
PHYSICAL REVIEW B VOLUME 40, NUMBER 7 1 SEPTEMBER 1989

Critical scattering function in a binary Quid mixture:
A study of sodium-deuteroammonia solution at the critical concentration

by small-angle neutron scattering

Pierre Damay and Franqoise Leclercq
Laboratoire de Chimie-Physique, Ecole des Hautes Etudes Industrielks,

13 rue de Toul, 59046 Lille CEDEX, France

Pierre Chieux
Institut Laue-Langevin, 156X, 38042 Grenoble CEDEX, France

(Received 30 January 1989)

Small-angle neutron scattering experiments have been performed on the Na-ND3 mixture of criti-
cal composition. Neutrons are very sensitive to the fiuctuations of concentration in this system
(high contrast). This allowed good statistics for a reasonable counting time, typically 0.5% at each
value of the momentum transfer q for a 40-min run. Momentum transfers q between 0.008 and

0
0.067 A were investigated with the chosen experimental setup. Using several approximations of
the scattering function at small x =qg, and after very careful data correction, the correlation length

0

g has been determined with a good precision (2%%uo for g (300 A). The experimental scaling function
g (qg) was then fitted in the whole x range using different approximate equations discussed in litera-
ture. A value of the critical index g=0.030+0.0015 was thus found with a precision not yet ob-
tained from experiments. A lower limit for the validity of the scaling hypothesis is given for the first
time: 2 —g —y/v~0. 002. These results reconcile neutron scattering results with those obtained
with light scattering and are in favor of renormalization-group-theory predictions for the three-
dimensional Ising model.

I. INTRODUCTION

Much effort has been devoted to the study of the criti-
cal scattering intensity in three-dimensional (3D) systems
mainly to characterize the deviations from the classical
Ornstein-Zernike (OZ) equation. ' Exact analytical re-
sults are available in two dimensions; they clearly show
the inadequacy of the OZ equation at large scattering an-
gle, or more exactly at large value of x =qg (where g is
the correlation length). In three dimensions there are no
analytical or exact results, but several approximations,
whose accuracy depends on the x range, have been dis-
cussed in detail in literature. '

At large values of x, the shape of the critical scattering
function is mainly governed by the critical index g which
was first introduced by Fisher. This critical index has
been evaluated for the three-dimensional Ising model by
high-temperature series expansion (tI=0.041+0.006) and
by renormalization methods (g =0.031+0.004). The
difference found between the two methods seems irreduc-
ible.

It is very difficult to obtain a precise value of g from
experiments; indeed, this index is not measured directly
but only as 2 —g as pointed out by Sengers. From x rays
or light scattering experiments, the values of g vary from
0.016+0.016 to 0.030+0.025. These values are in better
agreement with renormallzation-group-theory predic-
tions than with high-temperature series expansion but the
uncertainty is very large (=100%). The critical regime
(x ))1) is reached in extreme experimental conditions
with light (large values of g obtained only very near the

critical point).
The critical regime is easily reached with neutrons, and

then more precise results could reasonably be expected
but the observed values of g are unexpectedly very
difFerent from theoretical predictions and from experi-
mental results obtained with other techniques. Indeed, if
one excepts the recent value given by Schwahn, the
values obtained by neutron scattering vary from 0.08 to
0.11+0.03.

The present paper reports results and an analysis of the
static critical scattering function obtained by small-angle
neutron scattering (SANS) for the Na-ND3 solution at
critical concentration. This system has been chosen for
the very high sensitivity of neutrons to its concentration
Quctuations Sec. III (contrast). Great care has been taken
to optimize the sample environment, mostly to achieve
the best temperature stabilization and to prevent (or
detect) temperature and concentration gradients (Sec. II).

Experimental conditions are reported briefly in Sec. IV.
It is found that correction for inelasticity may be neglect-
ed at least with the chosen experimental setup (Sec. V).
The same result was already obtained by Schneider et ah.
in their SANS study of the isobutiric-D20 system with
similar experimental conditions. '

An important task in SANS is to remove noncritical
scattering from the observed spectra. This has been
achieved by subtracting from each run a "high-
temperature" run corrected for density and for the
remaining critical intensity (Sec. VI).

Several approximate equations of the scattering func-
tion and their validity range are discussed in Sec. VII.
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These equations are used in least-square-fitting pro-
cedures. Detail of the calculation methods is discussed in
Sec. VIII; it is shown how the errors have been handled
to obtain a reliable "goodness of the fit" test. The ampli-
tude of the concentration fiuctuations S„(0) and the
correlation length of these fiuctuation g are then deter-
mined using different approximations in Sec. IX. The
corresponding critical indices y and v are calculated in
Sec. X from the temperature dependence of S„(0)and g,
respectively. A first evaluation of the index g is also ob-
tained assuming scaling hypothesis 2 —il =y/v.

The shape of the critical scattering function in the in-
termediate and large x range is discussed in Sec. XI. In a
first step, the fits are performed on each run at constant
temperature; then, using scaling, all data are regrouped
as a function of the single variable x =q(.

A short account of these results has already been
given" (determination of the index i)). The results ob-
tained from scaling were then preliminary and the values
reported here are slightly different. A more precise deter-
mination of the critical parameters (critical temperature,
etc.) and of the correlation lengths and a thorough dis-
cussion of the approximate equations used in the fits led
to the present values. These problems and the results are
finally discussed in Sec. XII.

II. SAMPLE AND SAMPLE ENVIRONMENT

Pure metallic sodium has been pulled under vacuum in
a 1-mm calibrated glass tubing. Sodium from a known
length of this tubing is then distilled three times under
high vacuum (10 torr). If the distillation is carried out
very slowly in quartz cells, the final weight of metal may
be predicted within a percent.

The amount of deuterated ammonia (99.75% D from
the CEA, Saclay, France) is determined by gas
volumetric analysis (p, V, T measurement using a first or-
der nonideal-gas correction). The relative uncertainty on
the pressure, volume, and temperature measurements are
respectively 5X10, 10, and 3X10,ending with an
uncertainty of 4.5 X 10 on the ammonia weight.

From the many results found in literature, the critical
sodium concentration may be evaluated between
xN, =0.0412 and 0.0416 for the protonated system. It
has been shown with the lithium NH3 and ND3 solutions
that deuteration had little effect on the critical concentra-
tion. ' The sample used in the experiment was a mixture
of 3.278 X 10 +3 X 10 M Na in 75.77 X 10 +3
X 10 M ND3, i.e., xN, =0.04147+0.00062.

The solution has been prepared in a 8-mm inside diam-
eter quartz tubing free of protons. The length of the cell
was 7 cm and the solution filled 60% of the volume; the
amount of ammonia in the gas phase was then negligible
in the working temperature range (less than 0.13 mM in
the 200 —270-K range).

