point in the DOF phase

These results demonstrate that the positional disorder
of the particles and also their AF spin order are both per-
fect at the VBS point. This suggests that the VBS state
can be used as the archetype state to describe the DOF
phase and these VBS Auids. The VBS point then plays
the role of fixed point of the DOF phase in RT transfor-
mations. The HAF point and the Hamiltonian (5.1) are
invariant under global spin rotations, while the general
Hamiltonian, Eq. (3.6) lacks this symmetry [to be precise,
it lacks the modified version of the rotational invariance
that applies after the spin rotation at all odd sites that we
used to transform Eq. (5.2) into Eq. (5.6)]. If the VBS
state is indeed the fixed point of the DOF phase, then the
entire DOF phase must have this global rotational invari-
ance at large length scales, and this type of rotational
symmetry breaking must be an irrelevant operator. This
is somewhat surprising because this symmetry does not
play any role in our description of the DOF phase in
Secs. II and IV.

VI. INTEGER VERSUS HALF-INTEGER SPIN CHAINS

A. Ground state degeneracy in the spin-1 chain

The RSOS flat phase and the DOF phase behave quite
normally in the RSOS representation of the model. Both
have long-range order, a spontaneously broken symme-
try, a ground-state degeneracy, and local order parame-
ters. In both phases the translation symmetry in the
column height direction, orthogonal to the surface,
h~h+1, is spontaneously broken. In the RSOS Aat
phase the average height is an integer and in the DOF
phase a half-integer.

The RSOS Hat phase also behaves quite normally in the
spin-1 representation of the model. Recall that the steps
represent the world lines of the spins in the quantum
chain. The information about the absolute height of the
crystal surface is lost when the surface configuration is
represented in terms of steps instead of column heights.
Therefore the RSOS flat ground state is nondegenerate in
the spin-1 formulation. This is no surprise. In the spin-1
language the RSOS fIat phase is interpreted as a disor-
dered dilute gas phase (a disordered singlet phase).
Therefore no ground-state degeneracy is expected. The
order operator of the RSOS model becomes a familiar
type of disorder operator.

However, the same happens in the DOF phase. There
it leads to confusion. In the spin-1 representation the
DOF phase obtains the unusual property that it displays
long-range AF spin order, but without a spontaneously
broken symmetry nor a ground-state degeneracy. The
VBS phase does not represent a disordered Quid; it has
long-range order. This is one of the central issues in the
fractional quantum Hall effect and also, as we will see in
the following, the Haldane conjecture. Therefore we
want to discuss this effect in detail. VBS phases in gen-
eral and also the Laughlin wave function for the fraction-
al quantum Hall effect represent Quid-type states that on
one hand are disordered but on the other hand carry mas-

sive soliton type topological excitations with fractional
topological charge. In our case the positional disorder of
the spin- —, particles implies the fluid character, and the
Neel solitons associated with the long-range AF spin or-
der are the carriers of topological fractional charge
(q =

—,').
We found in Sec. IV that the order parameters p and g,

that distinguish between the RSOS Aat and the DOF
phase, cannot be expressed as an expectation value in
terms of spin-1 operators alone. The parity of the crystal
column height at the seam between sites X and 1,
exp(i~ho ), must be included to distinguish their sign. See
Eqs. (4.1)—(4.6). Only then does the DOF phase maintain
its ground-state degeneracy and broken symmetry in the
spin-1 formulation. Only with hp included is the map-
ping of the column height configurations to spin
configurations one to one. Recall that hp changes as
h p ~h p+1 each time a spin- —,

' particle crosses the seam or
when a particle pair is being created or annihilated at the
seam.

It is instructive to discuss the issue of spontaneous
symmetry breaking from the BCSOS Aat phase perspec-
tive. The AF ground state is twofold degenerate; call
them state A and B. Every site is occupied by a spin- —,

'

particle, and these spins are perfectly AF ordered. The
order parameters have the values m, =+1, p, =1 (if ho is
even) and /=+I [see Eqs. (4.1)—(4.6)]. Consider the usu-
al Peierls argument: the presence of spontaneous symme-
try breaking implies that several sectors in phase space
do not communicate with each other by thermodynamic
(quantum) fiuctuations; they are separated by infinite
(free) energy barriers. There are two types of processes
by which state A can transform into B.

