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The zero-temperature scaling approach is applied to the three-state Potts spin glass. Our results
suggest that the =J model has a lower critical dimensionality greater than 3, whereas for the Gauss-
ian model this dimensionality is slightly less than 3. The T =0 scaling exponents are estimated in
D =2 and 3. The results are based mostly on exact transfer-matrix calculations and on a Monte

Carlo quenching procedure.

I. INTRODUCTION

Potts models? have proved to be of great interest in
studies of phase transitions. The Hamiltonian for the p-
state Potts model is given by

N
H=—- 3% J;bs s , (1)
(ijy o
where (ij) denotes a summation over nearest neighbors,
8,5 1s the Kronecker delta, and the spin S; takes on one
of the values 1,2,3,...,p. The spins are located on the
sites of a D-dimensional lattice. J; is greater than zero
for the ferromagnetic case and less than zero for the anti-
ferromagnetic one. For p =2, Eq. (1) reduces to the Ising
model (with a redefined J).

The properties of the ferromagnetic model are now
well understood.? The system is paramagnetic at high
temperatures and undergoes a phase transition to a fer-
romagnetically ordered state at low T for all p =2 with
the lower critical dimensionality (LCD) being equal to 1.
In the antiferromagnetic case the residual entropy in the
ground state may lead to complex ordering. It is known?
that for p =3 the LCD is equal to 2. The low-T phase for
a simgle—cubic (sc) lattice shows a sublattice ordering for
p=4.

Recently, there has been considerable interest in stud-
ies of Potts models with quenched disorder. In particu-
lar, Potts spin glasses (PSG) are considered to have
features which may help in understanding the liquid-glass
transition.” PSG may also describe anisotropic orienta-
tional glasses® in which the quadrupole moment is pinned
to one of p discrete directions.

The PSG with infinite-range interactions has been
thoroughly analyzed and leads to rich behavior.” In par-
ticular, it is known that this model, depending on the
temperature, has two different types of spin-glass order-
ing for any value of p. The two distinct PSG phases differ
in the nature of overlaps between the ground states of the
system. In actual physical applications, however, models
with short-range interactions are more likely to be of
relevance.

Monte Carlo studies of the short-ranged PSG’s have
been carried out by Carmesin and Binder.! They have
considered the case of Gaussian couplings (zero mean,
unit dispersion). They find that in D=3 the system is
very close to its LCD. This means that the critical tem-
perature, T, for the paramagnet spin-glass transition, if
nonzero, is probably rather small. The dynamics of this
system is slow and it is of the Kohlrausch type.

An analysis of the PSG using the Migdal-Kadanoff re-
normalization group suggests no conventional spin-glass
behavior.’ This conclusion, however, may be an artifact
of the hierarchical lattice considered for which the scal-
ing scheme is exact.

Recently, much progress has been made in the studies
of Ising spin glasses (ISG) using a technique called T=0
scaling.!°”'* The T=0 scaling approach is a simple yet
powerful method of studying systems with no obvious
long-range order. It is based on the phenomenological
observation that for all T < T, the behavior of a system at
long length scales should be governed by a T'=0 fixed
point. This approach has proved to be particularly
effective in the case of short-range Ising and Heisenberg
spin glasses. Its basic prediction has been that the D=3
Heisenberg spin glass does not undergo an equilibrium
spin-glass—paramagnet transition, at a nonzero T,
whereas the D =3 ISG does have a transition. These re-
sults have been subsequently confirmed by detailed
Monte Carlo simulations.”>”!7  An Imry-Ma-type'®
analysis based on plausible assumptions!>!%2° has led to
several novel predictions in the low-T phase, many of
which are at odds with a mean-field analysis of the
infinite-range model.!’

The basic concept of the 7"=0 scaling theory is that of
a scaling stiffness or a scale-dependent coupling energy,
SE(L). This coupling is determined by studying the sen-
sitivity to boundary conditions!®™ 13 of the ground-state
energy of finite blocks of length L. 8E(L) is a charac-
teristic measure of that sensitivity. In the ordered phase
at T=0

SE(L)=L" . (2)
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For systems below the LCD, y is negative and a phase
transition occurs at T=0. On the other hand, above the
LCD, y is positive and the transition occurs at a nonzero
T,. Below T, Eq. (2) holds for the free-energy sensitivity
to boundary conditions:

SF(L)=Y(T)L”, (3)

where Y(T) vanishes at T, as a power law?! and the ex-
ponent y is governed by the T'=0 fixed point. In the
paramagnetic phase 8F(L) should decay exponentially
with the size of the system.