A specially designed sample holder equipped with a
high-performance temperature control was inserted in a
standard ILL cryostate (Institut Laue Langevin in
Grenoble). The temperature stabilization in the standard
equipment is 0.01 deg at one point inside the cryostat
chamber with a pressure less than 1 torr of helium as a
gas exchange; the temperature gradient along the vertical
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FIG. 1. Detail of the sample holder. The temperature stabili-
zation was better than 5 X 10 K and the temperature gradient
along the sample was less than 1.5 X 10 ' K.

axis is given as 0.02 deg/cm.
The insert is composed of five pieces (Fig. 1}. One

piece is an insulating plate which connects the insert to
the standard stainless-steel top-loading cane. Another
piece is an aluminum cylindric block (diameter 35 mm
and 30 mm high}. The block is surrounded by a 50-W in-
sulated resistor (heater) and equipped with a calibrated
platinum thermometer. The sample holder, tightly con-
nected to the block, is a hollow aluminum cylinder (20-
mm outside diameter, 10.3-mm inside diameter, and 70
mm high). Two windows are carved along the path of the
neutron beam (10X40 mm ). The holder is enfolded with
a 0.5-mm pure copper shield (99.99% from Goodfellow
company) which has been proven to diffuse neutrons very
little at small angles. The sample is introduced from the
bottom of the holder. The temperature near the sample
is measured using a second platinum thermometer. Two
external shieldings, hollow cylinders, made- of 5-mm-
thick aluminum are fixed to the block in order to reduce
temperature gradients. As shown for the sample holder,
both shields have been cut along the neutron beam. The
inner cylinder has been covered with a 0.05-mm alumi-
num fold to prevent gas exchange convection. The outer
shield is covered with a 0.5-mm-thick cadmium sheet.
Two windows (g X 10 mm ) have been carefully cut out of
the cadmium fold; they precisely defined the size of the
neutron beam which is allowed to cross either the upper
or the lower part of the solution. The windows are
separated by 5 mm of cadmium positioned on the men-
iscus seen after phase. separation; the distance between
the two centers of diffusion is equal to 15 mm. A thick
cadmium sheet fixed on the outer part of the cryostat
may be moved up and down to open the lower or upper
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window.
The main purpose of the insert was to minimize tem-

perature gradients and to improve the temperature con-
trol; this has been achieved using a high-performance
controller and an ac bridge (ASL, F16); it was then possi-
ble to stabilize the temperature of the insert with 5 X 10
deg. The best performance was observed for a tempera-
ture difference between the cryostat and the insert chosen
between 0. 1 and 0.8', in which case temperature Auctua-
tions were constrained within (2X10 ) . The use of an
ac bridge has the advantage to reduce any long-tirrie tem-
perature bias; the best stabilization could easily be con-
served for several hours.

Careful checks of temperature gradient along the sam-
ple have been made using the difference signal read from
the two thermometers. It was found that this difference
was approximately a linear function of the difference
b, T= T;„„„—T„„„, for a 0 —20 interval [(1.5
X 10 )' per degree]. Then the maximum gradient along
the 4-cm height of solution has been evaluated to less
than (1.5X10 )' since working values of hT were kept
below 1 . It was found that values of AT would better be
chosen larger than 0. 10 to prevent any spurious coupling
between the two regulation stages.

III. CONTRAST

Following the formalism proposed by Bhatia and
Thornton, ' the coherent neutron diffusion, in the case of
a binary mixture, may be written as the weighted sum of
three partial structure factors:

=(b')S(q) = (b )'S „(q)+(&b )'S„(q)

S(q, T)=BS„(0,T)f(q, T)+ 2/3z. [1+0(q)] . (2)

The shape of f(q, T) is typically Lorentzian (See Sec.
VII); the amplitude is the product of a thermodynamic
term S„(0)which diverges at the critical point

d 6S„(0)=Nk~ T/
dC2 Tp

and a "form factor" or contrast

[(V, V, )(b) —(&b—)]'B=
V (b')

(3)

or

+2(b ) (Ab )S~,(q),
where S(q) is the structure factor and S &(q) are partial
structure factors, q is the momentum transfer vector
q=k —ko (b) =cibi+c2bz, and (bb) =b, b2, c„cz, —
b&, and b2 are the concentrations and scattering lengths
of the two constituents (c, +c2=1), and N is the total
number of atoms (it may be the number of molecules
when the scattering is observed at small angle).

Near the critical point the total structure factor may
be written at each temperature as

x ( Vibz —V2bi)'B= (4a)

(b') V '
From the experimental point of view this term will be in-
cluded in a q-dependent background with the scattering
of the sample environment (container, cryostat, shield-
ings, window, etc. ) and removed from the signal to give
the critical corrected spectrum G(q, T).

IV. EXPERIMENTAL

The experiment has been performed on the spectrome-
ter D» at the ILL (Grenoble). A full description of the
apparatus may easily be obtained from the ILL. The
momentum transfer available ranged between 8 X 10 to
5.8 X 10 ~ A with the chosen experimental setup Q, =7
A and a distance sample detector of 5.6 m). The wave-
length resolution AA, /A, is 0.09 full-width at half max-
imum (FWHM). Collimation of the incident beam was
improved by removing 10 m of the neutron waveguide in
front of the sample.

At almost each temperature the experiment has been
carried out using successively the upper and lower win-
dow. This provided two sets of data which have been
treated separately. It was thus possible to detect any
temperature gradient (the two centers of diffusion being
separated by 15 mm as seen in Fig. 1); indeed the critical
scattering is the more sensitive thermometer in the criti-
cal region. This procedure had furthermore the purpose
to detect a possible concentration gradient induced for
example by gravity at the approach of the critical tem-
perature.

Twenty-six runs have been performed at different tem-
peratures between 270 and 241.1 K (the critical tempera-
ture); 17 of these were in the nearest degree above T, . At
each temperature the counting had been started 15 min
after a good temperature stabilization is reached. Three
runs were repeated five or six times to check if this wait-
ing time was sufhcient. This repetition allowed to test the

where V] and Vz are the partial molar volumes of the
species.

The sodium-ND3 system presents one of the largest
contrast which may be dreamed of. Indeed the large
coherent scattering of the small ND3 molecule is coupled
with the small scattering length of the Na molecule
which has a large molar partial volume in solution
(b

&
=2.914X 10 ' cm, V& =24.5 cm for ND3 and

b2=0. 36X10 ' cm, V&=68 cm for Na at —35'C).
Thus B=6.36, that is to say Auctuation of concentrations
scatter six times more than the homogeneous solution.
For example, these values may be compared to those of
the isobutyric acid-water system as studied by Schneider
et al. ' In this case one finds B=0.293, that is to say a
factor of 20 in favor of the sodium ammonia system.

