PHYSICAL REVIEW B

VOLUME 40, NUMBER 7

1 SEPTEMBER 1989

Strong mode locking in systems far from chaos
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Based on a simple model of a driven oscillator without inertia, we demonstrate that entirely non-
chaotic systems in general may develop a rich mode-locking structure in an appropriate range of
control parameters. We show that for this structure the scaling properties are similar to those for a
quasiperiodic system near the transition of chaos. Nevertheless, the structure originates from a
different type of transition. In particular, the analysis serves to resolve the origin of the “close-to-
chaotic” behavior in overdamped charge-density-wave systems. Also, this work provides a natural
basis for studies of overdamped spatially extended systems.

One of the puzzles in nonlinear dynamics that has re-
ceived much attention recently is the empirical observa-
tion of a surprisingly rich mode-locking structure in sys-
tems that are far from chaotic.! ™ These include systems
as diverse as charge-density waves (CDW),?2 the
Belousov-Zhabotinsky reaction,® and relaxation oscilla-
tors.* A study of the scaling properties in these systems
often gives results that are remarkably similar to those of
a quasiperiodic system at the transition to chaos. It was
suggested that this behavior may be caused by an under-
lying integrate-and-fire phenomenon’® that leads to a sepa-
ration of the transition to complete mode locking and the
transition to chaos.

In this paper we demonstrate that even completely
nonchaotic systems with two frequencies in general may
exhibit a strong mode-locked structure with scaling prop-
erties similar to those of a quasiperiodic system near the
transition to chaos. We probe the origin of this behavior,
and clarify the connection to the integrate-and-fire mech-
anism.> As an example, we apply our results to explain
the strong mode-locking structure observed in over-
damped CDW systems.>

We begin with a simple driven oscillator,

Gd+U($)=E + A sint , (1a)
where the field U(¢) is periodic and has the Fourier
series

U= S b,sin(mg), (1b)

m=1

with the constraint that the maximal value of U(¢) is 1.
Since (la) is a first-order differential equation, no chaotic
motion can evolve. By the beating of the higher-order
terms in (1b) with the applied ac drive, subharmonic steps
are created where the rotation number R =(¢) takes on
rational values ({ ) denotes time average). We em-
phasize that the pure sinusoidal form of U(¢) with only
b, nonzero represents a nongeneric situation, where the
subharmonic steps vanish.
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Consider the skew field U,(¢) defined by the four
nonzero values, b, =0.754, b, = —0.337, b;=0.189, and
b,=—0.076 (Fig. 1). If we further choose G and A4 to be
of order 1, we obtain an R-E characteristic as shown in
Fig. 2. In contrast to the pure sinusoidal field, a multitude
of distinct subharmonic steps appears. In order to under-
stand what causes this strong mode-locked structure to
appear, we next consider the extreme skew field: the
sawtooth field

U(d)=(¢/m)—(2p+1) if 2mp<¢p<2m(p+1). ()

By a change of variable from ¢ to U, (U, =), the system
is mapped to a driven integrate-and-fire relaxation oscil-
lator: The field U, builds up from the lower threshold
Ty= —1 to the firing threshold 7', =1, where U; is reset
to T,. The mode-locking structure of relaxation oscilla-
tors is described in Ref. 5. A transition to complete
mode locking is obtained along the line E = 4+ 1. More-
over, the scaling properties at this critical line are identi-
cal to those for the quasiperiodic transition to chaos. For
R irrational and E < 4 +1 a (vertical) gap is present in
the Poincaré map, defined as the function

U,(t=n/2m)—U,[t =(n+1)/27] .

Let us now return to the nonchaotic system (1) with
U=U,. For the parameters in Fig. 2 and R ~(V'5
—1)/2 (the golden mean) we have traced out the Poin-
caré map ¢, —¢, . ;, where ¢, =¢(27n) (Fig. 3). We find
that a steep part appears in the Poincaré map, where
¢, +, changes rapidly with ¢,. To this end we note that
the value of E is less than 4+ 1=3. From the foregoing
considerations, the steep part can be understood as rem-
iniscent of the gap that occurs in a “sawtooth” system,
where U(¢) resets discontinuously. Since the scaling
structure is determined by the form of the Poincaré map,
we expect this to be similar to the structure obtained for
a sawtooth system near the transition to complete mode
locking.

In general, one has to follow a very special curve in pa-
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FIG. 1. The skew field U (¢) of the pinning potential used in
the model (1).

rameter space to obtain the scaling properties at the tran-
sition to complete mode locking correctly. However, one
might hope that a scaling region still survives, following a
curve close by, e.g., a curve with many subharmonic
steps. For instance, by adding up the total length S(7) of
steps larger than size 7, this might give an estimate of the
fractal dimension D, defined by the proportionality

N=[1=8S]/re(r™h?, (3)

where [ is the total length of the E interval considered.
Figure 4 shows the result along the R-E curve in Fig. 2
using 40 step sizes. As an intriguing result we find a scal-

ing region where D has the value D=0.87 found for the
6

quasiperiodic transition.” At smaller values of r, the
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FIG. 2. R-E characteristic for Egs. (1) with G=1.42 and
A=2, obtained by use of analog computer (Electronics Associ-
ates, Inc. 680).
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FIG. 3. Poincaré map obtained for the point on the charac-
teristic in Fig. 2 at which R has the golden mean value.

finite slope of the steep part of the Poincaré map causes
an eventual change of the slope in Fig. 4 to the true value
D=1. The position of the “crossover” from a slope less
than one to the slope one is dependent on the values of 4
and G: For smaller values of A or larger values of G, the
steep part of the Poincaré map decreases in size, leading
to a general decrease of the subharmonic step sizes, and
to a crossover to D=1 at larger values of r.