For systems above the LCD the exponent y determines
the power-law decay of nonlinear correlations in the or-
dered phase'>!” and the nonanalytic dependence of the
magnetization on the magnetic field.'> For systems below
the LCD the correlation length diverges as 7—0. The
exponent of this divergence is given by v=—1/y.

In this paper we present the results of a comprehensive
study of the three-state PSG’s using the 7=0 scaling ap-
proach to in D=2 and 3. Our results suggest that the
Gaussian PSG (GPSG) has an LCD slightly less than 3
and therefore in three dimensions (3D) it has a nonzero
T.. On the other hand, the bimodal PSG (BPSG) with
the exchange constant J;; given by the distribution

P(J,)=1[8(J,;— 1)+8(J; +1)]

has an LCD which is probably greater than 3. We have
also determined the 7=0 scaling exponents for the 2D
BPSG and GPSG which are both below the LCD. A
brief account of our results has recently appeared in the
literature.?? It should be noted that the 7'=0 scaling ap-
proach predicts that the LCD of a ferromagnetic Potts
model is 1 for p > —2.

In Sec. II we describe the notation used in the paper.
Most of our calculations were done using a transfer-
matrix method which we present in Sec. III. In Sec. IV
we discuss the complementary method of finding ground
states—that of Monte Carlo quenching. In Sec. V we
present results on the exponent y in PSG’s. In Sec. VI we
study the probability distribution of AE and derive the
exponent 7 (the latter for the 2D BPSG). In Sec. VII we
discuss the calculation of an effective fractal dimensional-
ity of the domain-wall interface. This dimensionality
characterizes the scaling behavior of the interfacial entro-
py and determines the chaotic nature of the ordered state
of the PSG. Finally, in Sec. VIII, we estimate the critical
temperature for the 3D GPSG using the transfer-matrix
method.

II. SENSITIVITY TO BOUNDARY
CONDITIONS: DEFINITIONS

In order to study the sensitivity to boundary conditions
we consider blocks of 4(/+1) Potts spins. The parame-
ter A is the transverse area of the sample and / its length
in the direction in which differing boundary conditions
are applied. For cubic samples /=L and 4 =LP !, In
what follows the symbol L denotes the length of hypercu-
bic samples. We reserve the symbols / and A4 for situa-
tions when one of these parameters is varying and the
other is fixed.
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In the planar (D —1) directions periodic boundary
conditions are applied. In the longitudinal direction, the
spins in the first and last column (D =2) or plane (D =3)
are fixed randomly in one of the three states. This mim-
ics the influence of neighboring blocks on the finite block
under study. The domain wall is created by turning the
spin states on one boundary (1 into 2, 2 into 3, 3 into 1)
with the spins on the other boundary held fixed. The
difference in the ground-state energies is denoted by AE.
It can be either positive or negative; we define 6E

S8E=(|AE|)., (4)
where { -+ ). denotes the configurational average over
samples.

Another way of defining 8E would be to consider the
root mean square AE. As in the case of ISG, however,
we expect the same scaling behavior for both quantities.

III. THE TRANSFER-MATRIX METHOD

Our calculations were done using an extension to Potts
spins of the transfer-matrix method used by Bray and
Moore'? (T'=0) and Morgenstern and Binder® (T >0)
for their studies of ISG. In order to illustrate this
method we consider the D =2 three-state Potts model.
With the boundary conditions taken into account, the
Hamiltonian (1) can be rewritten as

1 4
H=- 3 ZJ)(c{;);x-H,ySS s

x=1y=1 Xy’ x+1y
. a (4)
- T 18 5
x§1 ygl xyxyl SX,ny,y+1 ’ )

where S, ,.,=S,,- Spins S, and S, , are fixed in
randomly selected states. The superscripts (/) and ( 4) in
the exchange couplings help one to distinguish between
longitudinal and “planar” couplings. Our task here is to
scan through all of the states of the system and to select
the state of lowest energy.

The first step in the procedure is to set x =1 and to
enumerate all 34 states in the first column of “area” A.
The corresponding energies are e (v), where v
=1,...,34 Now we treat the “interplane” couplings
with x =1 and x =2. We focus first on spin S, ;. It cou-
ples to S, ; in the second layer via J (11,)1;2,1- For each of
the three states of S, ; there are three possible states of
S1,1- In a T=0 calculation we select the lowest of the
latter and modify the energy of each spin configuration of
the first “plane” accordingly.