(a) Create a Neel soliton pair, i.e., an 1 t' and a 1 J, in-
terface across the entire lattice in the timelike direction
(compare with Fig. 9). Move one of them around the
cylinder one time and then let it recombine with the oth-
er soliton. This process transforms state A into B but
does not change ho: f~ —l(, p, ~p„and I,~—m, .

(b) The same can be achieved by creating a hole-type
soliton pair, and repeating the same process. Again 3
transforms into B, but now hp changes Ap~Ap+1.
Therefore g~g, p, ~—p„and m, —+ —I, .

The Neel soliton mass g,+( I ) is associated with process
(a) and the mass of a hole-type interface gl" with (b).
Both are finite in the BCSOS Aat phase. Both processes
encounter infinite (free) energy barriers in the thermo-
dynamic limit, respectively, X,g, (1) and X,ql". There-
fore ltd, p„and m, are nonzero in the BCSOS fiat phase.

The Neel soliton mass g,+(1) vanishes at the roughen-
ing line (see Figs. 2 and 13). Therefore g and m, are zero
in the BCSOS rough phase, but p, remains finite. On the
other hand, the mass of the holes ql" vanishes at the AF
Ising critical line. Therefore p, and m, vanish in the
DOF phase, but 1t remains finite. Notice that not only
the DOF phase but also the massless BCSOS rough phase
has a ground-state degeneracy and broken symmetry.

These ground-state degeneracies disappear when we ig-
nore h p. Only the ground-state degeneracy of the BCSOS
Aat phase remains. We can calculate still the absolute
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values of the order parameters g and p, but not their sign.
The ground-state degeneracy associated with them is lost.
The order parameter m, is the only one whose sign can
be determined. In the DOF phase the spins of the spin- —,

'

particles have long-range AF order. Process (a), which
changes the sign of 1(, still encounters an infinite free-
energy barrier, but without ho we cannot distinguish be-
tween process (a) and (b). All the AF ordered spin states
can fluctuate into each other by movements of the parti-
cles without ever flipping any spin, process (b). They can
move freely because the DOF phase is a Quid; the hole
and particle masses gl" and g~ are zero. Then, following
Peierls' argument the ground state cannot be degenerate.

The ground state is obviously degenerate in a "moving
frame of reference, " where you ride on top of one of the
spin- —,

' particles. On average the spin of each specific par-
ticle is nonzero. This is consistent with the preceding re-
sult because to transform from the stationary frame of
reference to the moving one you need to evoke ho again.
To recognize whether a stationary state belongs to phase
3 or B you need to keep track of the position of your
particle in the chain. You need to know whether there
are an odd or even number of particles in the chain be-
tween your particle and the seam. The variable
exp(ivrho) keeps track of this because it changes sign
each time a particle moves across the seam, or when a
particle pair is being created and/or annihilated at the
seam. Thus it is no surprise that in the moving frame of
reference you reintroduce spontaneous symmetry break-
ing.

B. The Haldane conjecture

Let's turn now to the Haldane conjecture and quantum
spin chains in general. In Sec. III we showed in detail
that the quantum spin-1 chain is equivalent to the re-
stricted solid-on-solid (RSOS) model. In the RSOS model
the step heights in the crystal surface are restricted to
6h =0,+1. More generally, spin-s quantum chains, with
integer s, are equivalent to solid-on-solid models where
the step heights are restricted to 15h I

~s. In complete
analogy to the spin-1 chain, the spin-s chain can be
thought of as describing a gas of spin-(s —

—,') particles.
The steps in the crystal surface play again the role of the
world lines of these spin-(s —

—,
'

) particles and the absence

of a step represents again an empty site. DOF phases are
present in SOS models, in general, and therefore also in
integer-spin chains, in general.

