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Tensile fracture of heterogeneous solids with distributed breaking strengths
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We have used the finite element method in numerical simulations of tensile fracture in an elastic
medium with stochastically distributed breaking strengths. We observed that the average number
of elements damaged at breakthrough (X) on an L XL square mesh behaves as (N ) =aLS. For an
exponential distribution of breaking strengths a=0.3 and P=2. For a uniform distribution over
(1 —co, 1+co), when co (0.2, a= 1, and P= l. As co increases above this value, so does P until when

to=1, P= 1.8. Thus the exponential distribution results in the most disordered and largest damaged
area.

INTRODUCTION

The mechanical breakdown of stressed solids is a prin-
cipal constraint in many areas of science, technology, and
engineering. Although heterogeneity is known to prevent
ideal behavior in cracks' and dislocations, most experi-
mental data and modeling has been either at the phenom-
enological level or on specific applications with a small
number of defects.

When there is a small number of defects, consideration
is directed at local perturbations in the general elastic
field. This has given rise to the techniques of linear elas-
tic fracture mechanics (LEFM). Attempts have been
made to generalize the LEFM treatment of isolated de-
fects by combining components in a micromechanical
model, but these approaches tend to be unwieldy with
limited intuitive benefit. More recently, work has com-
menced on elucidating universal principles underlying the
breakdown of media which are broadly heterogeneous at
the microscopic level.

Models of phase transitions in random systems have
shown that for many spatially uncorrelated networks the
behavior near to breakdown (the so-called "percolation
threshold" ) can be characterized by a small number of
universal exponents. This model of a phase 'transition
from a disordered state with distributed locally
transformed sites to an ordered state with a single dom-
inant (connected) strand has proved very rich. Analogs
are found in many areas of physics including Quid Aow
through porous media, electrical breakdown, and frac-
ture. However, in contrast to the simple statistical ap-
proaches originally followed in percolation theory, the
physics of these other problems demands that account be
taken of the local environment of each site, with
neighbor-to-neighbor interactions being considered.
Furthermore, the contrasts in the nature of the potential
field involved in each of these cases may limit the validity
of comparisons.

Specifically, there has been some interest in random
fuse networks as primitive models for fracture. These
models consider the variation in a scalar potential (volt-
age) whereas models of an elastic material must consider

tensor fields. A first step in this direction is the network
of bars, where the joints are subject to local stresses
directed by the links to neighbors. However, to better
represent the behavior of continuous media, we need a
model which incorporates the full coupling between the
components of the stress tensor.

Any general numerical method that solves the stress
equations discretizes space and contains an underlying
topology. While this may not matter when studying large
intact bodies, the underlying structure becomes apparent
as the solid becomes diluted via the failure of components
during breakdown. Thus the final result may depend
heavily on the connectivity of the elements or nodes,
which in turn depends on the technique being used. We
chose to examine the finite element method because the
elements themselves are two-dimensional bodies, unlike
the open lattice structure which corresponds to the finite
difference approximation. Thus our investigation reveals
the consequence of choosing this type of structure and to-
pology.

We have used the finite element method in a Monte
Carlo simulation of tensile fracture of a heterogeneous
elastic medium. Only one failure mechanism is used,
representing the loss of strength of elements in which a
critical tensile stress is exceeded. Otherwise the material
behaves in a purely elastic manner. In contrast with the
similar model by Okubo and Nishimatsu, ' we have tried
not to prejudice our results by accepting a particular
model of heterogeneity in advance. Rather, we take an
agnostic stance and are testing a number of possibilities
in order to determine which factors are most important
in controlling the nature of the rupture. In this paper we
report on simulations in which the strength distribution
is varied within an otherwise homogeneous medium.

It has been observed that the fracture of real materials
yields surfaces that are always rough when examined at
an appropriate scale, and furthermore, that the fracture
of more homogeneous materials produces simpler results
than materials with a greater initial heterogeneity. " This
microstructural distinction is also rejected in measure-
ments of the work done in creating new fracture surfaces.
Heterogeneous materials which produce rougher surfaces
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and incur more overall damage will absorb more energy
in creating the rupture, and are therefore tougher, than
similar but homogeneous materials. This has major tech-
nological significance particularly for structural ceramics.

For some problems one would attempt to solve (6)
directly. However, for the complex geometry that results
from a model in which discrete sections are allowed to
break, a numerical method is necessary.

NUMERICAL SIMULATIONS
The finite element method

The equations for stress equilibrium in two dimensions
are

0 B0 y

~~vy+ =0.