The second term of Eq. (2) is expected to vary very
slowly with temperature (and with q); indeed Pz. is the
isothermal compressibility and
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errors (see the data treatment paragraph). The counting
time of each run (30—45 min) has been chosen in order to
get a relative uncertainty of 0.5% at each scattering an-
gle. Measurements made using the upper window will be
referred as experiment I (36 runs if repetitions are includ-
ed) and those carried out using the lower window referred
as experiment II (30 runs; less results than I near the crit-
ical point). The high-temperature run, used as a refer-
ence to do the background correction, has been carried
on during 3 h in order to improve the statistics.

VI. RAW DATA HANDLING AND BACKGROUND
EVALUATION; THE CORRECTED INTENSITY

On the D» spectrometer, data are collected on a two-
dimensional multidetector (64X64 cells of 1 cm each).
Since the diffusion is centrosymmetric, the data are re-
grouped to get a one-dimensional pattern I=f (r), r be-
ing the distance from the center of diffusion. The
momentum transfer q is then written

4~ 7"

q = sin arctan
2d

V. CORRECTION FOR INELASTICITY

In evaluating the critical structure factor, the static ap-
proximation was assumed to be valid, that is to say a sim-
ple relation between the scattering angle and the momen-
tum transfer vector was used,

0
q=2kosin (5)

I =—&q'[x +x '+(1—x )arctan(x)],

where A is related to Do, A =3Dogo/8.
Most of the delicate data treatments leading to the

evaluation of the critical index i) (which is small) have
been carried out in the critical regime (x ) 1 and
T T, (0.5 K). Co—rrection problems must be considered
in this region with a particular attention. The large x
limit of 6 is I = Aq . The mutual diffusion coefficient is
not known in the sodium ammonia system but the error
would not be underestimated by using for Do the
diffusion coefficient of each species which is of the order
of 6X10 cm /s. ' Then the critical energy transfer,
which does not depend on g or T near T„ is fico&&z=0.9

0

peV at q=0.07 A '. In the hydrodynamic regime, the
less-favorable situation is found for large q and small g.
For example, for /=15 A and q=0.007 A ' (x =1), one
finds A~»2=1. 15 peV. If the average energy transfer
(fico) is of the order of fico, &z then deviations from Ecl. (5)

0
never exceed 3.5 X 10 A and the static approxima-
tion is well justified in the whole temperature range.

where ko is the wave vector of the incident beam.
This is justified if the energy transfer %co due to the

scattering is negligible compared to the energy of the in-

cident beam Eo (Eo = 1.67 meV for A, =7 A). In a normal

liquid, the approximation is generally justified at small

angle since diffusion coefficients are small; the width of
the Raleigh line is I =Dq, that is to say the energy
transfer Ace&&2=2 p eV for a typical value of the diffusion
coefficient D = 10 cm /s and a maximum value of
q=0.07 A . In the critical region of a binary mixture,
the diffusion coefficient is replaced by the mutual
diffusion coeKcient D =Dot ' with Do = kzi Tgo/6irg* and
Kawasaki equation applies'

aI—I
zgz 1+q g'

In this calculation all contributions beside critical scatter-
ing were supposed to be temperature independent. As
previously indicated, ' a' is not expected to be equal to a
since contribution from the structure factor and the
compressibility may no longer be neglected in front of the
critical scattering at small correlation length.

The fit is performed using all runs with T„f—T) 10
K. The value of g' evaluated from 43 runs (using the
upper and lower window) is 15.7+0.3 A. The back-
ground may then be evaluated by subtracting the critical
contribution from the reference run. As a check, it is
found that the remaining intensity left by subtracting the
signal of the empty cell and cryostat (corrected for
transmission) from the background is q independent; that
is expected if the remaining intensity is due to the in-
coherent scattering and the structure factor which is Oat
for q (0.4 A ' far from the critical temperature [second
term of Eq. (2)]. Since the amount of solution in the irra-

where d is the distance between the sample and the detec-
tors plane. All this delicate first stage data treatment has
been performed using the program package provided by
Ghosh' (i.e., finding the center of dift'usion, removing
cells perturbed by the central beam stop, checking the
symmetry of the patterns, and regrouping). Data were
then corrected for the detector efficiency which has been
determined, as usual, from the diffusion of a water sam-
ple.

The measured scattering cross section is in fact an ad-
dition of several contributions: critical scattering; in-
coherent scattering, q independent, which is mainly due
to the H and D atoms of the ammonia molecules;
coherent scattering from the structure factor of the mix-
ture; scattering from the quartz windows and copper
shieldings of the sample environment.

The more precise way to extract the critical scattering
from raw data is to subtract from each run a "high-
temperature run" for which the critical scattering is weak
or negligible. The temperature of the reference run is 274

(T„c—T, =33 K). At this temperature, the critical
scattering is not completely negligible (from previous ex-
periments, the correlation length should be of the order
of 15 A). The reference critical scattering may be evalu-
ated by a four-parameters least-square fit performed on
the difference of intensity observed between two scatter-
ing patterns using the Ornstein-Zernlike equation
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diated volume is slightly temperature dependent (as den-
sity), the intensity of a "working background" corrected
for density has been evaluated at each temperature using
data of Kraus et al. ' That defines the corrected intensi-
ty I(q, T)=I,&, Iz(—q, T).

VII. FORMALISM

y =v(2 —rt), (10)

where g is a critical index introduced by Fisher. As
shown by Aharony and Fisher, ' the critical scaling func-
tion satisfies the two limit conditions

g(x), o=Do(1+x )

g(x) „=D„x
with x =qg. In three-dimensional systems, Do =1 and
D =0.90.

One of the main problems is to determine the critical
index q which governs the shape of the scattering func-
tion at large x. There may be two experimental ways of
determining q. The first one is to compare the diver-
gence of the correlation length g with that of the thermo-
dynamic function G (0, T); one thus gets the correspond-
ing critical indices v and y, and g may be calculated from
scaling; but the value of r) is very small (less than 0.10)
and the experimental uncertainty found on the indices v
(-0.63+0.02) and y (-1.24+0.02) leaves little hope of
finding a precise value of q by this method. The second,
more promising way is to study the shape of the scatter-
ing function g (x) in the intermediate and large x range.