The Haldane conjecture is often interpreted as stating
that "the Heisenberg AF chain for integer spins is mas-
sive, while for half-integer spins it is massless. " This is
incorrect. It suggests that integer and half-integer spin
chains differ in a fundamental way and suggests that
DOF Aat phases can only be realized in integer spin
chains. The latter contradicts physical intuition. Half-
integer spin chains are equivalent to body-centered solid-
on-solid (BCSOS) models (see Sec. III C), and describe
surfaces with a body-centered type of symmetry [like
Ni(110) and Cu(110)]. There is no reason to expect that
such surfaces cannot include a DOF phase.

B I
A

I
B

I
~

I

—surface

6
I

4 2
I

2
I I

I

I

I

I

+ — + — — + — + + —I — + I + — spin-1/2
valence bonds

1 0 1 0
I

0 1 0 111 0 0 111 0 lattice gas
I

FIG. 16. Typical (side view) configuration in the DOF phase,
for the BCSOS model, as seen from, respectively, the crystal
surface, spin-~, VBS, and lattice-gas perspective. Notice that
the distances between alternating up and down steps must be
even.

C. DOF phases in body-centered-type surfaces

The atoms in the next layer of body-centered surfaces
are not placed on top of the atoms in the previous layer
but instead above the centers of the plaquettes; see Fig. 6.
In the BCSOS model this is modeled by demanding that
nearest-neighbor columns of atoms differ in height by an
odd integer: 6h =+1,+3, . . . , 2s. The column height h

is even on one sublattice and odd on the other: 6h =0 is
excluded. The low-temperature Aat phase is corrugated.
It is represented by the AF ordered spin state,
S„'=(—1)"—,'. So, unlike the spin-1 case, the flat phase
remains twofold degenerate.

The mechanisms responsible for surface roughening
and the DOF phase are not affected by this surface corru-
gation. It washes out at large length scales. But a few
details change. They all have to do with this remaining
twofold degeneracy of the Hat phase of the BCSOS model
in the spin- —,

' representation.
Steps in the crystal surface are now composite objects.

They correspond to excitations with two parallel
nearest-neighbor spins. These objects have long-range
AF order in the DOF phase. An 1l spin pair will be fol-
lowed by an ll spin pair. Figure 16 shows a typical
DOF configuration for the spin- —,

' chain. As before, these
steps are positionally disordered, i.e., the length of the in-
termediate string of perfectly ordered AF spins is arbi-
trary.

Half-integer spin chains are massless at the HAF point
according to the preceeding of the Haldane conjecture.
This belief is mostly based on the exactly soluble spin- —,

'

chain. The exact solution includes only the BCSOS flat
and BCSOS rough (massless) phase. The Heisenberg AF
point coincides actually with the KT transition point be-
tween these two phases. It is no surprise that the exact
solution does not include a DOF phase. The model only
includes nearest-neighbor interactions between the spins.
This is not enough to stabilize the DOF phase because
(unlike integer-spin chains) the steps are composite ob-
jects (pairs of parallel spins). Following our discussion in
Sec. II, the model lacks an interaction which favors two
parallel up spins to be followed by two parallel down
spins. There is no doubt that the DOF phase must be-
come stable in half-integer spin chains, when we increase
the range of the interactions. The entropy argument in
Sec. II and Fig. 5 is very general.
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D. VBS point in the spin-
~

chain H= g [—', S„S„+,+—', (S„S„+2)+ —,'] (6.1)

In Sec. V we identified the VBS state in the spin-1
chain as the prototype state describing the DOF phase
for integer-spin chains. In the spin- —, chain there is a
similar exactly soluble point. Majumdar and Ghosh, see
also Affieck et al. , showed that the ground state of the
Hamiltonian

is a valence-bond state. The Hamiltonian is a sum over
projection operators that project onto spin- —', (see Aflleck
et al. ). This Hamiltonian has the Heisenberg AF rota-
tion symmetry. Every spin forms a valence-bond state
with one of its neighbors. The ground state

(6.2)

has a dimerized-type twofold degeneracy, as shown
schematically in Fig. 16.

