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An exact correspondence between the staggered biquadratic spin-1 antiferromagnetic chain and
the quantum Hamiltonian limit of the nine-state Potts model is established for finite chains with free
ends. For uniform interactions this equivalence is used (via a further exact mapping to a Bethe an-

satz soluble XXZ model) to calculate exactly the infinite lattice values of the ground-state energy per
site and the (nonzero) gap to the lowest-energy excited state. Periodic boundary conditions and the
nature of the ground state as a function of bond alternation are also discussed.

Recently, there has been a considerable renewal of in-
terest in the ground-state properties of quantum antifer-
romagnets. One model of particular interest is the spin-1
bilinear-biquadratic Hamiltonian:

H= g e;[J)S;.S;+)—J2(S; S;+)) ],
where both J, and J2 are positive and

1 ifi is odd

if i is even,

controls bond alternation and hence the tendency to di-
merization via a possible spin-Peierls transition. ' Key
questions involve the determination of the regions of the
(P—

A, ) plane, P=J~/J„ in which (1) is massless and the
elucidation of the associated critical behavior.

For k= 1 and Jz=0, (1) reduces to the spin-1 Heisen-
berg antiferromagnet, which was predicted by Haldane
to be nonintegrable and massive, a conclusion that has
been supported by numerical results. " For X=1, exact
solutions are available at two points. At J, =Jz (@=1)
the model is soluble by the Bethe ansatz. ' At this point
the model is found to be massless and conformally invari-
ant; the associated conformal field theory governing the
critical behavior being that of the 0 =2 Wess-Zumino-
Witten model. This conclusion has been confirmed by
series analysis' and finite lattice studies. ' An exact solu-
tion is also available at P= —

—,', l, = l, where the exact
ground state is a valence bond state. ' At this point the
model again has a gap. Whether /3=1 is the only mass-
less point on the line A, =1 remains unclear. In particu-
lar, the nature of the ground state for X= 1, P) 1 remains
controversial; Aleck et al. ' predict a massive phase,
while series' and (less confidently) finite lattice studies '"
suggest a massless phase.

In this paper we consider the Hamiltonian (1) with
Ji =0 and show that in this limit (1) is equivalent to the

quantum Hamiltonian version of the nine-state Potts
model. ' ' In addition, we show that an exact
equivalence exists between eigenstates of (1) with J, =0
and A, =1 and eigenstates of certain spin- —,

' XXZ chains
thereby clarifying and extending some very intriguing ob-
servations made by Parkinson. ' As a consequence of
these equivalences, we are able to calculate the exact
values of the ground-state energy per site and the lowest-
energy gap in the thermodynamic limit for A, = 1, see (31)
and (33) below. This value of the ground-state energy per
site confirms that conjectured by Parkinson, ' while the
nonzero gap confirms an earlier conjecture that (1) is
massive for J, =0 and A, = l.

The first step in the derivation of our results is to ex-
press the pure biquadratic Hamiltonian

for a chain of M sites with free ends in terms of a set of
operators U& that satisfy a Temperley-Lieb algebra. ' '
Define

U=(S S )
—1 l=l 2 M —1 (4)

and write

A simple computation shows that UtImimz) =0 unless
nz1+m2 =0. Hence, in this representation, U& takes the

(For convenience, we henceforth assume that M is even. )

Denote the eigenstates of S&' and S&'+1 by
Im &m2 ), m, =+, 0, m2 =+, 0, and order them

I++&, I+o&, Io+&, I+ —
&, I00&,

I

—+&, lo —
&, I

—0&,
I

——
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simple form'

0 0 0
U, = 0 V 0

0 0 0 H„g(M, X=1)=H~~z(M) ——', (M —1), (19)

where cosh8=&q /2= —', , allows Hp (and hence Hb&) to
be related to a staggered XXZ model. ' For A, =1, the
staggering vanishes and we find

where 0 is the 3X3 zero matrix and

(7)

where
M —1

Hxxz (M ) = —
—,
' X ( ~ t o i+ i

+o I ~ I + i +~~io I'+ i )
l=1

+ 27(of (20)

