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We have calculated the spin-correlation functions (in the x, y, and z directions) in the linear spin-

—, XY system for both isotropic and anisotropic couplings. The study of zero-temperature correla-

tion functions shows that a long-range order develops in the direction in which the coupling is

stronger, but no such ordering exists for isotropic systems. We have studied the temperature varia-
tion of inverse correlation lengths in these directions and it has been found that at T =0 all the
correlation lengths lg„g~, g, l diverge in the isotropic case. On the other hand, in the anisotropic
case, the correlation length diverges in the direction (either x or y) in which the coupling becomes
stronger. The results are compared with the experimental data on Cs2CoC14. The critical exponents
(g', v') of the correlation function and correlation length are also calculated near the critical temper-
ature {T=0) for different anisotropies, and it is found that the system behaves like an Ising model
when a little anisotropy is introduced.

I. INTRODUCTION

The study of one-dimensional (1D) spin chains is of
growing interest in many-body and condensed-matter
physics. This is because exact solutions are comparative-
ly easier in 1D systems than in higher dimensions, and
the extensive availability of 1D compounds makes it pos-
sible to verify the theoretical predictions in real systems.
In this paper we consider an anisotropic spin- —, XY Ham-
iltonian which has been exactly solved by Lieb, Schultz,
and Mattis. ' With the help of the Jordan-Wigner trans-
formation they solved the Hamiltonian and calculationed
the ground-state correlation functions and formulated the
finite-temperature correlation functions. Katsura solved
the anisotropic XY model in the presence of a longitudi-
nal magnetic field with the help of the Jordan-Wigner
transformation and calculated the thermodynamic prop-
erties, e.g. , magnetic susceptibility, specific heat, etc.
McCoy made calculations of zero- and finite-
temperature correlation functions for different anisotro-
pies in the large-N limit. For finite temperatures, he
made high- and low-temperature expansions. Tonegawa
calculated analytically the correlation functions at T=O
for isotropic XY system. At finite temperatures, he calcu-
lated numerically the longitudinal as well as transverse
spin-correlation functions and the corresponding inverse
correlation lengths.

In this paper we have calculated the correlation func-
tions for isotropic as well as anisotropic systems using the
method given by Lieb, Schultz, and Mattis' and com-
pared with the existing results of McCoy. At finite tem-
peratures, we have calculated the inverse correlation
lengths for different anisotropies and explained the exper-
imental data of the compound Cs2CoC14. Cs2CoC14 is a
compound which behaves as a linear spin- —,

' XY magnetic
system. The experimentalists obtained the tempera-
ture variation of inverse correlation length (tc) from neu-
tron diffraction experiments. They suggest that the ob-

served K is in reasonable agreement with the temperature
dependence of ~„ for an isotropic XY system. The
present calculation shows that the experimental v is an
admixture of sc and a .

It is evident from our calculation of inverse correlation
lengths that at T=O, all components of the correlation
length diverge for an isotropic system. For an anisotrop-
ic system (y) 0) only the x component diverges. This
suggests T=O to be the critical temperature for isotropic
as well as anisotropic XY chain. We have, therefore, cal-
culated the critical exponents (v', g') of correlation length
(g) and correlation function (p) and studied their varia-
tion with anisotropy.

II. THEORY

The Hamiltonian of anisotropic linear spin- —, XY sys-
tem is given by

&= —2J g [(1+@)S,'S,",+(1—y)SySy~, ],
where y is the anisotropy parameter which ranges from 0
to 1. When y =1, the Hamiltonian reduces to Ising one.

S;, S~, and S,' may be represented by the Pauli spin
matrices (fi= 1)

T

0 1 0 —i 1 0
S,.'= —,

'
1 0, S,y= —,

' . 0, S =
—,
'

0 1
. (2)

Lieb, Schultz, and Mattis' solved this model, and they
developed a formalism for calculating the correlation
functions between two spins. The three components of
spin-spin correlations are defined as

p„=(S; S;+„)& (a= yx, z),
where P= 1/kT and

(~ )
Tr(e ~ A)

P T —Pm
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In the thermodynamic limit (X—+~) h
f

~ac t e expressions
'„are gimme~' as follow

P2, —,=—,'R„ iR„,

Let us defin "ne the diA'erent components of inverse
correlation lengths as

&,y
= —»m»Ip„'j'. /p"I

n~ oo
n+1 n

where

6
6

~ ~ ~ —(2n —1)

~ ~ ~ —(2n —3)

and

—, lim ln(p~„+3/pz„~, ) .