Just like the spin-1 case, this VBS state is the prototype
DOF state. The discussion is completely parallel but
more simple than for the spin-1 model. Again, perform
the rotation S„"' —+ —S,', S„'~S„', at the odd sites, to
get rid of the antisymmetric nature of the valence bonds.
Then also this VBS state obtains the character of a nonin-
teracting lattice gas: S„'=—,

' (S„'=—
—,') represent occu-

pied (empty) sites; the particle density is fixed such that
the chain is half filled, M =X/2; and the particles do not
interact, except for the constraint that at least one of the
sites next to every vacant site must be occupied and at
least one of the sites next to every occupied site must be
vacant. The latter condition implies that the steps, i.e.,
the occurance of bonds with both sites occupied (an up
step, 1 1 excitation) or empty (a down step, 1 J, excita-
tion), are completely randomly placed, except that they
all occur at even distances from each other, and that up
and down steps occur in strict alternating order. As be-
fore, the positional disorder of the steps and their AF
up-down order are both perfect. Also this VBS point be-
longs to the DOF phase, and again it most likely plays
the role of the fixed point of the entire DOF phase of the
spin- —,

' chain.
So contrary to what the commonly used but incorrect

formulation of the Haldane conjecture suggests, it
cannot mean to exclude DOF phases from half-integer
spin chains. DOF phases occur in integer and half-
integer spin chains alike. What does it say?

E. Ground-state degeneracy in the spin- —' chain

Aleck and Lieb have given a "proof" of the Haldane
conjecture. They show that in half-integer spin chains
only two types of phases can be realized: (i) phases
without a degenerate ground state must be massless, and
(ii) phases with a mass gap must have a degenerate
ground state. This excludes phases with a mass gap that
lack a ground-state degeneracy, such as the RSOS Aat
phase in the spin-1 chain, and, more importantly, also the
DOF phase in the spin-1 chain. However, this result
does not exclude DOF phases in half-integer spin chains.
We just found that the absence of a broken symmetry in
DOF phases in integer spin chains is a peculiarity of the
spin formulation. It has a genuine spontaneous symme-
try breaking in the surface roughening formulation. We

will find that the only difference between DOF phases in
integer and half-integer spin chains is that in half-integer
spin chains the DOF phase retains some of its ground-
state degeneracy when we translate from the BCSOS for-
mulation to the spin- —,

' formulation.
In analogy with the RSOS model, the translational

symmetry in the direction orthogonal to the surface is
broken in both the Aat and DQF phases of the BCSOS
model, h ~h+1, with a half integer and integer average
height, respectively. However, in the BCSOS model this
translational symmetry must be accompanied by a
translation along the surface, i.e., h, ~h, + 1 with
r=(x,y) and r'=(x+1,y) because the column heights
can only be even or odd on each sublattice.

In the spin- —,
' formulation the Aat phase remains two-

fold degenerate; call them phases 3 and 8. Suppose that
the column between sites X and 1 (the seam) belongs to
the sublattice where the column height ho is even. Then,
in phase A (8 ) the average column height in the BCSOS
fiat phase is ho —

—,
' (ho+ —,'). Also notice that you au-

tomatically switch between phase 3 and phase 8 when
you cross a step, and that the distance between a neigh-
bor up-step (1 $ ) and down-step ( $ $) pair is even while
the distance between up-up or down-down neighbor steps
is odd (see Fig. 16).

The steps in the DOF phase are disordered positional-
ly, but they are placed at even distances from each other.
So unlike the spin-1 case, information of the parity of the
height of the crystal surface is preserved in the spin- —,

'

representation. The twofold degeneracy of the Aat and
DOF phase in the spin- —,

' representation contains the par-
ity information of the crystal surface height. In integer-
spin chains we must include a seam variable, exp(i~ho),
to keep track of the column height parity (Sec. IV). p and

g are nonlocal operators in the spin-1 model, because the
only way to keep track of (relative) parity, is by knowing
whether you crossed an even or odd number of steps [the
string operator in Eqs. (4.2)—(4.6)]. In the spin- —,

' chain
we do not need this. The spin- —,

' algebra keeps track of
the parity by itself. The corrugation of the crystal sur-
face acts as a local index that keeps track of the parity of
the surface height. Two steps (arbitrarily far apart from
each other) have an even (odd) number of steps in be-
tween them if the phase directly to the left of them be-
longs to the same (different) type of phase (A or B).
Therefore the order parameters p and g that distinguish
between the flat and DOF phases remain local in the
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quantum spin formulation:

p = ( ( —1 )"S„') (6.3)

and

g= (( —1)"—,'(S„'S„'+)+ 1) ) . (6.4)