At this stage there are no degrees of freedom attached
to Sy ;. The spin S, takes the place of S ; whereas S, ;
adjusts itself to give the lowest-energy configuration. In
the same fashion the spin S, , is eliminated in favor of
S, ,. This “zipping” action continues until there are no
degrees of freedom in the first plane. At this stage there
are again 3 states with energies e (v).

The next step is to take care of the “planar” couplings
in the second column. Again we enumerate all states on
the second column and add the corresponding energy
contributions to ej(v) to obtain the effective energies
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e,(v) for states in the second column. This includes au-
tomatic best adjustments of spins in the first column.

We proceed in this way until all spins are taken into
account. Instead of dealing with 34 states the transfer-
matrix approach enables one to keep track of only 34 of
these. At the end the corresponding energies are e (v).
The lowest of these is the ground-state energy.

A finite-T transfer-matrix calculation of the free energy
proceeds similar to the approached outlined by Morgen-
stern and Binder.?®> Briefly, instead of adding subsequent
contributions to the energy, one multiplies the corre-
sponding Boltzmann factors. Instead of selecting the
lowest local state, when “‘zipping,” one adds Boltzmann
weights corresponding to all of the states of the spin un-
dergoing ‘“‘extinction.” Finally, one calculates a loga-
rithm of the partition function. There is one technical
difficulty in this method: a string of large or small
Boltzmann factors, when multiplied term by term, may
give rise to numerically uncontrollable numbers. To
avoid this problem we perform divisions or multiplica-
tions of the results by powers of ten, which are then rein-
serted after taking the final logarithm.

A transfer-matrix calculation for D =3 is similar to the
2D method outlined above. Instead of dealing with the
column states, as the basic ingredients, one has to consid-
er all the states in each plane of area A. In practice, this
restricts us to A4 not exceeding 3X3. In order to study
4X4X4 systems we have to resort to approximate
methods, such as Monte Carlo quenching.

IV. MONTE CARLO QUENCHING

McMillan'® in his “domain-wall renormalization-
group” version of the T'=0 scaling theory of ISG has
suggested a simple scheme for determination of ground
states. This scheme goes as follows: one first equilibrates
the system at a temperature 7; and then runs the system
over M Monte Carlo updates per spin with M =27,
m=1,2,...,m,. After each update the system is
quenched to T=0 and the energy is noted. For each
sample the procedure is repeated with the turned bound-
ary conditions. For each m, the lowest energy visited is
taken to approximate the true ground state and AE(m) is
obtained. 8E(L,m)=¢{|AE(m)|) should then be extra-
polated to m— o to obtain a measure of SE(L).
McMillan considered 40000 samples of ISG in the 3D
case. For L =3 and 4 he took m;,=10 and 11, respective-
ly, and sought an exponential extrapolation to the con-
vergence.

" Our approach to quenches in PSG’s is to consider
smaller number of samples but to select m, large enough
so that the convergence at a constant value is actually es-
tablished. Results for the GPSG are shown in Fig. 1. We
took T;=0.4 which yielded a success rate of 60% for the
spin-flip attempts. For L =4 and 3 we considered 500
and 1000 samples, respectively. In both cases mo=14. It
is seen, however, that for L =3, m,=9 is sufficient to ob-
tain convergence. For L =4 the saturation is reached at
m =13. The converged L =3 final data point agrees with
the exactly obtained transfer-matrix result of 0.701
+0.004 based on 10000 samples.
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FIG. 1. Effective scaling stiffness energy 8E as obtained by
Monte Carlo quenches of Gaussian PSG samples. 8E is shown
vs In,M where M is the number of Monte Carlo updates per
spin. The error bars are based on the finite number of samples
considered. The values of L are indicated.

It is harder to establish saturation in systems with the
+J couplings. Figure 2 shows 8E obtained for 200 sam-
ples of BPSG with L =4. We took m,=16. The satura-
tion is established at m =15. In the next section we com-
bine the results of the two methods of deducing the
ground-state energy in order to calculate the scaling ex-
ponent y.