In this paper we study linear elastic solids where the
stresses {0.] and strains I r. J are related by Hooke's law

t o I
= [C]I EI, (2)

where [C] is a constant matrix. For isotropic materials
the elastic constants in [C] have only two independent
parameters and the constitutive relation in two dimen-
sions for plane stress is
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The plane strain approximation assumes that the
geometry and loading do not vary significantly in the lon-
gitudinal direction.

The strain compatibility equation in two dimensions is
given by

~ ~yy ~ ~xx+
Bx

Thus, by substituting (3) or (4) into (5) and using (1),

a2 82+ (o.„„+oyy)=0 .
Bx Bg

where E is the elastic modulus and v is Poisson's ratio.
The plane stress approximation corresponds to a thin
plate loaded in the plane. An alternative is to use the
constitutive relation for plane strain:

Like all numerical approximations, the finite method is
based on the principle of discretization. Nevertheless,
the technique recognizes the multidimensional continuity
of the body. The idealization considers the body as con-
tinuous: No separate interpolation process is required to
extend the approximate solution to every point within the
continuum. The finite element method readily accounts
for nonhomogeneity by assigning different properties to
different elements. Physically, the finite element concept
differs from the lattice analogy in a two-dimensional
model (such as the trusses or frames generated by the
finite dift'erence approximation) in that the elements
themselves are two-dimensional bodies. Continuous ele-
ments provide a more natural representation of the prop-
erties of the original continuum.

The finite element method relies on two basic assump-
tions. The first assumption is that transmission of inter-
nal forces between the edges of adjacent elements can be
represented by interactions at the nodes of the elements.
This is done by establishing expressions for nodal forces
which are statically equivalent to the forces acting be-
tween elements along the respective edges. Thus the pro-
cedure seeks to analyze the continuum problem in terms
of sets of nodal forces and displacements for the discre-
tized domain.

The other assumption in the finite element method is
that displacements are permitted to vary only according
to some displacement function prescribed by the user.
We chose to use a linear model in which the displace-
ments in a single element (u, U ) are related to the coordi-
nates (x,y ) by

0 =0!i +0:2x +0,'3Y

v =0!4++&x+cry'

although higher-order terms could have been included,
with an infinite number of terms corresponding to the ex-
act solution. This is the key step of finite elements in
which a continuum is represented by a piecewise approxi-
mation. It also determines the forthcoming matrix [8].

Specific implementation

We chose to use a code based on the source listing in a
standard text' to determine the stress in each element
with either Eq. (3) or (4) for the stress distribution. This
code uses quadrilateral elements -decomposed into four
constant strain triangles. For a constant strain triangle,
the strain vector I E] is related to the nodal displacement
vector I q ] by the relationship
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0 0 X3 X2 X) X3 x2 —x, [q I =[B][q],
+3 +2 +1 +3 +2 +1 ~2 +3 ~3 +I

where (x;,y, ), i =1,2, 3 are the coordinates of the three
nodes of the triangle, 3 is the area of the triangle,
and the nodal displacement vector is given by
[q] =(u„u2, u3 Ui U2 U3)

With this definition, a stiffness matrix [k] was calculat-
ed for each element

[k]=f f f [B]'[C][B]«. (9)

These individual stiffness matrices where then added to-
gether to form a global stiffness matrix [K]. The global
displacement vector' I r ] was then determined using

Ã] Ir I
= IF I (10)

where IF] is the global load vector. Our choice of code
uses direct Gaussian elimination with Gauss-Doolittle
decomposition of the symmetric stiffness matrix. Strains
and stresses in each element were then able to be deter-
mined from the nodal displacements.

Evolutionary strategy

Our model gives three components which can be
varied: E, v, and the strength s, as well as a variety of
boundary conditions. We chose to follow the lead given
by Kahng et al. and only consider variations in the
strength for a sample in uniaxial tension. We have only
used square elements in a square mesh of L XL elements.
For most of the simulations reported here the elements
had uniform elastic properties (Poisson's ratio 0.2) but
strengths were assigned to each element randomly ac-
cording to various different probability distributions.
Displacements were prescribed for the nodes at the top
and bottom of the model to put it into tension, while
every other node had a prescribed net load of zero.

After solving for the stress distribution at each step,
the mesh is modified to simulate fracture by the following
algorithm. The critical element is found, defined as that
element in which the ratio of tensile principal stress to
element strength is greatest. The, element is broken. The
stress distribution is recalculated to account for the prop-
erties of the changed element, the next critical element
broken, and the procedure repeated until the sample fails.
Failure is defined as the condition where broken elements
connect the two sides of the sample.