F. Conclusion

We found that from the surface roughening perspective
there is no fundamental difference between the DOF
phase in simple and BC-type surfaces. Also in the quan-
tum spin formulation there is no real difference. The
DOF phase in integer spin chains can be interpreted as a
fluid of spin- —, particles with long-range AF spin order.
Similarly the 1 1' and $ 1 excitations with respect to the
Neel phase in the spin- —, chain can be interpreted as
spin- —,

' particles in their own right (with cr'= + 1

representing a l'$ and a'= —1 representing a 11 excita-
tion). The DOF phase in the model is a phase where
these particles form a fluid with long-range AF spin or-
der. DOF fluids in integer and half-integer spin chains
are stabilized by exactly the same physical mechanism
(the entropy argument of Sec. II). The only dilference is
that because of the composite nature of these particles in
the half-integer spin chains, the long-range order of the
DOF phase can be expressed in terms of a local order pa-
rameter and a degenerate ground state, while in the
integer-spin chains the ground-state degeneracy, al-
though trivial in the crystal surface formulation, gets lost
in the spin representation.
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APPENDIX: THE LOCATION
OF THE KT PHASE BOUNDARY

IN THE RSOS MODEL

The step-1 surface tension with periodic boundary condi-
tion g+(1) [see Eq. (2.9)] is equal to the step-1 surface
tension with antiperiodic boundary conditions g (1),
along this line for all values of the strip width X. From
this observation we conclude that the KT transition must
occur in the half space:

exp( L~2"')+exp( L~z"—) ~ 1 . —

This is to the left of the line exp(L2)=2 in Fig. 2 where
the lattice is isotropic, L'z '=L'2". It is to the left of the
line J=O in Fig. 13 because the spin-1 quantum chain is
identical to the RSOS model in the limit of a very aniso-
tropic lattice (see Sec. III B). This proves that the
Heisenberg AF point does not belong to the massless

In this appendix we show that the general RSQS model
of Eq. (2.1) has a special symmetry in the subspace

exp( —L2 ')+exp( —L2'" )= 1 .

spin-wave phase (the RSOS and BCSOS rough phases).
In Sec. II we reformulated the RSOS model as a six-

vertex model defined on an annealed lattice generated by
an Ising model. The intersections of the Ising-Bloch
walls serve as -the vertices of this annealed lattice,
whereas the Bloch walls themselves are the bonds of the
lattice. Consider the topological difference between the
periodic and antiperiodic step-1 boundary conditions, re-
spectively, (+,1) and ( —,1 ). Compare Figs. 9(b) and
9(d). The difference is that for ( —,1) the arrows on the
steps must be reversed each time the seam is crossed. We
will show that the arrows do not convey any information
in the subspace

exp( L~z ')+—exp( Lz'" )
=—1,

and that therefore the ground-state energies for these two
boundary conditions are the same.

Consider a certain Ising-Bloch-wall configuration, i.e.,
a certain six-vertex model lattice. Instead of placing ar-
rows on the bonds of this lattice, consider all possible
ways of completly covering it with polygons. Polygons
are closed loops that do not intersect, but they meet each
other at the Bloch wall intersections. Give each polygon
a weight &q, and assign a weight z respectively z, to
each vertex depending on whether two vertical of two
horizontal polygons meet. This leads to the partition
function

Ãp /2Z=gq z„"x, '.
JV

The sum is over all polygon configurations JV. Nz is the
number of polygons in the configuration, and N„(N,
=Nz —N ) is the number of times polygons meet verti-
cally (horizontally). N~ is the number of Ising-Bloch-
wall intersections, i.e., vertices of the six-vertex lattice.

NvThere are 2 polygon coverings of the Bloch-wall lattice
because every possible configuration can be generated by
all possible ways of splitting up each Bloch-wall intersec-
tion; a loop can choose between turning to the left or
right at every intersection point (polygons meet horizon-
tally or vertically).