It is now straightforward algebra to show that

U,'=3U, ,

Ul Ul+1Ul

[U, , U, , ]=0,
(9) 3

2

(10)
and (21)

is the Hamiltonian of an XXZ model on a chain of M
sites with fields —,'p and —

—,'p applied to the two free ends.
In our present case

8

U2, =
—,
' g RI"R,+, , l=1,2, . . . ,L —1,

k=0
(12)

where L =M/2. The operators Ql and R& at site l obey a
Z(9) algebra

QlRl =, co 'RlAl

AlRl =coR

0 =R =1,l l

with co=e ' . Hence, we can write

3Hbg(2L, A, ) =HI, (L, A, ) 4L 4A, (L —1—), —

where

L 8 L —1 8

Hp (L,A)= —g g QI"—A, g g R, R, +,"
l=1 k=1 1=1 k=1

(13)

(14)

(17)

is the (1+1)-dimensional quantum Hamiltonian of the
nine-state Potts model ' on a chain of I. sites with,
again, free ends. The coupling parameter A, is the analo-
gue of temperature in the conventional statistical
mechanical formulation of the Potts model. The transi-
tion point of the Potts model corresponds to A, =A,, = 1

with A, & 1 corresponding to the ordered phase ( T (T, ).
Unfortunately, the Fotts Hamiltonian (17) cannot be

diagonalized exactly. However, introducing the represen-
tation' ' of the Temperley-Lieb operators in terms of
Pauli spin operators:

U( = ,'(curio I+, +o~o~(+, )—+—,'cosh8(1 —o lcr(+, )

+ —,'sinh8(o. I+, —o.
I ), (18)

The first of these relations was noted in passing by Par-
kinson. ' Together they establish that the operators Ul
satisfy the same Temperley-Lieb algebra that arises in the
nine-state Potts model. ' '

To explicitly recover the quantum Hamiltonian of the
Potts model, we introduce an alternative representa-
tion' ' of the U's:

8

U2, , = —,
' g 0, , l=1,2, . . . ,L,

k=O
E=—', (M —1)—g (3+z.+z '),

j=l
where the z are solutions of the Bethe ansatz equations

S(zk, z, )S(zk ', zj )z~M= Q '
', , g=1,2, . . . , n

] S(z,zk )S(z,z& )
kWj

(23)

with

S(z,z') = 1+3z'+zz' . (24)

The lowest-energy state in sector n is characterized by n

zeros distributed around the upper half of the unit circle.
In particular, the ground state corresponds to the choice
n =—'M.

2

Equations (16) and (19) are exact operator equivalen-
cies: apart from additive and multiplicative constants
Hb&(2L, A, = 1), Hz (L,k= 1), and Hzzz(2L ) are simply

the sum +UI of the Temperley-Lieb operators. The pos-
sible eigenvalues of this sum, and hence the three Hamil-
tonians, are determined by the algebra (8)—(10). Howev-
er, degeneracies are not determined by the algebra but by
the dimension of the specific representation chosen for
the Temperley-Lieb operators. ' This is not a problem
for Hz on L sites and Hb& on M=2L sites (both with

9

free ends) since both Hamiltonians are represented by
3 X3 matrices. Hence, all eigenvalues of Hz (L, A, )

should also be eigenvalues of Hb&(2L, A, ) and all eigenval-
ues should occur with the same degeneracies in both
cases. On the other hand, since Hzzz(2L ) is only of di-
mension 2 eigenvalues of HI,&(2L) will appear in the
spectrum of Hzzz with, in general, smaller multiplicities.
Indeed, it is possible for eigenvalues of H&& not to occur

p
—1+5

The XXZ Hamiltonian (20) is solvable by the Bethe an-
satz. Since the total spin go' commutes with Hxzz,
we can label the sectors of Hz~z by n =

—,'M —,'no-',
where for M even n is an integer. The eigenvalues of
Hzzz in sector n are then given by
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at all in the spectrum of K~~z although our numerical
diagonalizations for small I. suggest that this does not
occur.

