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The harmonic magnon modes in a one-dimensional Heisenberg spin glass having nearest-
neighbor exchange interactions of fixed magnitude and random sign are investigated. The
Lyapounov exponent is calculated for chains of 10 —10 spins over the interval 0» co ~4J. In the
low-frequency regime, co ~0. 1J, an anomalous behavior for the density of states p(co) -co ' is es-
tablished, consistent with earlier results obtained by Stinchcombe and Pimentel using transfer-
matrix techniques; at higher frequencies, gaps appear in the spectrum. At low frequencies, the lo-
calization length diverges as m '. A formal connection is established between the spin glass and
the one-dimensional discretized Schrodinger equation. By making use of the connection, it is shown
that the theory of Derrida and Gardner, which was developed for weak potential disorder, can ac-
count quantitatively for the distribution and localization of the low-frequency magnon modes in the
spin-glass model.

I. INTRODUCTION

(E —A. V„)Q„=g„+,+P„ (2)

In a recent paper, Stinchcombe and Pimentel' studied
the harmonic spin dynamics in a one-dimensional Heisen-
berg spin glass with nearest-neighbor exchange interac-
tions of fixed magnitude and random sign (J;;+,=+J).
Using a new transfer-matrix scaling technique, they were
able to show that the system has anoITlalous dynamics in
the low-frequency —long-wavelength regime. They found
behavior consistent with the relation cu, ~k, in con-
trast to the conventional hydrodynamic picture where
the characteristic frequency, cu„ is proportional to the
wave vector, i.e., co, ~ k. The purpose of this paper is to
extend the investigation of the one-dimensional spin glass
that was begun in Ref. 1. Using mode-counting tech-
niques, we determine the distribution and localization of
the modes over the entire spectrum. By exploiting
an analogy with the discretized one-dimensional
Schrodinger equation, we are able to establish a connec-
tion between the anomalous spin dynamics and the densi-
ty of electronic states at the band edge in the weak-
disorder limit.

Our starting point is the set of linearized equations for
the spins, which can be written in a form similar to that
displayed in Eq. (5) of Ref. 1:

(2—g„co)u„=u„+,+u„

Here co is the frequency in units of J and g'„=(+/ —)1
depending on whether the nth spin points up or down in
the classical ground state. The amplitude u„ is related to
the transverse spin operator S„ through the equation
u„=g„S„.Equation (1) is analogous to the discretized
one-dimensional Schrodinger equation with a random po-
tential k V„. This equation assumes the form

Comparing (2) with (1), it becomes apparent that the
one-dimensional Heisenberg spin glass is a special case of
(2) corresponding to E =2 and A, V„=g„co. Because of
this analogy, one can apply results obtained for the elec-
tronic problem to the spin glass. In particular, the low-
frequency regime studied in Ref. 1 corresponds to the
weak-disorder limit of the random-potential model at
E =2, the band edge of the system when A. =O.

II. LYAPOUNOV EXPONENT

Insight into the spin-glass dynamics can be obtained
from a study of the complex I.yapounov exponent, y(co),
which is defined in terms of the amplitude ratio. With

R„=u„/u„, (uo= 1 ),
one has

y(co)= —g lnR„, (4)

where X is the number of spins in the chain. Separating
y into its real and imaginary parts, one obtains

Imy(co) =mS~/X,

where S& is the number of negative signs in the sequence
R„R». . . , R~.

As pointed out by Thouless, Re@ is the inverse locali-
zation length (in units of the reciprocal of the lattice con-
stant). In the context of the electronic problem, Imy/tr
is the integrated density of states, while in the case of the
spin glass, arguments similar to those developed for the
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disordered antiferromagnet ' show that Imy(co)/~ is the
number of magnon modes in the interval between 0 and
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In Ref. 2, analytic calculations of the Lyapounov ex-
ponent in the weak-disorder limit are outlined that can be
used to determine the behavior of y(co) in the low-
frequency regime. For Re@ one obtains

0.05—

Rey(co) =0.2893. . . co ~

whereas for Imp one has

Imp(co)/~=0 159.5. . . a~

(7)

O.OI—

Di6'erentiating (8) with respect to co, one finds for the
magnon density of states

o~
0

I I I I t I I I

p(co) =0.1063. . . co (9)

in which the functional dependence is seen to be in agree-
ment with Ref. 1.

Equation (9) is consistent with a dispersion relation

FIG. 1. Histogram of the density of states, p(~), for a chain
of 10 spins. Frequency in units of J, Aco=0. 1. p(co) is the
difterence between Imp(co) /m and Imy(co —Ace) /~.

co= A(ka) (10)

where a is the lattice constant and 3 =1. With this in-
terpretation, Eq. (7) implies that the localization length of
a mode of wave vector k is inversely proportional to k it-
self.

III. NUMERICAL RESULTS AND DISCUSSION

smooth increase with co, apart from cusplike behavior at
high frequencies.

Finally, we note that the analysis presented here in-
volves only the distribution and localization of the
modes. The response of the system to finite wavelength
disturbances is also of interest. To probe this behavior,
we are undertaking a numerical calculation of the dy-
namic structure factor.

In this section, we first report the results of tests of the
Derrida-Gardner predictions, Eqs. (7) and (8), for chains
of 10 spins. Approximate power-law behavior was ob-
served for co & 0. 1. Numerical data were obtained
for 0.0001 & co & 0.001 at intervals of 0.0001,
for 0.001 & co & 0.01 at intervals of 0.001, and for
0.01&co&0.1 at intervals of 0.01. The data were fit to
the functional form Cco, with C and x as adjustable pa-
rameters. For Re@, we obtained C =0.2847 and
x =0.665, whereas for Imp /~ the values were
C =0.1620 and x =0.668, both pairs of parameters being
in good agreement with the theory, for which C =0.2893,
x =0.667 (Rey) and C =0. 1595, x =0.667 (Imp/vr)

By taking the difference between successive values of
Imy(co)/~ one obtains a histogram of the distribution of
positive frequency modes. The results of such a calcula-
tion are shown in Fig. 1, while the corresponding inverse
localization lengths are displayed in Fig. 2. The irregular
structure in the density of states is independent of the
particular sequence of g„and thus appears to be a
characteristic feature of the infinite system.

From Fig. 1 it is evident that there are gaps in
the spectrum for 2.0 & co & 2. 1, 3.0 (co & 3. 1, and
3.4(co&3.5. A higher-resolution study carried out for
10 spins in steps of 0.01 shows that on the finer scale the
gaps are restricted to 2.00 (co (2.08, 3.00 & m & 3.05,
and 3.41 &co &3.44. Additional gaps over smaller inter-
vals are also present. For example, in chains of 10 spins,
no modes were detected in the intervals 3.73 & co & 3.74
and 3.80(co & 3.81. In contrast to the density of states,
the inverse localization length (Fig. 2) shows a rather
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FIG. 2. Rey(co), inverse localization lengths, vs co for a chain
of 10 spins. Frequency in units of J; inverse localization length
in units of the reciprocal of the lattice constant.
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