There is no analytical equation or exact numerical re-
sults to describe the scattering function between the two
limits [Eqs. (11) and (12)]. Several approximate equations
have been discussed in the literature. Equations (13)—(16)
are some of the more useful approximations:

Ornstein-Zernike(OZ),

goz(x) =aoz( I+q(2) —';
Fisher,

g (x)—a (1+x2)—t+q/2

Fisher-Burford (FB),
gFB(x)=aFs(1-+P x )" (1+x )

and Fisher-Langer (FL),

(13)

(15)

For a binary mixture on the critical isochore, the
corrected intensity is proportional to the critical scatter-
ing function

I(q, T) G(q, T)=t g(qg),
where t is the reduced temperature t = T/( T T, ), —T, is
the critical temperature, y is the critical index related to
the divergence of G(O, T), g(q, g) is the critical scaling
function [a scaled form of f(q, T) in Eq. (2)]; and g is the
correlation length which diverges as /=got . Scaling
predicts that

0.10
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0.00

g„„(x)=C,(1+C x'' )~'+C x '~ )x (16)

The validity range of these equations has been studied in
the two-dimensional Ising model by Tracy and McCoy;
deviations between the estimations and the exact values
which may be obtained numerically in this particular case
are reported in Fig. 2. Deviation less than 1% is found
with OZ for x (4.0, Fisher for x ) 1170, FB for x (4.2
and x ) 1145, FL for x )5.4 and for x ) 1170 with the
large-x limit [LX, Eq. (12)].

In three dimensions there are no exact values of g(x)
available; nevertheless a "best estimation" has been pro-
posed by Bray from a dispersion-theory approach with
the asymptotically exact Fisher-Langer equation used as
a base. The agreement found with the exact value of the
2D Ising model is better than 0.03% in the whole x
range; the agreement with the exact values found in four
dimensions is also good. Then the values calculated in
3D, which agree with the results of high-temperature
series expansion and with e expansion, may be used as the
more reliable approximations. Deviations between the
approximate equations and the results of Bray (using
v=0.638, a=0.125, and g=0.041) are reported in Fig.
3. Validity ranges of the approximations are more ex-

0.10

0.08-
C0

~~
0$

~~
0.06-

'U
O

~~
c$0 04-

0.02-

0.00 I

10
I

15 20

FffIG. 3. Devtattons of approximate equations [same as in Fig.
2 plus Fisher from the "best estimate" proposed by Bray (Ref.
4)]. The validity range (deviation less than 1%) is more extend-
ed in three dimensions than in two dimensions.

-0.02
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x=qg
FIG. 2. Deviations of approximate equations Ornstein-

Zernlike (OZ), Fisher-Burford (FB), and Fisher-Langer (FL)
from the exact value of the scattering function in two dimen-
sions. The data are from Tracy and McCoy (Ref. 3).
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tended in 3D than in 2D. A 1% deviation is found with
OZ for x &5.7, Fisher for x )22, FB for 0&x & ~, FL
for x )3. In summary, the FB equation should be a rath-
er good approximation in the whole x range and there ex-
ists a large overlap (inside the 1% deviation limit) be-
tween the more exact FL equation at large x and the
small-x range approximations OZ or FB. The Fisher ap-
proximation is simpler than FL, but it will be of limited
use since its validity falls almost out of experimental
reach.

From the practical point of view, a judicious choice of
the equation and of the number of parameters to be fitted
must be made depending of the x range investigated. In
the small-x range, data are rather insensitive to the value
of the index g and OZ formalism may be used with the
fitted parameters aoz =DO and g. At large values of
x =q (, the FL equation will be used, but the independent
variable must then be x and not q, as with OZ, and the
correlation length must be previously determined (from
light scattering as done by Schneider et al. ' or from a
SANS experiment performed at small x). The FL equa-
tion has six unknown parameters which cannot be fitted
from a set of data obtained by SANS. It will be seen in
Sec. VIII that only two parameters C&

—=D and g may
be fitted with significance using FL (or three parameters
C„g, and C2 in the more favorable cases). The index v
is taken from theory (v=0.635) or determined from the
temperature dependence of g; the index a is taken from
theory (for example a=0.125) and Cz, C3 will be general-
ly taken from theory (Bray ).

In the FB equation, the value of the constant P is im-
posed by boundary conditions. It is easily shown that
from the x ~0 limit a„B=aoz =Dp and that
aFBP"=Ci =D in the x~ oo limit. This equation will

prove itself to be very useful since it is a good approxima-
tion in the whole range and since the correlation length
may be one of the fitted parameters together with Dp C&,
and 'g.

The corrected intensity is proportional to G(x) from
Eqs. (2) and (9). At q=0, G(0)=t ~. Since an absolute
determination of S„(0)is not the object of this paper we
will write G(0)=S„(0)=t i', omitting a normalization
factor.

VIII. DATA ANALYSIS

All the equations used in the data analysis, excepted
OZ, need nonlinear least squares. Procedures proposed
by Press et al. ' have been used in most of the cases. De-
pending on the fitted equation, the algorithms may be
adapted to converge rapidly.

Theoretical uncertainties are easily evaluated in neu-
tron scattering experiments (typically bX=&X). Great
care has been taken to introduce correctly the errors in
the fitting procedures. The first important use is to allow
the proper weighting factor to each data point. Then the
error on each parameter and correlation between parame-
ters may be determined. Since absolute uncertainty may
be evaluated, a goodness of the fit test (Gf ) was made us-
ing the complement of the incomplete I function
Gf =Q(v/2, g ), where v is the number of degrees of free-
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FIG. 4. Standard deviations of the intensity observed for a
run repeated six times, ( T T, =0—.350 K), $, and calculated er-
ror (EI=&I ), R, as a function of the momentum vector
transfer q. The observed dispersion of data is about 40% larger
than that evaluated from statistical uncertainty only. The same
behavior was observed for two other runs repeated six and five

times.

IX. DETERMINATION OF THE CORRELATION
LENGTH AND S„(0)

A. Ornstein-Zernike equation

The OZ equation is the best to determine the correla-
tion length g and S„(0)at each temperature from data
collected in the low qg range. In order to respect the va-
lidity range as discussed in the preceding paragraph, a
two-step procedure has been followed; a first calculation
using all data gave a first evaluation of g; then only data
for which qg (limit were kept in the second calculation
(the limit is qg'( 5.7 if an error of 1% is allowed). This fit
may not be used for values of g larger than 300 A with
the chosen experimental setup since too many of the data
are then rejected. For large values of g (250—300 A), the
1% error limit may also be questioned (see Fig. 5).

dom and g the minimized "chi square. " If a value of Gf
laying, say, between 0.05 and 0.5 is found, then the
dispersion of the sampled data is in the same range as
theoretical errors (based on an infinite sample) and the
chosen function is probably a good representation of the
observations.