The finite lattice spectra of the q-state Potts Hamiltoni-
ans with q )4 are fairly well understood. ' We can use
this information to elucidate the ground state and spec-
trum of the biquadratic Hamiltonian. It is convenient to
divide the state space of Hp into sectors labeled by the

9

eigenvalues of

L

+Q( =co~, $ =-0, 1, . . . 8 .
1=1

(25)

and to similarly block diagonalize Hbg and H~gz into
sectors labeled by ST=gS' and o 'T =go', respectively.

In the thermodynamic limit the nine-state Potts model
exhibits a first-order transition. In the Hamiltonian for-
mulation this transition occurs at A, = 1. For k & 1 (corre-
sponding to T (T, ) the ground state of Hz in the ther-

9

modynamic limit should be ninefold degenerate. This de-
generacy is partially removed for finite L with the sectors
q =1,. . . 8 remaining degenerate by the Potts symmetry
by a nonzero gap

F(A, ,L ) =E, (A, , L )
—Eo(A, ,L ) (26)

opening between Eo(R,L ), the ground state in the sector
q =0, and E& (A, ,L ), the lowest-energy state in any sector
QWO. A simple perturbation argument, similar to that in
Barber and Cates, establishes that

F(X,L)=O(iL ), L~oo, A, & 1 . (27)

On the other hand, for A, & 1, the thermodynamic limit of
the ground state of Hz is a singlet and we have

lim F(A, ,L)=F„(A,) &0, A, &1 .
g —+ oo

The existence of the first-order transition implies

lim F (A, )=F (1)WO .
A,~ 1

(28)

(29)

While we know of no rigorous proof, the limit
A, —+1,L ~ oo is believed (e.g. , on the basis of finite-size
scaling) to be uniform and that

lim F(1,L)=F„(1).
L, ~oo

(30)

Fo(A.,L ) =E2(A, ,L ) —Eo(X,L ),
which is greater than zero for all k. However, in distinc-
tion to F(1,L ), Fo(1,L ) ~0 as L ~ oo.

Since for finite L, both Hz (L,A, ) and Hb&(2L, A, ) have
9

matrix representations of the same dimension we can

In the thermodynamic limit the first-order nature of
the transition is also heralded ' by the crossing of two
states in the q=0 sector at A. =1. This crossing gives rise
to a jump -discontinuity in the first derivative of the
ground-state energy with respect to A, and hence a latent
heat. On a finite lattice these two states hybridize to give
a finite gap

as functions of M. Estimates of the limiting values of e

and Ab& in the limit M ~ ~ are also given in the last line
of Table I, these being obtained by standard acceleration
techniques. Unfortunately, the solution corresponding
to the state associated with energy E2 is more difficult to
determine numerically because of ill-conditioning prob-
lems. Consequently, we have not been able to track this
state for as large lattices. However, as we discuss later, it
is possible to do so for periodic boundary conditions
thereby confirming that the gap Fo(1,L) does close as
I —+ oo.

The thermodynamic limit of the ground-state energy of
Hx~z(M) is known exactly. ' From this result and (19)
we obtain the exact value

Co

e = —1 — 1+4 g (1+x")
2 n =1

(31)

TABLE I. Numerical estimates of eg and Ab& for
Hba(M, k = 1).