V. THE T =0 SCALING EXPONENT y

Consider first the 2D PSG’s. For each L XL sized sys-
tem (L =10) we took at least 10000 samples into ac-
count. The transfer-matrix results are shown in Fig. 3.
Both for GPSG and BPSG a power-law decay is seen.
The values of y are

0.0 4 n s | L L It 1
0.0 8.0

log. M

FIG. 2. Similar to Fig. 1 but for bimodal PSG and only for
L=4.
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FIG. 3. L dependence of §FE for the 2D PSG’s. The results
are obtained by the transfer-matrix method.

y=—0.61£0.02 (GPSG, D=2), (6a)
y=—0.4410.03 (BPSG, D=2). (6b)

The error bars have been obtained using the usual statist-
ical measures and are based on the configurational
averaging over the distribution of exchange interactions.
Systematic errors arising due to small sizes considered
are hard to estimate—this remark refers also to all of the
data shown from now on.

The first observation stemming from (6) is that 2D
PSG’s are below the LCD and they will support only a
T'=0 equilibrium phase transition. The second observa-
tion is that, very much like the 2D ISG, the bimodal and
Gaussian distributions of the couplings give rise to
different exponents. This means that for D =2 the BPSG
and GPSG are in different universality classes. In the
ISG case y was found to be '>—0.29 for the Gaussian dis-
tribution. Thus PSG’s have weaker tendencies towards
ordering than ISG’s.

We shall see in Sec. VI that in the 2D BPSG case the
fraction of nonzero effective couplings vanishes with
growing L as a power law. This suggests, like in the 2D
bimodal Ising case?* that at larger length scales the zero
couplings percolate and the system is in fact paramagnet-
ic at T=0. Only at shorter length scales it appears spin
glassy. .

The difference between GPSG and BPSG appears to
persist in D =3. Figure 4 shows combined results of the
transfer-matrix calculations (L =2,3; 10000 samples)
and Monte Carlo quenches (L =4; 500 samples for
GPSG and 200 samples for BPSG) for the 3D Potts spin
glasses. We estimate the exponent y to be as follows:

(GPSG, D=3), (7a)
y=—0.035+0.06 (BPSG, D=3). (7b)

»=0.10+0.03

In the bimodal case the slope of the line joining the
L =3 and 2 data points is —0.11+0.01. However, the bi-
modal system exhibits the “odd-even” effect (see also Fig.
3). To explain this effect consider first blocks of uniform
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FIG. 4. Dependence of 8E for the 3D PSG’s. The L=4
points have been obtained by Monte Carlo quenches. All other
points are results of calculations based on the T=0 transfer-
matrix approach.

Ising antiferromagnets. Suppose the periodic boundary
conditions are imposed in the planes. If L is odd then the
planes are always frustrated. This is not the case though
if L is even. Thus in order to make calculations of the ex-
ponent y, one should separately consider odd and even L.
A similar situation is found in bimodal ISG’s.!? In the
case of BPSG an extra state “‘relieves” some of the planar
frustration but it is still more reliable to distinguish be-
tween odd and even values of L. Unfortunately, the
L =4 data point is obtained by quenches and that in-
volves much larger error bars than the transfer-matrix
method (due to much smaller statistics). Since both the
L =3 and 4 BPSG have 8E lower than that correspond-
ing to L =2 we believe that an exactly calculated ex-
ponent y is likely to be negative in this case.

In order to obtain an independent measure of y we
have performed additional studies of 8E for D=3. In
these studies we keep the transverse area of the system
fixed, at 4 =3X3, and we vary only the length /, in the
direction along which different boundary conditions are
applied. We considered 3100 samples and / was between
3 and 10. In the ordered phase the [ dependence is
governed by the 8E ~/* law. We obtain x =—0.97+0.03
and —1.04%0.05 for the GPSG and BPSG, respectively,
as demonstrated in Fig. 5. One expects, on general
grounds,'®1% that for frustrated systems the 4 depen-
dence follows the square-root law. The reason is that, on
average, half of the interface spins benefit from a change
in the boundary conditions and the other half lose. The
energy sensitivity to boundary conditions is a fluctuation
effect, of order A4 !72. Altogether this yields

SE=~ A172* (8)
and

y=y,=(D—1+2x)/2 . 9)

Thus we get
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FIG. 5. [ dependence of 8E for the 3D PSG’s for a fixed area
of nine spins.

¥, =0.03+£0.03 (GPSG, D=3),
y,=—0.04£0.05 (BPSG, D=3).

(10a)
(10b)

We conclude that 3D PSG’s are very close to their
LCD. At the length scales studied GPSG and BPSG ap-
pear to be in different universality classes. The 3D GPSG
gives rise to scaling towards a strong coupling at T=0,
indicating the existence of an equilibrium transition. The
3D BPSG is likely not to have any finite T transition but
studying larger length scales might change this point of
view.