In fact, it was found that observed dispersion was sys-
tematically somewhat larger than evaluated from statisti-
cal error only. Different reasons may be invoked: the
statistical error does not account for temperature uncer-
tainty, fluctuations of the neutron beam average wave-
length, electronic noise, etc. To get a realistic evaluation
of the errors, three runs have been repeated 5 or 6 times;
for a set of data, the dispersion of data were on average
40%%uo larger than calculated; there was no marked depen-
dence of the 1.4 ratio with the diffusion angle (Fig. 4) or
temperature. For each data point, the evaluated error
was then chosen as 1.40&I. This calibration does not
affect the fitting procedure itself and then the values of
the parameters, but only the y, and then Gf and the cal-
culated uncertainty of the parameters.
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B. Extended Ornstein-Zernike (EOZ) equation

As shown by Tracy et al. in two dimensions, the va-
lidity range of the OZ formalism may be somewhat ex-
tended if a first correction to the Lorentzian shape at
large x is used,

g(x)=aoz(1+x Bx )— (17)

with B =24 of Ref. 3. In two dimensions the validity
range (for 1% error) is then extended from qua=4. 2 to
6.6; from a simulated experiment, we found that the limit
could be extended to qua= 10 in three dimensions. Values
of g up to 400 A may then be determined with a good
precision.

C. Fisher-Burford equation

The correlation length and S„(0)may alternatively be
determined from the FB equation without range restraint
(in the l%%uo error limit). Three parameters were fitted,
S„(0), r), and g, using P=C', ~". The value of C, was
chosen as 0.91 from OZ data treatment at low x and

FIG. 5. Relative uncertainty of the correlation length b,g/g
as a function of g, () for Ornstein-Zernike equations and ~ for
Fisher-Burford equations. The solid curve is the error found for
simulated experiment with a Gaussian random error (FB). The
uncertainty calculated for COZ is similar to that of FB and is
not reported here.

Fisher at large x; indeed, C, =a~(x~oo)/aoz(x~0)
from Eqs. (11)—(16). This value is in good agreement
with theoretical evaluations [C, ranging from 0.89 to
0.92 (Ref. 4)]. The calculated values of g will be reliable
if the values of g determined at the di8'erent temperatures
are not dispersed; more precise values of g are then calcu-
lated using the average value of q as a constant.

D. Fully corrected Ornstein-Zernike (COZ) equation

Finally a fourth way of determining the correlation
length and S„(0) was to take the "best estimate" pro-
posed by Bray as a reference (referred to as Bray). Then
the deviation of the OZ equation (Fig. 2) may be fitted to
a polynomial ga„x ". For x ranging from 0 to
20 an excellent fit was found with ao =a, =0,
a 2

=5.667 X 10, a 3
= —5.796 X 10, a 4

=2.576 X 10
and a5 = —4.299X 10, the standard deviation of the es-
timates being 5.8 X 10 . The data may then be treated
using this correction with the OZ equation

g...(x)=a«(1+x')-' 5

1 —g a„x" (18)

with aoz and g being the fitted parameters. The same re-
sults are obtained for x ranging from 0 to 40 if two addi-
tional terms a 6 and a 7 are used in the fit. These
coem. cients are empirical; there are no odd values of n in
the power-series expansion for small x (see Bray ) but the
present empirical expansion may be used at large values
of x. This last method could well give the best results;
the limit is that it is based on a "best estimation" of g (x)
and not exact values; several parameters, u =0.125,
v=0.638, g=0.041, and C2+C3= —0.9, are already in-
cluded in the model.

E. Results

The four methods give essentially the same results for
g(300 A; FB give slightly larger values at large
(1—3 %%uo at the limit of the error bar); a comparison of the
methods is given in Table I for three different values of g.

TABLE I. Comparison of the correlation length g' obtained with four fitting equations [(13), (17),
(15), and (18)] for three different runs.

OZ
EOZ
FB
COZ
OZ
EOZ
FB
COZ
OZ
EOZ
FB
COZ

T Tc
(K)

'

0.725

0.355

0.127

g (A)

109.51
109.96
110.47
110.18
166.88
166.43
167.96
166.90
325.73
333.68
334.22
326.14

+0.74
+1.07
+0.71
+0.72
+ 1.73
+1.88
+1.37
+ 1.41

+ 12.7
+14.0
+6.9
+7.8

Number of
data points

24
30
30
30
13
30
30
30

7
14
30
30

Goodness of the fit

Gf

0.065
0.15
0.18
0.70
0.061
0.108
0.137
0.155
0.046
0.041
0.42
0.35
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The reproducibility (several runs carried out at the same
temperature) and comparison between experiment I (36
runs with 19 in the nearest half degree from T, using the
upper window) and experiment II (30 runs with 12 in the
nearest half degree from T, using the lower window)
have been carefully checked. For example, a run at
T=241.462 K has been performed six times, giving
g= 168.03+1.44, 168.29+1.43, 168.65+1.44, 167.66
+1.43, 166.59+1.42, and 166.90+1.4 A ((g) =167.69 A,
s=0.81 A). From the lower window /=167.01+1.58 A.
There is no systematic deviation between experiments I
and II (the difference exceeds two times the standard er-
ror only twice). This observation is encouraging since all
the steps of the data treatment for experiments I and II
are carried out in completely independent ways.

Figure 6(a) reports a few examples of experimental
data and fitted curves (COZ equation); it shows the in-
crease of the diffuse intensity at sma11 angles when the
critical temperature is approached. From this figure, the
quality of the fits looks "good." In fact, it is not really
possible to draw any conclusion about the fits from this
kind of plot since the predicted error on each data point
is about 0.5 fo. A more quantitative approach of the
goodness of fits is given in Fig. 6(b); it reports the ob-
served residual I„&,-I,b, divided by the calculated stan-
dard error for a typical run (T T, =0.23—K and

3000-
Cl

CJ

4) 2000
Vl
C0
4)

1000-C

M
C
O

800

600-

C 400-I
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200-
0
O
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0 ~ ~ ~ ~ ~

0
241 ~ 0

I(
241.2

I

241.4 241.6
I

241.8
T (K)

242.0

FICx. 7. The correlation length g as a function of temperature
in the nearest degree from T, (experiment I). It was not possible
to calculate the correlation length for two runs very near T, .

Gf =0.19). This figure tells that there is no visible trend
for the deviation as a function of q. The fit presented in
this figure is really a typical one (and not the best). For
any of the equations used in its validity range, values of
Gf between 0.10 and 0.80 were found for 48 runs (out of
53 runs for which g) 65 A) and values larger than 0.025
for the remaining five runs; three of these five runs have
large values of g, that is to say a large counting rate and
then a low calculated relative error on the counting. In
these cases the precision was no more completely limited
by the statistics but also by the quality of the detector
calibration and of the temperature stabilization. Finally
it was not possible to determine the value of g for the two
runs closest to T, (g) 750 A).