4
8

16
32
64

128
256

extrap.

eg

—2.390 388
—2.591 376
—2.693 622
—2.745 162
—2.771 005
—2.783 934
—2.790 399

—2.796 88+0.000 02

2. 147 339
1.410 916
0.886 786
0.555 720
0.362 166
0.256 914
0.205 372

0. 175+0.003

translate these conclusions on the behavior of the spec-
trum of Hp (L, A, ) directly to that of Hb&(2L, A, ). The

9

only subtlety concerns the assignment of the Potts eigen-
states to the correct total spin sectors of Hb&. Denote the
Potts states of energies Eo and E2 in the ground-state
sector by ~0;L ) and ~2;L ), respectively, and the eight
degenerate states of energy E, by ~l,j;L ), j =1,. . . , 8.
Comparison of the actual spectra for small values of 1. re-
veals that the ground state of Hb&(2L, A, ) is ~0;L ), the
ground state having ST=0, while the eight degenerate
states ~l j;L) occur in the sectors ST=0, +1 and +2
with degeneracies 2, 2, 2, 1, and 1, respectively. Finally,
~2;L ) is a singlet in the ST =-0 sector but for small L this
state lies well above the states ~1;L ) and only approaches
the ground state for relatively long chains. Turning to
the spectrum of Hxxz(2L ) we find that Eo(A, = 1,L) and

E, ( A, = 1,L ) are related to the lowest energies in the sec-
tors a'T=O(n =L) and o'T=2(n =L —1), respectively,
while Ez(A, =1,L) is similarly related to the energy of a
two-string state in the ground-state (n =L ) sector. Con-
sequently, Eo(A, =1,L), Ei(k=1,L), and E2(l, =l,L)
can all be found by solving the Bethe ansatz equations
(23) with M =2L rather than by direct diagonalization of
the Hamiltonian. For Eo and Ei this solution is numeri-
cally feasible ' for M up to 256. Table I lists the resulting
values of the ground-state energy per site, e of
Hb&(M, A. = 1) and the associated gap

Abg =—', [E,(l, = 1,—,'M) —Eo(k= 1,—,'M)]
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where

x =
—,'(7+3&5) . (32)

ber, Hxxz(M; 9) can still be diagonalized by the Bethe an-
satz. The eigenvalues in sector n are given by

The result (31) is precisely that conjectured recently by
Parkinson. ' Numerically, e = —2.796 863. . . , which
confirms the limit estimated in Table I.

Similarly, we can calculate the value of the lowest-lying
gap in Hb&(M, X=1) in the limit M~ ~ from the XXZ
results of des Cloizeaux and Gaudin. Explicitly, we find
that

2
1 —t"

Abg = ,'F (1—)=&5 Q (33)1+t
where t=v'x =(3+&5)/2. Evaluating this expression
numerically yields

AI,g =0.173 178. . . , (34)

which again confirms the numerical estimate in Table I.
Note that this is actually a rather more significant
confirmation than the agreement of the results for e
since it is not a priori obvious that a finite lattice calcula-
tion with free-end boundary conditions will display the
same gaps as one with periodic boundary conditions.

A possible connection between eigenstates of
Hb&(M, A=1) and t, he XXZ Hamiltonian has been sug-
gested previously by Parkinson. ' However, Parkinson' s
considerations were based on the biquadratic model with
periodic boundary conditions rather than free ends.
Specifically, Parkinson observed that eigenenergies of
states with nonzero spin ST of Hb&(M, A. = 1) with period-
ic boundary conditions also occurred in the M-site
periodic XXZ chain with again 6= —

—,'. However, this
equivalence did not extend to states with ST =0, although
in the thermodynamic limit both Hamiltonians appeared
to have the same ground-state energy per site.

The relation of the Potts Hamiltonian with periodic
boundary conditions to the XXZ chain is also more com-
plicated than with free ends. In this case the ground-
state sector of the periodic Potts Hamiltonian on L sites
corresponds to the spin-zero sector of an XXZ model on
2L sites with a defect seam or twisted boundary condi-
tions. ' For the nine-state Potts model, the operator
equivalence is

E= ,'M-g—(3+z, +z,-'),
j=l

where the z now satisfy

S( , , )
z, =( —1)" 'e g, j=l, . . . , n

, S(z,zl, )
'

(38)

(39)

L—g (S~;, S~) (40)

with S2L + 1
=S1 is similarily related for X= 1 to the

ground-state sector of Hxxz(M; 9) by the operator
equivalence

H,' (M, x=1 )=H, (M;9) ', M . — (41)

While we are unable to establish this equivalence
rigorously we have tested it numerically for small lattices
and found excellent agreement up to multiplicities be-
tween the two spectra.