VI. PROBABILITY DISTRIBUTIONS OF AE

The scaling stiffness energy, 8E, is a characteristic
measure of the sensitivity to changes in the boundary
conditions [see Eq. (4)]. It follows that the probability
distribution of |AE|, in the scaling limit, should be of the
form!?

_ 1
P(|AE|)= 8Ef

AE|

SE (11)

The function f(x) is expected to tend to a fixed shape for
L— .

Figures 6 and 7 seem to indicate that a fixed shape of
f(x) is indeed achieved both in the case of D=2 and 3
GPSG’s. The values of y chosen are those given by (6)
and (7), respectively. In both cases f(x) has a Gaussian
character. The 3D curve is more concentrated towards
the origin than the 2D one but otherwise it is rather simi-
lar.

In the case of the bimodal distribution AE comes in
multiples of J. Following the argument of Bray and
Moore,'? we expect that if y was positive then on a
sufficiently large length scale the discretization would be-
come immaterial: the effective coupling becomes larger
and larger than J. Thus, for positive y’s, f(x) should be
similar to that found for the GPSG. Instead, however,
the exponent y is negative in 2D and 3D BPSG. It fol-
lows that P(|AE|) narrows increasingly with L. In the
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FIG. 6. Scaled distribution function f(x)=P(|AE|)L” vs
|AE|L ™7 for 2D GPSG. The squares refer to L =8 (5000 sam-
ples) and asterisks to L =5 (10 000 samples).

infinite-size limit the fraction of samples with AE =0
tends to unity. Thus, the probability p(L) to find a
nonzero effective coupling, AE, decreases with the size of
the system to O.

A power-law decrease is expected at 7 =0 for systems
below the LCD (y <0):

p(L)=L7". (12)

For the 3D BPSG we find p(2)=0.672 (statistics of
100 000 samples) and p(3)=0.668 (7600 samples). These
data are insufficient to determine 7 but the slight de-
crease in p(L) would be consistent with a negative value
of y.

For the 2D bimodal case we find

7=0.4210.04 (BPSG, D=2). (13)

This is based on the data points shown in Fig. 8. The
statistics here are 10000 samples for 3<L <7, 3700 for
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FIG. 7. Similar to Fig. 6 but for 3D GPSG. The squares
refer to L =3 (5000 samples) and asterisks to L =2 (10000 sam-
ples).



FIG. 8. L dependence of probability to find a nonzero
domain-wall energy in 2D BPSG.

L =38, 960 for L =9, and 440 for L =10. It is seen that
p(L) displays, weakly, the odd-even effect: samples with
an odd number of spins follow a slightly different line
than those with an even one. It should be noted that, for
the 2D bimodal ISG, 7=0.20+0.02.'2

The exponent 71 describes the algebraic decay of the
spin-spin correlations. One can see this by the following
extension of the argument of Bray and Moore.!? Since
AE is an effective coupling, S,S; is nonzero with proba-
bility p(L) and O with probability 1—p(L). A
configurational average of [{(S,S.)—(S,)?]", n
=1,2,..., yields a constant times p(L). The only dis-
tance dependence is contained in p(L). Thus 7 indeed re-
lates to the spin-spin correlations. The 2D GPSG has a
unique ground state and hence =0 in this case.

VII. CHAOTIC NATURE
OF THE ORDERED PHASE OF GPSG

Ising spin glasses have been found to be chaotic'®? in

the sense that the spin order is sensitive to a temperature
change 87T at length scales L* of order (Y /o8T)!%,
where Y and o are T-dependent amplitudes associated
with the interfacial free energy and entropy, respectively.
¢=dg /2—y is the Lyapunov exponent characterizing the
chaotic behavior and d is the fractal dimension of the in-
terface.

The general arguments for chaotic behavior follow
from an Imry-Ma!® argument. We first consider the
effect on the ground state of adding a small random per-

turbation, of relative strength A, to each bond.
Specifically we take
J[j—>Jij+?\x,-j R (14)