The values of the correlation length obtained for exper-
iments I and II are reported in Fig. 7. Since they are not
absolute values, results of S„(0) are not given here but
they will be used in Sec. X to determine the critica1 index

0
0.000

I

0.010
I

0 ~ 020
I I

0.030 0,040

q(A )

I

0.050

X. DETERMINATION OF THE CRITICAL
INDICES v, y, and g

0
Ql

O
to'a

0

MI

~ ~

-3 I I I I

0.000 0.010 0.020 0.030 0.040 0.050 0.060

q(& )

FIG. 6. (a) A few examples of calculated (solid lines) and ex-
perimental (~) results; values of T—T, are, respectively (from
bottom to top), 1.68, 1.28, 0.58, 0.23, and 0.04 K. (b) Residual
over calculated standard deviation for a typical run as a func-
tion of q; the goodness of the fit Gf was equal to 0.19 and
T—T, =0.23 K.

At the approach of the critical point, on the critical
isochore, the correlation length g diverges following a
power law

(19)

If the concentration is not exactly the critical one, the
critical temperature is replaced in (19) by the spinodal
temperature T, and a gap exists between the temperature
of the coexistence curve and T„preventing critical diver-
gence to fully develop. From all the observations of the
counting rate just above and below T, for the two experi-
ments, the critical temperature may be evaluated at
241.107 K (not an absolute scale); it may also be asserted
that T, (or T, ) is below 241.110 K. A lower limit should
not be less than 241.100 K even if the evaluation of the
gap is less sure. The evaluated value of the critical tem-
perature could then be used in Eq. (19) to determine go
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and v. It was found that it would better let the critical
tempera, ture be adjusted together with go and v and to
reconsider results with T, outside the above range.
Determination of T, from a least-squares fit is difficult;
all data with large values of g, which should determine T,
with the best precision, have at the same time large rela-
tive errors and then weigh very little in the fit. In the
present case the problem is somewhat complicated by the
existence of a crossover between critical (v=0.63) and
classical regime (v=0.50) at about 1' above T, .

The recipe was the following. Three tests provide in-
formation to improve the fit when all data are first used

0
in a three-parameter fit (25 data with g) 90 A in experi-
ment I): (i) the value of G& (here G&=5.9X10 ); (ii)
value of T, compared to the above range (here
T, =241.117 K, i.e., 0.007 K above the higher limit); (iii)
inspection of residues which shows that evaluated values
of g for g) 450 A are larger than that observed (out of
the error bar but their weight is low). The value of v is
equal to 0.577+6.5 X 10 . Data from the low-g range
(high temperature) are then rejected one by one from the
fit; one then observes that T, decreases, G& is improved,
and large g evaluations reenter into the error range. The
best fit is obtained when data ranging from T—T, =0.50
to 0.03' (140(g(700 A) are used in the fit (16 points).
Then T, =241.1050+0.0043 K, v =0.644+0.022,
go=2.66+0.36 A with G& =0.19; if one point with a ratio
of residual/error equal to 2.8 is removed, the following
values are found: T, =241.1078+0.0040 K, v
=0.622+0.021 g =2.89 A with G&=0.70. No systemat-
ic trend is found by removing other data and values of

the index v remains in a range 0.605 —0.655 with larger
error bar. From all fits [divergence of g and S„(0)for the
two experiments], it is found that the value T, =241.1075
K is a good evaluation; it finally gives v=0.6279+0.008,
g =2.788+0.15 A with 6&=0.80. There is no systematic

0

variation of the index v by removing data from /=120 A
(19 points) to /=400 A (five points) if T, is held constant
(241.1075 K); an average value ( v) =0.631 is found with
a standard deviation s=0.009. This small dispersion is
coherent with the high value of G& obtained in the fits.
At the two limits the index v is equal to 0.616 for
T, =241.11 K (G&=0.56) and 0.661 with T, =241.100
(G&=0.23). In this last case the third test (iii) is not
fulfilled.

It is more difficult to use the same procedure with ex-
periment II since the set of data is less complete (less data
in the vicinity of the critical point). With ten values in
the same temperature range, one finds T, =241.1073 K
and v=0.609+0.032 (G& =0.03); with constant T,
(241.1075 K from experiment I), the index v is equal to
0.613+0.032 (G~ =0.03).

In the same way, the critical index y may be deter-
mined from the power law

S„(0)= CU
—1

T
Tc

where Co is a non-normalized constant as already indi-
cated.

Using the same set of data as for the determination of
the index v, one finds

@=1.228+0.039, T, =241. 1086+0.0043 K, and G =0.72;
@=1.240+0.0157, G&=0.79 with T, =241. 1075 K (experiment I);
y=1.223+0.019 G =0.03 with T =241. 1075 K (experiment II) .

From this, the index q may be calculated if the scaling
laws are accepted. Then, with T, =241.1075 K, one finds
from experiment I

g=2 ——=0.025 .
v

(21)

The good agreement with theory and with the values that
will be obtained using data in the large-x range (Sec. XI)
is fortuitous if one considers the errors. Indeed, if the er-
rors made on y and v are not linked, one obtained an un-
certainty of +0.052 on g from the errors found on v and
y and Eq. (21). But the uncertainties are probably some-
what linked [indeed the value of Eq. (21) remains almost
unchanged when T, is changed in Eqs. (19) and (20) from
241.10 and 241.11 K]. This may be checked by consider-
ing another form of the OZ (or FB, EOZ, and COZ)
equation:

(22)

from Eqs. (9) and (10).
All the calculations made in Sec. IX are then made

again with these modified equations. They give the same
values of the correlation length and a new parameter a,
which varies little with temperature (i)v=0.02). The
values of a, are reported in Fig. 8 as a function of tem-
perature. The value of gv may be obtained from a power
law

ai =Ct" (23)

From the best set of data (experiment I, 16 points) one
finds gv=0.0177+0.0029 and T =241.1033 K. The crit-
ical temperature is not well defined in experiment II
(T, =241.13 and i)v=0.0152 from 10 points). With con-
stant T, =241.1075 K, one obtains gv=0.0178+0.0007,
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FICi. g. Parameter a, [Eq. (23)] as a function of temperature.
The slow divergence (t" ) is clearly observed very near the criti-
cal point.

experiment I; pe=0. 0165+0.0014, experiment II. With
v=0.628, the value of the index g is then equal to 0.0283
(experiment I) with an unexpected low standard deviation
of 0.002 (and 0.026+0.004 from experiment II).

XI. A STUDY OF THE SCATTERING
FUNCTION G(q, T) AT LARGE x:

DETERMINATION OF THE CRITICAL INDEX q

As seen in Sec. VII, FB and FL equations are good ap-
proximations of the scattering function in the
intermediate- and high-x range. They are applied here to
determine the shape of the scattering function G(q, T)
and to evaluate the critical index g.