In our algorithm, when an element "breaks, " the ele-
ment is not strictly eliminated, but its elastic modulus is
reduced to the point where it has no inhuence on the se-
quence of broken elements, and its Poisson's ratio is reset
to 0.45. Okubo and Nishimatsu' determined that a
reduction in the elastic constants by a factor of only 100
was sufficient in their simulations, but we found a sub-
stantial change between a factor of 100 and 1000 in our
simulations. A decrease in the elastic modulus of 4 or-
ders of magnitude was found to be sufficient to meet the

I

criterion, and furthermore, with this change, the
difference in the results for plane strain and plane stress
became negligible.

The fuse network realizations may be considered
equivalent to bond percolation. Our numerical experi-
ments are related to the site percolation problem. How-
ever, the coordination of the elements includes two types
of bonds to neighbors, at edges and vertices, so our simu-
lations differ from classical site percolation since the el-
imination of a site still permits its neighbors to be joined
at a vertex: Such a joint retains some elastic continuity
but does not offer any resistance to rotation. We have
not used periodic boundary conditions, unlike some of
the studies of resistor networks, because unloaded side
boundaries will be more relevant for experimental com-
parison. However, we have examined the dependence of
the results on mesh size L. In an L XL resistor network,
the total number of components which can break is 2L;
in a finite element mesh the number is L . In both cases
the minimum number of failed components required for
breakthrough is L.

RESULTS

The geometric results of a simulation can be quantified
in a number of ways. Valid estimates of the fractal di-
mension of the broken surface are difficult because of the
limited range of length scales available in practical simu-
lations. We chose rather to follow the percolation model
and focus on a "percolation threshold" and cluster size as
measures of the degree of irregularity of fracture. In par-
ticular, we have measured the number of broken elements
N when a broken strand connects the two sides of the
mesh and we have examined the behavior of the mean
(X) as a function of L, Ã(L), for different strength dis-
tributions. In this way we have further improved on
Okubo and Nishimatsu's study' by including the effect
of the model size L on the results.

The strengths of the elements s were assigned random-
ly according to various probability distributions f (s).
Two continuous forms were used, uniform distributions
f (s)=1/2' over the range (1—co, 1+co), and a negative
exponential distribution f (s)=e '. Samples of the re-
sults are shown in Figs. 1 and 2, but each of the results
shown in the synoptic figures represents an average over
ten simulations with different random number seeds
(Figs. 3 and 4).

Uniform distribution of strengths over ( 1 —co, ]+co)

With narrow distributions, the results follow LEFM,
with a single strand developing due to the dominance of
the stress singularity over the material heterogeneity. In
the fuse network analogy where each component has the
same conductance (modulus), there is a current (stress)
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FIG. 1. Some results from simulations on a 40 X 40 mesh with (a) uniform distribution of strengths with co=0.5; (b) uniform distri-
bution of strengths with co=0.6; (c) uniform distribution of strengths with co=0.8; (d) uniform distribution of strengths with v= 1.0.
Broken elements at breakdown are black.
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FIG. 2. An example of the result obtained with an exponen-
tial distribution of strengths on a 40 X40 mesh.

FIG. 3. Variation of the mean number of failed elements at
breakthrough (X) with the model length L.
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to breaking each element with a probability proportional
to the tensile stress o. in that element. The proof of this
argument is identical to the proof given by Chan et al. '

for exponential distributions of fluid capacity.
Specifically, for any distribution of strengths f (s),

ProbIelement i breaks] = f ds, f(s, )

L

XQ f, d f( ) (ll)
J=1

0.2 0.4 0.6 0.8
CO

1.0

is equivalent to

FIG. 4. The total number of failed elements at breakthrough
(N ) and the number of failed elements in the longest chain as a
function of co. This was from a uniform distribution on a
30 X 30 mesh.

concentration of 4/m around a single eliminated bond.
This result is exact since the Green's function can be
solved for the single defect in an infinite medium. For
our case, the stress concentration in elements adjacent to
a single broken element (defined as the ratio of tensile
stress to the mean tensile stress in the mesh) depends on
the location of the eliminated element in the mesh. For a
Poisson s ratio of 0.2 it was found to be 1.458 for a site in
the center of the mesh, independent of the mesh size, and
varied between 1.35 and 1.69 for sites elsewhere. For a
Poisson's ratio between 0 and 0.4 the stress concentration
varies from 1.408 to 1.518 in the center of the mesh.
Thus a variation of that factor in the distribution of the
breaking strength is required before the fracture path de-
viates significantly from a straight line.