This problem is intricately related to the Potts model
and can be mapped onto the six-vertex model on the
same Bloch-wall lattice by assigning arrows to the po-
lygons (either clockwise or counterclockwise). Now the
factor &q of each polygon is represented as a local
operator by assignment of a phase factor P=exp(ip/4)
[P '=exp( ipl4)] to ea—ch right (left) turn of the po-
lygon in the direction of the arrow (all turns are over 90
because of the underlying square lattice). The parameter
p is related to q as 2cos(p)=&q [see Fig. 7(b)]. Vertex
states 1—4 correspond in a one-to-one way to a polygon
configuration. In state 1 and 2 two vertical polygons
meet and in state 3 and 4 two horizontal polygons. Ver-
tex states 5 and 6 are mixtures of both events. They cor-
respond to two different local polygon configurations.
See Baxter et a/. for a detailed account of this mapping,
which they considered in the context of the q-state Potts
model. It is valid for arbitrary lattice shapes. For gen-
eral polygon weights &q the model does not coincide



PREROUGHENING TRANSITIONS IN CRYSTAL SURFACES. . . 4733

with our six-vertex model, Fig. 7(a), because we assign a
weight 1 to turns of the arrowed polygons at nonintersec-
tion points of the Bloch walls, states 7 and 8 in Fig. 7(b).
However, at q =4 (p, =0), the phase factors become equal
to 1, and the models coincide in the subspace

exp( L—2"')+exp( L2—" ) = 1 .

In this subspace the partition function of our six-vertex
model is uniquely determined by the polygons alone, and
becomes a so-called two-color oriented nonintersecting
string model, which is equivalent to a two-component
nonintersecting string model.

The following transformation is a Gauge transforma-
tion in this subspace. Draw a closed contour on the lat-
tice and reverse all arrows in the enclosed area, i.e., define
the conventional six-vertex model, but with the addition-
al rule that the arrow on each step must be reversed when
the step crosses the contour. In general this changes
the partition function, but not so in the exp( L2' ')—
+exp( L~2" ) =—1 subspace. Each polygon intersects the
contour an even number of times. All right (left) turns of
the arrows are changed into left (right) turns along sec-
tions of the polygon inside the contour, but this does not
affect the counting of the polygon weight &q by the
phase factors because p=0.

Compare two typical configurations for the periodic
and antiperiodic step-1 boundary conditions, Figs. 9(b)
and 9(d). None of the polygons to the right of the seam
can cross the open step that spans the entire lattice in the
timelike direction. Therefore, every polygon intersects
the seam an even number of times (except the open step
that spans the lattice, but we can take care of that sepa-
rately). So reversing all arrows between the seam and the

open step is a Gauge transformation of the same type as
mentioned earlier. The free energy is invariant under this
transformation in the subspace

exp( L—z"')+exp( L—~z" ) =1 .

The annealed average over the Ising configurations,
i.e., all possible six-vertex lattices, does not aff'ect
this Gauge symmetry. Thus we proved that Z(+, 1)
=Z( —,1), i.e., that q+(1)=rl (1). Notice the impor-
tance of the presence of the open step in the proof. It ex-
cludes automatically configurations with polygons (steps)
that wrap around the cylinder. For example,
Z(+, 0)WZ( —,0) because the (+,0) boundary condition
allows closed polygons that wrap around the cylinder,
while the ( —,0) boundary condition (the arrow reversal
rule) excludes them.

It is extremely likely that this subspace coincides with
the KT roughening transition. This is certainly true in
the limit K —+ —~ (D~ —~ ), where the six-vertex lat-
tice coincides with the underlying square lattice; we know
this from the exact solution. The six-vertex lattice is di-
luted at finite values of K, but in every configuration the
six-vertex model is at its KT critical point; in the
aforementioned subspace every six-vertex model maps
onto the four-state Potts model at criticality. So the an-
nealed average, Eq. (2.3), is over an ensemble of six-vertex
models which are simultaneously at their KT critical
point. Therefore the RSOS model should be at its KT
critical point as well. The finite six-vertex lattice contri-
butions in the ensemble are noncritical, but their contri-
bution can be estimated using finite-size-scaling argu-
ments, and we expect that they only contribute to the
corrections to scaling.
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