(9)

62.—3 62. —5

The quantity 6, is defined by

/'2 COSKn
tanh( —J/3A, z)dK when n is odd

For J)0 both '~ andnz„an p2„'+i (i.e., even and odd correla-
tion functions & ~ave +Ue signs but when J (0, p '~

changes sign. As defined in E . (9e in q. &
y uld not de-

pen on the sign of J.
It has been observed that

v ~0 as T +0 —(a=x,y, z)

=0 when n is even (6) and (10)

and

A,z =1—(1 —y )sin E .

p~ is obtained if the sign of y is reversed i thin e expression
o p„. e z component of the correlation function is
given y

p'= —'6 6 if n is odd

=0 if n is even .

lim p, =0 at T=0
n —+ oo

for the isotro ic XYs s
system (y) 0),

p' ystem. But for the anisotropic XY

K„—+0 as T—+0

and

lim p'„%0 at T =0 .
n~oo
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Th'his means T=O is the critical tern erp atu . C iti ex-
p, v j are defined as follows.

At the critical temperature ( T=0)
I

p„~n " when n (&~&+ (the correlation length)

and as T~O

p„ce " when n ))g .

~~ is a function of temperature. F
tern' ' ( =0)y= ) at T=O

ure. For isotropic XY sys-

100

10

Present Calculation

+ ~ Mc Coy {odd n )
Mc Coy ( even n )

= y=0.40
= y =0.20

= y =0.10

= y =0.06
=y =0.04

X ~n —1/2

for all value s of n. Therefore, q'=-' for this s st
the critical point for'n, or general Ising system' ( =1

(14)
= y =0-02

y =0. 01

p c( 2 d g

and for linear Ising system
—(g —1)

Therefore, q' =g —1 for Isin s steor sing system in one dimension.

then
v e e critical ex onentp of correlation length g

cc t (17)

where t is the scaling field. Fo
(y=0), the temperature (T) h

e . or the isotro ic XY 9

e is t e scaling field and v' is 1
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For the Ising system, ' e is the scaling Geld and v'

is 1, where the corresponding Hamiltonian is
0.08-

&„;„=—4J gS S+, . (18)

This is the same as the Hamiltonian obtained from Eq. (1)
in the Ising limit (@=1).

m 0.06

—0.04

III. RESULTS AND DISCUSSION

We have computed numerically the correlation func-
tions in x and z directions using Eqs. (4) and (8). The y
component of correlation function is obtained if the sign
of the anisotropy parameter (y) is reversed in the expres-
sion for p, . The zero-temperature results for p'„, p"„, and
p„are shown in Figs. 1, 2, and 3, respectively. In Fig. 1

only odd correlations are shown as even correlations are
zero by Eq. (8). We have also evaluated these correla-
tions following McCoy, and they are shown in Figs. 1 —3
for comparison. Since McCoy's results are valid for large
n, the agreement of our results with those of McCoy is
good for large n. As evident from Fig. 2, there is a long-
range order in the x direction for the anisotropic system
(y & 0) since p„decays to a constant value as n ~~. But
for isotropic system, no such ordering exists. The y and z
components of the correlations go to zero as n —+ ~ for
both isotropic and anisotropic systems (Figs. 1 and 3). At
finite temperatures, we have calculated the inverse corre-
lation lengths (~) using Eq. (9). The results are plotted in
Fig. 4. The value of magnetic exchange interaction in

8-0

0-0 I

0 0-2 O-4 0-6 O.e
T(K)

FIG. 5. Experimental results of Cs2CoC14.

our calculation is
~

J~/k=0. 5 K. We have c»c»a««,
and v, in the region of n where p„'- 10 ' (lowest reli-
able number in the computer). At a given temperature,
p~ and p'„ fall sharply and we call the value of n as n,,
where the correlation function (p~') decays to a value
—10 ' . n„however, varies with temperature and an-
isotropy. p„, on the other hand, varies slowly with n and

has been calculated using Eq. (9). This calculation has
been performed in the region n ) 100, since in this region
the quantity ~p"„+,/p'„~ reaches the convergent limit. It
is evident from Fig. 4 that as T~O, the x component of
correlation lengths (g„) diverges for both isotropic and
anisotropic systems. On the other hand, the y and z com-
ponents of correlation length (g~, g, ) diverge for the iso-
tropic system only, and they remain finite for the aniso-
tropic system (y & 0). As T~0, the limiting values of w

and ~, are equal, and they agree with the values obtained
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FICz. 4. Temperature variation of inverse correlation lengths
in the x, y, z directions.