In a first step, the FB approximation is applied on each
run covering a limited x range at constant g. A FB fit
[Eqs. (9) and (15)] with three unknown parameters S„(0),
g, and g is applied to each run with a constant C, =0.91
(Sec. IX). The values of S„(0)and g have been discussed
in Secs. IX and X. The values of g obtained from experi-
ments I and II are reported in Figs. 9 and 10, respective-
ly. The averages are (i)) =0.0317, s=0.0051 for experi-
ment I (22 points) and ( i) ) =0.0305, s=0.0091 for exper-
iment II (15 points). The average of the standard errors
given by the fits are, respectively, 0.0065 and 0.0061.

Then all data which were functions of q and T are re-
grouped as a function of the single variable x =qg and
the approximate equations are used to determine the
scaled scattering function g(x) and a more precise value
of the index q. That is achieved by using scaling and
values of g and S„(0) calculated in Sec. IX. Normalized
values of g(x) (method a) are obtained by dividing the
observed count rate by S„(0) [Eqs. (9) and (20)]; but a
non-normalized form (method b), where t i' is replaced
by g "in Eq. (9), could be preferred since it was found
that errors made on v and y [or g and S„(0)]were linked.
Two sets of data (experiments I and II) are thus built
from results obtained in the 140(g (700 A range.

The results obtained from the fit using FL, FB, and LX
[Eq. (12)] equations are reported in Table II. The data set
(experiments I or II), the number of data used in the fit (a
maximum of 350), and the type of equation (FL or FB,
method a or b) are reported in columns 1 and 2. The cal-

FIG. 9. The critical index g obtained from Fisher-Burford
[Eq. (15)] and Eq. (9) for experiment I. The average value is

g=0.0317 and the standard deviation s=0.0051; the average of
the standard error given by the fits is 0.0065.
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FIG. 10. Same as Fig. 9 for experiment II. The average value
of g is 0.0305, s=0.0091 and the average of the standard devia-
tion given by the fits is 0.0061.

culated values of the fitted parameters, their standard er-
ror, and the goodness of the fit are reported in columns 3,
4, and 5, respectively, and the conditions of the fit (qg
range, parameters introduced as constants) are given in
column 6. Most of the reported results are from the
more complete set of experiment I, but, as already found
in the previous sections and as shown in a few examples,
the fitted parameters obtained from the two experiments
are not significantly difFerent.

The results obtained with the FB equation are reported
first (fits 1 —6). As a starting point, method b is used with
C, held constant (C, =0.91 as found with the Fisher
equation at large x); the variable x =qg has been calculat-
ed from experimental values of g obtained in Sec. IX.
The eft'ect of varying CI is shown in fit 2; a general obser-
vation is that a 1% decrease of Ci increases the index q
by 2X10 . Since the set of data is very large, it is in
fact possible to determine C, with a good accuracy (fit 3).
The x range may be extended using calculated values of
the correlation length (see Sec. X); two runs close to T,
are then included in the data set (fit 4). Fits 5 and 6 use a
normalized g (x) obtained by dividing the corrected in-
tensity by the values of S„(0) calculated in Sec. IX
(method a). As a short conclusion, it may be noticed that



PIERRE DAMAY, FRANQOISE LECLERCQ, AND PIERRE CHIEUX 40

TABLE II. Parameters which define the shape of the scaled function g(qg) using Fisher-Burford and
Fisher-Langer equations. A complete description of the fits is given in the text. From FL, the value of
the index 7j is 0.0305+0.0015 without assuming scaling and 0.0286+0.0010 using the scaling hypothesis
[Eq. (10)]; a value close to 0.028 was found from scaling only (Sec. X). The difference is at the limit of
significance. The scaling hypothesis is then verified within the limit 2 —7j —y/v(0. 002.

Fit number,
experiment,
equation

1, I, FB(b)

2, I, FB(b)

3, I, FB(b)

4, I, FB(b)

5, I, FB(a)

6, II, FB(a)

7, I FL(b)

8, I, FL(b)

9, II, FL(b)

10, I, FL(b)

11, I, FL(b)

i2, I, LX(a)

13, I, FL(a)

14, I, FL(a)

iS, I, FL(a)

16, II, FL(a)

Number
of data
points

350

350

350

350

205

276

276

205

350

350

154

276

276

334

175

Fitted
parameters

7j=0.0284

q =0.0304

7j =0.0283
Ci =0.9119
r] =0.0288

7I =0.0289
a FH

= 1.00083
Ci =0.906
7j =0.0280
a FH

= 1.00014
C) =0.907
7j =0.0281

7I =0.0284
C2 = 1.852
(C2+ C3 = —0.897)

g =0.0286
Cq = 1.885
(C2+ C3 = —0.860)

71
=0.0285

C2 = 1.906

g =0.0282
C~ = 1.S24
C2+ C3 = —0.79
Tj =0.0319
Ci =0.929

7j =0.0302
C, =0.937
C2 = 1.892
(C2+ C, = —0.853)
7j =0.0305
Ci =0.939
Cq =2.630

7j =0.0308
C) =0.933
Cq+ C3 = —0.828

7j =0.0324
C) =0.932

C2 = 1.944
(C +C = —0.801)

Standard
error

0.00077

0.00075

0.0018
0.0025
0.00077

0.0011
0.0027
0.053
0.0046
0.002
0.10
0.0011

0.0009
0.0037

0.0017
0.0023

0.00io
0.017

0.0009
0.10
0.026
0.053
0.021

0.0011
0.006
0.030

0.021
0.021
0.76

0.019
0.005
0.030

0.046
0.012

Goodness
of the fit

GI

0.72

0.70

0.75

0.54

0.45

0.10

0.033

0.062

0.63

0.54

0.26

0.17

0.10

0.33

0.020

Conditions of
the fit constants

1. 1&qua& 37
C) =0.91
1.1&qg&37
C) =0.90
1. 1&qg &37

0. 1 &qg &66
C( =0.91
0. 1 & q g & 66

0. 1&qg&37

4&qg&49
C2 = 1.845
C3 = —2.745
v =0.632
a =0.110
4&qg&49
C3 = —2.745
v =0.632
o.=0.110
4&qg&32
C3 = —2.745
v =0.632
a =0.110
4&qg&66
v =0.628
o; =0.110
C2+ C3 = —0.90
4&qg&66
v =0.628
a =0.110
10&qg«49
v =0.632
o, =0.086
4&qg&49
v =0.632
GL =0.086
C, = —2.745
7&qg&49
v =0.632
a =0.086
C2+ C3 = —0.90
4& qg'&66
v=0.628
a =0.11
C2 = 1.845
4&qg&32
v=0.628

e=0.11
C3 = —2.745
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FIG. 11. Function g(x) obtained from parameters of fit 5
(Table II) in the 0—5 x range using the FB equation and fit 11
(Table II) in the 4—10 x range with the FL equation.

the value of the index g is found between 0.028 and 0.029
with a high precision (=0.001); the value of C, is near
0.91; experments I and II and methods a and b give
essentially the same results.