As an application of the preceding general results, we
consider the CDW system NbSe;. When an external os-
cillatory field is applied, this system shows a rich mode-
locking structure where the average phase velocity (¢ )
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FIG. 4. Double-logarithmic plot of N(r) vs r~! [Eq. (3)].
The slope determines the fractal dimension D.



40 STRONG MODE LOCKING IN SYSTEMS FAR FROM CHAOS

of the CDW locks to the external frequency w with a ra-
tional ratio or rotational number R.? As regards scaling,
the analysis (3) for the fractal dimension was carried out
along an I-V curve, where I is the dc current and propor-
tional to R, and V is the external dc voltage. The value
D =0.9110.03 was obtained by fitting.

In order to understand the basic physics that creates
this structure, the normalized equation of motion for the
phase ¢ of the CDW,

$+7$+U($)=E + 4 sinot , @)

has been used. Here, 7 is a damping factor, and U(¢) is
the gradient of the periodic pinning potential; the ampli-
tude of U(¢) is normalized to 1. The external dc and ac
amplitudes E and 4 are measured in units of the pinning
threshold E, and the time in units of

.=V m/2kgeEr ,

where kj is the Fermi wave vector, and m and e are the
mass and charge of the CDW.

The mode-locking structure for Eq. (4) has been stud-
ied in great detail,®’ in particular when y and o are both
of order unity, in which case a multitude of subharmonic
mode-locked steps in the R-E characteristics appears.
The mode-locking features, including the quasiperiodic
transition to complete mode locking and chaos, have
been successfully described in terms of “critical” circle
maps with zero slope inflection points. However, one
main problem that has plagued investigators in this field
is the observation that the response of the CDW is
strongly overdamped,® which means that the value of ¥ in
Eq. (4) is very large and not of order unity. In the fre-
quency range where the rich mode-locking structure is
observed (R ~1) the inertial term ¢ becomes negligible,
since ¢~wd <<yd. This implies that no chaos will
occur. Although this is in agreement with experiments, it
has also raised the important question of why subhar-
monic steps are observed at all,? since they typically first
become visible close to the onset of chaos.>” As a conse-
quence, this further calls into question whether the CDW
system at all can be described in terms of “close-to-
critical” circle maps which do show mode locking.

In order to resolve the foregoing questions, we observe
that neglecting ¢ in Eq. (4), and renormalizing time to
o~ !, we obtain Eq. (1a) with a renormalized damping fac-
tor G=yw. To this end we notice that the overdamped
response of the CDW was observed from measurements
of the low-field frequency-dependent conductivity.®?
From the experiments one finds that the damping factor
v has a value of several hundred. Moreover, one finds
that the frequency 7. ' is several GHz. Since the rich
mode-locking structure is observed at frequencies in the
MHz range, we find that while vy is very large, yw is of or-
der unity. Thus, although the system of an overdamped
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CDW does not develop chaos, it is, as far as scaling prop-
erties are concerned, well described by close-to-critical
circle maps. The strong mode locking is encountered
where the renormalized damping factor is of order 1 and
can be understood as a consequence of a skew pinning
field. The underlying integrate-and-fire mechanism gives
rise to a steep part in the Poincaré map, in contrast to the
zero slope inflection point that has been central in studies
of circle-map systems with inertia as Eq. (4).%7 The re-
sult is that a rich mode-locked structure emerges with a
fractal dimension D apparently smaller than one. How-
ever, in accordance with the observation that the over-
damped CDW system is nonchaotic, a crossover should
occur at small scales to the true value D=1.

We emphasize that the equivalency of an overdamped
CDW system and a system described by a close-to-critical
circle map constitutes a basis for understanding the more
complicated dynamics, e.g., when spatial degrees of free-
dom have to be taken into account. In particular, this
equivalency shows that a coupled system of circle maps is
an excellent candidate for modeling an overdamped spa-
tially extended CDW system. Recently, such a model'
has indeed described several complicated dynamical
features observed in NbSe;, e.g., (i) the depinning of
CDW has a critical behavior different from that of a sim-
ple tangential bifurcation,!! and (ii) the mode-locking re-
gions at almost all rational rotation numbers R =P /Q
have a lower resistance than the normal electronic back-
ground,? i.e., although there is a strong tendency to lock,
the locking is not complete; moreover, the tendency to
lock is weaker for larger denominators Q.

In conclusion, we have shown from a simple but gener-
ic model that an overdamped system without inertia in
general develops a rich mode-locking structure in an ap-
propriate range of parameters. In this range, the strength
of the nonlinearity obtained from the Poincaré map and
scaling analysis show that systems which never become
chaotic, still can be similar to systems modeled by close-
to-critical circle maps. In particular, when spatial de-
grees of freedom are taken into account, our description
gives an explanation of why the behavior of the over-
damped CDW in NbSe; in all respects is similar to that
for coupled invertible circle maps, including the rich
mode-locking structure, the critical behavior at the pin-
ning threshold, and the observation that only the major
mode-locking regions develop true steps.
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