with A <<1 and x;; drawn from a Gaussian pool of cou-
plings with zero mean and unit dispersion. If J is a mea-
sure of the width of the unperturbed bond distribution,
then the energy cost, in the absence of the perturbation,
of a domain of linear extension L is of order JL?. In the
presence of the perturbation, the excitation which origi-
nally cost energy may now be energetically favorable,
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sin(lzie/ 2there is an additional contribution of order £A
JLS"" from the perturbation where L ° is the surface
area of the excitation. This area is presumably fractal.
For 2D ISG dg¢=1.26 and dg/2>y. The inequality {>0
is also expected to hold for D=3. Thus at sufficiently
large L the energy shift is larger than the typical excita-
tion energies in the system and the ground state is unsta-
ble against the perturbation on length scales
L>L*=~1/A"%. The chaotic response to temperature
changes follows immediately from the chaotic response to
bond perturbations at 7=0: Two identical bond distri-
butions at slightly different temperatures 7" and T+AT
are rescaled (in the ordered phase) to two 7'=0 distribu-
tions with slightly different bonds. Under subsequent re-
scaling these pools diverge as discussed above. In this
case A is equal to ATo /Y where o is the amplitude of the
interfacial entropy, S;nt~0(T)L *"", L — .

In order to determine dg one has to calculate the mean
interface length and see how it scales with L. An easy
way to achieve this, but only in Gaussian systems, is to
calculate

Lmﬂig}){([AE—AE(A)P)C}/M , (15)

where AE(A) denotes AE in the presence of the perturba-
tion (14). This follows from the fact that for a particular
sample AE —AE(A)=(I;yr)"/?Az, where 1y is the actu-
al interface length and z is a normally distributed variable
of unit dispersion.

In the case of GPSG one can still calculate a typical
effective interface length as defined in Eq. (15) and deter-
mine dg from

Loy ~L" (16)

and then deduce the related exponent {. However, dg
ceases to have an interpretation of the fractal dimen-
sionality of the interface. Two Potts spins contribute to
the energy only if they are in like states. Thus some in-
terface pairs would not respond to the perturbation in

].n IINT

1.0 —

1.0 1.5 2.0 2.5

FIG. 9. L dependence of the effective interface length, Eq.
(16), for 2D GPSG.
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bonds. dg is therefore an effective fractal dimensionality
which enters into the definitions of £, the scaling of the
interfacial entropy, and the characteristic length scales
occurring in response to perturbations. The actual frac-
tal dimensionality of the interface is expected to be larger
than or equal to dg, since the true interface is longer than
that estimated using the perturbation (14).

Figure 9 shows the L dependence of the effective inter-
face, Eq. (15), as determined by the transfer-matrix
method for the 2D GPSG. The statistics are 10000 sam-
ples for L <8, 2800 for L =9, and 2000 for L =10. The
effective fractal dimensionality,

ds=1.161£0.06 (GPSG, D=2) (17)

is smaller than for the Ising spins but it is still larger than
2y. This suggests that GPSG’s are also chaotic. We have
not obtained dg for the 3D GPSG but we expect a similar
behavior in this case as well.

VIIL. CRITICAL TEMPERATURE

The 3D GPSG is slightly above its LCD. The critical

temperature of the SG-paramagnet transition is then ex-
pected to be small. As T is decreased, the size depen-
dence of the sensitivity to boundary conditions, 8F, must
cross from a power-law increase to an exponential decay.
At T, 8F must be scale invariant.
In order to estimate T,, we have performed finite T
transfer-matrix studies of 8F for GPSG on cubes with
L=2 (10000 samples) and with L =3 (5000 samples).
The results are shown in Fig. 10. It is seen that the L =2
and 3 lines cross in the vicinity of T,=0.27. This should
be considered only as a rough estimate since it is based on
studies of 8F in very small systems. For ferromagnetic
Potts models T is of order 1.8.> Thus our value for T, of
GPSG can be considered to be small indeed. Our value
of T, compares well with that of Carmesin and Binder,®
who see freezing effects below T'=0.4.
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FIG. 10. Temperature dependence of 8F for L =2 and 3 for
3D GPSG.

IX. CONCLUDING REMARKS

We have seen that, in many ways, short-range Potts
spin glasses have properties qualitatively similar to those
of short-range Ising spin glasses. The major difference is
that the 3D bimodal PSG probably does not have an
equilibrium phase transition, unlike the 3D bimodal ISG.
It would be interesting to carry out further detailed stud-
ies of these systems to elucidate whether they share a
common lower critical dimensionality or not. Our calcu-
lations suggest that the picture for an Ising spin-glass
phase suggested by Fisher and Huse' is also valid for
PSG’s. In particular, PSG’s above their LCD would be
expected to show an extreme sensitivity of the equilibri-
um states to small changes in temperature and the SG
phase would be destroyed by an arbitrarily weak magnet-
ic field.
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