Our results are summarized in Fig. 3. Kahng et al.
reported that, in fuse networks, a parameter x defined as
x—:(N ) /L —1 appears to grow as a noninteger power of
L for large values of co, with a characteristic exponent
that seems to be approaching 1 for values of co approach-
ing 1. We find similar behavior, except that the exponent
of x never reaches 1 (for cu =0.5, ( N ) -L ' '; for ru = 1.0,(N)-L' ). It is trivial to see that an exponent 13
defined by (X)=aL~ must lie in the range 1~P~2
since values outside this range would predict either X(L
or N &L as L ~~. For values of ~ above 0.5, most of
the additional damage occurs in isolated microfracture
away from the main fracture (Fig. 4).

L 2

ProbIelement i breaksI =0;/ g tr~, (12)

Breaking elements at random

If elements are broken totally at random without re-
gard to their material properties, simulations show that
breakthrough from left to right across the sample occurs
according to (N ) =0.6L . This is twice the value for the
exponential distribution of strengths. We are unable to
offer any explanation for this coincidence.

Exponential distribution of elastic moduli

The bulk of this study has been devoted to distribu-
tions of breaking strengths. This is because distributions
of elastic moduli have significantly less effect on the re-
sults. We include as an example of this observation that
the exponential distribution of moduli gives (N ) -L '

Mechanical data

providing that f (s) =ae ", where a is an arbitrary con-
stant.

We may compare the exponent P=2 found in this case
with @=1.8 in the case of the widest possible uniform
distribution. A distribution f (s)= I /2', cu = 1 has a
variance of 0.5 about a mean value of 1, whereas, with
the same normalization, the exponential distribution
f (s) =e ' has a variance of 1. Thus, as discussed earlier,
the width of the distribution is found to be the dominant
control on the irregu1arity of fracture.

Exponential distribution of strengths

In a study of unstable fluid flow in microstructured
porous media' ' it was recently found that the most un-
stable and irregular fluid flow patterns were found in
media with an exponential distribution of fluid capacity,
which is the most random possible distribution (max-
imum entropy). We find, analogously, that this distribu-
tion of strengths yields the most irregular fracture pat-
terns, with (%)-0.3L . The amount of damage is thus
proportional to the area, or amount of material present
initially.

An exponential distribution of strengths is equivalent

The solutions were derived for prescribed displace-
ments of the ends of the model, so the modulus of elasti-
city for the whole model is simply the ratio of the applied
load to this displacement. The applied tensile stress
which is required to break the elements in turn is the
product of the ratio of strength to stress in the critical
element and the model modulus.

In Fig. 5 we plot a typical stress history for a 40X40
model with the exponential strength distribution, with
damage statistics shown for correlation. There is a
significant drop in the strength after the peak, which cor-
responds approximately with a coalescence of damage in
the model, indicated by a rapid increase in the maximum
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peak stress, after which it levels off rather than decays.
It would be preferable to use a distribution function to

examine the correlation of the damage statistics with the
load history. However, we found this dificult to do
rigorously in models of the size examined here.
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CONCLUSIONS
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cluster size. Although there is a similarity between the
curve showing the number of isolated broken elements
and the stress history, as shown in Fig. 5 we typically find
that the peak in the isolated breaks curve is before the

FIG. 5. Number of single broken elements and the number of
broken elements in the longest chain as a function of the total
number of broken elements. This is for an exponential distribu-
tion of strengths on a 40X40 mesh. The stress history is also
shown.

We have examined the breakdown of a square network
of elastic elements with a stochastic distribution of the
breaking strengths. As the variance of the distribution of
strengths increases, so does the average number of bro-
ken elements ( X ) at breakthrough. For narrow distribu-
tions of strengths, such as the uniform distribution with
~&0.2, the damaged region forms a straight line with
area proportional to L. As cu increases, so does the ex-
ponent of L. For the exponential distribution, the dam-
aged area is proportional to the total area, that is
(X)-L . Thus, of the distributions we tested, the ex-
ponential gives the most disordered breakdown. This re-
sult has major implications for the design of artificial ma-
terials, since it suggests that significant toughening may
be achieved with a small proportion of very strong ma-
terials bonded into a matrix.

The results presented in this paper required consider-
ably more computational effort than simulations in resis-
tor networks. However, by incorporating the full cou-
pling between strain components, our results serve as a
check on the versatility of more primitive models such as
resistor networks. Specifically, there appears to be a con-
sistent relationship between (N ) and L in both our simu-
lations and those of Kahng et al. on fuse networks.
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