Fisher-Langer or LX (LX is equivalent to FL with
C2 =C3 =0) approximations have been used in the other
fits (7—16). Fits 7 and 8 for experiment I and 9 for exper-
irnent II are performed with Cz and C3 or only C3 held
constant. Indices v and a are those of renormalization
theory. In fit 10 the x range is extended as in fit 3, the
index v is that calculated in Sec. X, and the sum C2+C3
is imposed; indeed, if the values of the coefficients C2 and
C3 may not be well evaluated from theory, a value
C2+C3 = —0.90 seems more sure. This value is not far
from that found in fits 8 and 9 where one of the two pa-
rameters is held constant. Nevertheless fit 11 shows that
the sum is —0.79 if one tries to calculate both C2 and C3.
The index g shows a remarkable stability when C2
and C3 and even v are varying using FL(b)
(r) =0.0286+0.0010).

A value of g somewhat larger (0.0319) but with a large
uncertainty is found with the LX equation (x ) 10); the
parameter Ci is 2%%uo larger than with the FB (or Fisher)
equation but again with a. large uncertainty +0.021 (fit
12).

The FL(a) equation is finally used in fits 13—16 with
different combinations and values of C2, C3, cx, and v.
Again the index q is very stable but the average value is
about 0.002 larger than with method b, but as expected,
the errors are greater. As with LX, the parameter C& is
near 0.935.

A plot of the function g(x) obtained by a superposition
of fits 5 and 11 (Table II) is reported in Fig. 11.

XII. DISCUSSION

Results presented in Secs. IX—XI show that, when
technical and correction problems are met, critical
scattering may be observed in the small- and
intermediate-x range by neutron scattering with an accu-
racy comparable to that of light scattering. Since the
critical regime is more easily reached with neutrons, the

large-x range may then be determined with a better pre-
cision; in particular, the critical index g has been deter-
mined with a precision not yet obtained. This favorable
conclusion is probably largely due to the high sensitivity
of neutrons to Auctuations of concentration in the Na-
ND3 system.

From these results, several points concerning scaling
and the several approximations of the scattering function
may be raised.

A conclusive indication of the validity of scaling hy-
pothesis is to find the same value of the index g from Eq.
(10) and from the shape of the scattering function at large
x; following Tracy and McCoy, if Eq. (10) is rewritten as
g=2 —y/v, scaling will be true if rl defined by Eq. (12) is
such that g=g. The value of g has been determined in
Sec. X (0.0283+0.002) and diff'erent evaluations of rl have
been found in Sec. XI; only calculations carried out at a
single temperature or using method a (FB and FL) give
really access to g; results obtained with method b which
makes use of Eq. (10) give a mixture of r) and q. It is not-
ed that all results obtained with method b are very close
to those found from Eq. (10) using the observed values of
y and v. Three average values of "pure" g were found:
single run, (r)) =0.031, error 0.005, FB with C, =0.91;
regrouped data FB(a), ( i) ) =0.029, error 0.0011; re-
grouped data FL(a), (g) =0.0305, error 0.0015.

From these results, the difference between g and q
should not exceed 0.002. Considering the errors, the fac-
tor G&, which is as good with method b as with method a,
and the results obtained from simulated experiments, one
must conclude that detection of such a small difference
from the present set of data (with their statistical uncer-
tainties) is at the limit of significance.

Another remark concerns the parameter C& which was
nicely obtained from FB(b) very near theoretical predic-
tions and the evaluation obtained from the Fisher equa-
tion (0.91+0.002). Using the LX(a) or FL(a) equation,
the constant C& was systematically found near 0.93 with
a somewhat larger error (0.01). This could be due to a
bad evaluation of C2 and C3, but this irreducible
difference is not well understood. From the experimental
point of view, there is some ambiguity in the FL equa-
tion, being the more precise equation but with many pa-
rameters.

All calculations were strongly supported by simulated
experiments, with random Gaussian errors, which were
treated exactly in the same way as in real experiments.
Many questions were then answered; for example (Sec.
IX), it was found that precise values of correlation
lengths could be obtained from the COZ equation in the
0—20 x range even if the values of the coefficients
(a .

=0.11, v =0.628, i) =0.03) were actually slightly
different from those used in the evaluation of Bray. It
was thus also shown that the precision obtained on the
index g [+0.005 from a single run and +0.001 from re-
grouped data (method b)] was almost exactly that expect-
ed from the experimental statistical error made on the
counting rate.

That gives confidence that statistical errors are well
handled. A constant concern during the whole data pro-
cess was to track possibilities of systematic errors which
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may be very dificult to detect; the more fragile point is
certainly the background evaluation (part VI). Several
backgrounds have been checked even at the limit of like-
ness. The results are typically the following. (i) For sin-
gle run fits, as reported in Figs. 9 and 10, values of g may
be shifted by 0.015 from presented results and a marked
temperature effect is detected (for example g=0.045 near
T, and 0.023 at 1 deg from T, ); the factor Gf decreases in
the 0.01—0.20 range and the average uncertainty remains
near 0.005. (ii) Values of g remain in the 0.03 range for
regrouped data but Gf was then, in most cases, very poor
(below 0.001) and the precision on g was near 0.005 as for
single run fits. This indicates that all data did not fall
correctly on the same g(x) curve when regrouping. The
increase of precision from 0.005 to 0.0015 when data are
regrouped is certainly a good indication that systematic
errors have been minimized.

No mention was made on corrections to scaling. At-
tempts to include such a correction ' were not very
successful; the additional parameters are indeed too
closely correlated to the leading terms and convergence is
not even always obtained. To avoid the problem, as indi-
cated in Sec. IX, all calculations aimed to determine the
critical indices v, y, and q, and the shape of the scatter-

ing function have been made using data collected very
near the critical point (0.5 K or t (2X10 ). Many fits
were performed, in addition to that reported in Table II,
to check all the results with different temperatures (runs
chosen for data regrouping) and with x range. All pa-
rameters presented in Table II were found remarkably
constant throughout these different treatments, except for
an increase of the uncertainty observed when the number
of data points decreases too much. This behavior could
be expected by inspecting the values of Gf tests; for ex-
ample a value of Gf of 0.54 (fit 11 of Table II) obtained
with 350 points with three fitted parameters indicates
that the data form a very coherent set, which is well ac-
counted for by the equation. In this case only three
points had a ratio of residual/standard error larger than
2.5. Such a large value of Gf shows at the same time the
limit of what can be extracted from the data set and its
intrinsic statistical error.
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