In the limit M~~, the boundary conditions do not
afI'ect the value of the ground-state energy per spin and
we recover (31). The gap is somewhat more subtle be-
cause the XXZ equivalence involves eigenstates defined
with diQevent boundary conditions. Explicitly, we have

Abg = lim [Exxz(M, 9=0) Exxz(M, e)]j, —
M~ oo

(42)

where Exxz(M, 9) is the ground-state energy of (36) sub-
ject to the boundary conditions (37) and Exxz(M, 9=0)
is the lowest energy in the sector go'= I of (36) with
9=0 in (37); i.e., periodic boundary conditions. We can
write (42) as

Abg: Axxz + llm AExxz( 9)
M —+ oo

(43)

with the function S(z,z') defined in (24).
In view of the equivalences (35) and (16), it is tempting

to conjecture that the ground-state sector (ST=0) of the
periodic biquadratic Hamiltonian

L

Hbg(2L, A, )= —
A, g (S~; S2;+, )

Hp (L ~k= 1 )= 2L +3Hxxz(2Lqe) (35) where

Here Hp (L, A, ) is given by (17) with the second sum ex-
9

tended to L and periodic boundary conditions applied,
i.e., RL + 1 =A 1, while

Axxz= lim [Ex'xz(M 9=0) Ex'xz(M 9=—0)l (44)

is precisely the XXZ gap calculated by des Cloizeaux and
Gaudin35 and

M

Hxxz(M~9) p g (~l~l+1+~l~l+1 pol~l+1)
/ =1.

~Exxz(e) =Exxz(2L, 9) Exxz(2L, 9=0) (45)

(36)

subject to the "twisted" boundary conditions

O M+1= O. 1, O M+1 EO.M+, =e &O. , O.z z x + y — +20& &+ yi (37)

where e =x.
Since the total spin go' remains a good quantum num-

is the shift in the ground-state energy due to the
modification in the boundary conditions. Numerically,
this shift appears to go to zero very rapidly but for tech-
nical reasons we have not been able to establish this
analytically from the Bethe ansatz equations.

The solution of the Bethe ansatz equations (39) corre-
sponding to the ground state of Hb&(M, X= 1) is charac-
terized by n =

—,'M zeroes satisfying ii" &z =e e. For
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e (X)=Re (I/A, ), (46)

which corresponds to the duality relation in the Potts
model. ~' Now from (16)

e (A, ) =—,'ei,,«, (A, ) ——', (1+&), (47)

where e~,«(A, ) is the ground-state energy per site of the
nine-state Potts Hamiltonian in the thermodynamic limit.
This energy is known to have a discontinuous first deriva-
tive at X=1 corresponding to the latent heat. Hence,
we have that

es(A, )=es(1)+ 3+~1—
A, ~+O[(l —

A, ) ],
where e (1) is given by (31) and

A+ =+—,
' [e~(1)+ Li, ]

(48)

(49)

with I.& equal to one-third of the latent heat of the nine-

large M, a second spin-zero state approaches the ground
state. This state is a one-string solution of (39) with one
zero at z& = —e and the remaining n —1 zeroes satisfy-
ing ii" zz. =i. These zeroes lie on the unit circle and
are distributed symmetrically about the real axis. The
energy of this state agrees precisely with the (k =sr) state
detected by Parkinson' in direct finite lattice calcula-
tions on Hb&(M, A. = 1) with M ( 14.