FIG. 6. Calculation of critical exponents v' when the scaling
field is T.
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FIG. 7. Calculation of critical exponents v' assuming e to be the scaling field.

by McCoy. When y = 1.0, in both y and z directions, au-
tocorrelations only exist and other correlations vanish.
As a result, @=1.0 case has been omitted in Fig. 4 for y
and z components.

We have applied our calculations to explain the mag-
netic behavior of Cs2CoC14. Recent measurements of
heat capacity and susceptibility ' suggest that the com-
pound might be 1D XY antiferromagnetic in nature. The
magnetic behavior of this compound has also been stud-
ied by quasielastic neutron scattering techniques. A
sheetlike structure in the static correlation function
expresses the 1D nature of the compound. From the ex-
perimental data, the temperature variation of inverse
correlation length (v) was obtained. The experimental-
ists compared their results with those of linear isotropic
XY model as obtained by Tonegawa. They suggested
that the results are in reasonable agreement with the tem-
perature dependence of ~ of the 1D LY model. They
also showed that the possibility of mixing of ~, is negligi-
ble. Here we have calculated both ~„and K for y =0.03
and compared with the experimental results as shown in
Fig. 5. The results of I~„(or Ir ) for the isotropic XY
(@=0) system has been plotted in this figure for compar-
ison. The value of exchange interaction to compare the
experimental results is ~J~/k=1. 47 K which is same as
to interpret the specific-heat data. It is evident from Fig.
5 that the experimental results of ~ may be an admixture
of v„and ~ with small amount of anisotropy (y =0.03).
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FIG. 8. Variation of critical exponents (v', g') with anisotro-
py (y).

The study of correlation functions and inverse correla-
tion lengths discussed so far leads to an important fact
that as T~0, the correlation length diverges in all direc-
tions for isotropic system (y =0), and in the x direction
only for anisotropic system (y) 0). Therefore, T=O is
the critical temperature for isotropic as well as anisotrop-
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ic XY systems, and it is interesting to calculate the
efFective critical exponents (v', il') for such systems.

At T=O, we have observed that in the low-n region, p„
follows power law decay as p„-n ". If p„ is plotted
against n in a double log scale, we get a straight line, the
slope of which determines the value of g'. For the isotro-
pic XY system (@=0) il'= —,

' and for the Ising system

(y = 1) r)' =0 as p„remains constant with the increase of
n. These values are same as obtained analytically by
McCoy.

We have also calculated the critical exponents (v') of
.'.orrelation length (g) about T=O. For the isotropic XY
system the scaling field is T. In Fig. 6 the calculated
values of ~ for isotropic and three different anisotropic
systems are plotted against T in a double-log scale. The
y =0 curve shows a straight-line behavior near T=O and
the slope (m) gives the critical exponent v'=1. From
this figure, it is evident that if a small anisotropy is intro-
duced, the curve continuously bends, and no straight-line
characteristic is obtained in the low-temperature region.
This is probably because T is not the proper scaling field
for the anisotropic XY system. For Ising system, the
scaling field' is e corresponding to the Hamiltoni-
an &=—4J g; S S +, . The Hamiltonian of our system
[Eq. (I)] reduces to an Ising one when y = 1.0. Therefore,

for anisotropic system (y )0), we use e ~" as the scal-
ing field to calculate the critical exponents (v') of correla-
tion length (g).

In our calculations, the value of exchange interaction is
taken to be

~ J~ /k=0. 5 K and the value of ~„will be same
for both ferromagnetic and antiferromagnetic interaction
as followed by Eq. (9). Therefore, the scaling field t for
the ferromagnetic case will be e =e &yT. In Fig. 7
we have plotted the results ofl~, against t (=e '

) in a
double-log scale for different values of anisotropy. For
each anisotropy, a good straight line curve is obtained in
the low-temperature region. The slope (m) of these
straight lines determines the value of the exponents v'. lt
has been observed that the low-temperature data for
y =0.03 (Fig. 6) if plotted against the scaling field e
gives a straight line, and it is possible to calculate the
effective critical exponent (v'). These effective exponents
are, however, functions of the anisotropy parameter (y)
and their variations with the anisotropy parameter (y)
are shown in Fig. 8. As shown in Fig. 8, the exponents
(v', rI') in the Ising limit () =1) are recovered from these
curves. In the isotropic XY limit (y=O), although the
value of the exponent g is recovered, that of v is not, be-
cause the scaling field changes from e to T in this
limit.
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