The equivalence of Hb& and Hz has one rather
9

surprising implication: the ground state of Hb& for k & 1

(which corresponds to T (T, in the Potts model) is
asymptotically ninefold degenerate. This is, however, an
artifact of the free-end boundary conditions and does not
pertain to Hb& with periodic boundary conditions or
presumably in the thermodynamic limit. This is most
easily seen if we consider Hb& for A, »1. In this limit,
the ground-state energy of Hb&(A, , 2L) asymptotes to
—3XL: the ground state being formed by placing each
spin pair S~;.S2, +„i = 1,2, . . . ,I., in the singlet state

(I+ —
&
—2100&+

~

—+ &)/&3 .

The end spins S] and SzL are, however, not included in
any dimer and to leading order in 1/A, become decoupled.
The ninefold degeneracy of the ground state for A, ~ ~ is
then just a trivial consequence of the three possible values
that each end spin can take. Three of these states,
(Si =+,S2L = —), (Si = —,S2L =+ ), and (S;=0,
SzL =0), lie in the Sz =0 sector of Ht& The add. ition of
a coupling —XS,L,

.S, between S, and S2L as occurs with
periodic boundary conditions breaks this degeneracy and
results in (for A. )0) a singlet ground state. A similar situ-
ation occurs in the spin-1 Hamiltonian discussed by
Aleck et aj.'. ' In that case, a rigorous proof can be
given of the uniqueness of the ground state in the thermo-
dynamic limit. ' It seems plausible that this is also true
for the biquadratic Hamiltonian with A,WI although we
have as yet no proof.

One other piece of useful information concerning the
ground-state energy per site, es(A, ), of Hb&(A, ) in the ther
modynamic limit can be deduced from the equivalence to
the nine-state Potts model. We observe from (40) that

=0.8362. . . . (51)

An attempt to extract the variation of e (A, ) near A, = 1

from finite lattice calculations has been reported by
Solyom ' who concluded that

e (A, ) —e (I)-~1—A.
~

(52)

with v-0. 5. While this estimate of v is not inconsistent
with a linear dependence on ~1

—
A, ~, Solyom does not ap-

pear to have contemplated a jump discontinuity in e'(X)
at A, = 1 and his subsequent inference that the spectrum at
A, =1 is gapless is incorrect. Instead X=1 is a point at
which two spontaneously dimerized states exchange sta-
bility. These states can be distinguished by the value of
the dimerization order parameter'

D(A, )= lim g( —)'(S, S;+,&/M,~~ oo

where the angular brackets denote a ground-state expec-
tation value. Unique ground states exist for k& 1 and
A. (1 with D &0 and D &0, respectively. Unfortunately,
it does not seem possible to compute the limiting values
D(1—

) from the Potts and/or XXZ equivalences.
In conclusion, we have mapped the spin-1 bilinear-

biquadratic Hamiltonian (1) for Ji =0 onto the quantum
Hamiltonian of the nine-state Potts model. As a conse-
quence of this mapping we conclude that the isotropic
(i.e., A, = 1) pure biquadratic Hamiltonian has a twofold
degenerate ground state with a finite gap of approximate-
ly 0. 17J2 to the next excited state. This gap is less than
half the value (-0.41J, ) that has been estimated for
the Haldane gap in the pure Heisenberg model (J2=0).
While our analysis cannot be extended in any obvious
way to J]%0, it seems plausible that the picture we dis-
cussed of the ground state of Hb& as a function of A, also
holds for I (/3( ~ with, in particular for A, = 1, a finite
gap that decreases to zero as /3 approaches unity. If this
is the case, it could explain why series and finite lattice
analyses have tended to conclude that the line
A, = 1, f3) 1 is massless. It would be worthwhile to repeat
some of these analyses in the light of the exact results re-
ported in this paper.

Note added in proof. After completing this work we re-
ceived a report from A. Kliiinper (unpublished)
confirming our result (34) by a direct calculation on a
corresponding vertex model.
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state Potts model. This has been calculated by Hamer
from the results of Baxter. From Hamer's result we ob-
tain

r

L„=&S+ (50)
x "+1

where x is given by (32). Evaluating this expression nu-

merically gives

A+ = —1.9606. . .
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