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We have measured the specific heat of high-purity, sintered YBa2Cu307 powder. The sample
was characterized by x-ray diffraction and Raman scattering. We measured its dc magnetic suscep-
tibility as a function of magnetic field and temperature to verify its superconducting properties and
found the transition temperature T, to be 90 K. The heat capacity was determined between 2 and

10 K in magnetic fields up to 3 T. The low-temperature specific heat exhibited a linear term (with a
zero-field coefficient of 4.37 mJ/mol K ) and a cubic term (corresponding to a Debye temperature of
375 K) that varied with field. Raman-effect data obtained on our sample showed that less than one-

third of the linear term could arise from the presence of BaCu02. Using Ginzburg-Landau theory
in the London limit, we calculated the field dependence of the specific heat of a uniaxially sym-

metric superconductor. We were unable to account for the reduction of the cubic term, and we

were able to account for only part of the enhancement of the linear term with increasing field in

terms of the kinetic energy of the electrons circulating around the magnetic vortices (fluxoids).

Perhaps the reason that Ginzburg-Landau theory fails to account for our data is that the supercon-

ducting order parameter does not change slowly over a length characteristic of the atomic structure
of this material.

I. INTRODUCTION

YBa2Cu307 „was the first compound to exhibit super-
conductivity above 77 K. Besides having a high transi-
tion temperature, this material and the other rare-
earth superconducting oxides in the same family,
RBazCu307, have anisotropic normal-state parameters
and extremely high upper critical fields. While the high-
T, superconductors share many features of the lower-T,
ones, they differ from conventional superconductors in
several striking ways.

According to BCS theory, the low-temperature specific
heat of the superconducting electrons should be propor-
tional to exp( b, jkT), wher—e b is the superconducting
energy gap. Thus, as the temperature approaches abso-
lute zero, the electronic specific heat should quickly van-
ish. Defying this conventional behavior, samples of
various high-temperature superconductors, including
YBa2Cu3O7, exhibit a linear term in the low-
temperature heat capacity. These results have been sum-
marized in a review article by Fisher, Gordon, and Phil-
lips. Our heat capacity measurements, correlated with
Raman effect and dc magnetic susceptibility measure-
ments, all made on the same sample, support the
classification of the linear term as an intrinsic property of
YBa2Cu307

We have measured the heat capacity of a carefully
made and well-characterized sample of YBa2Cu307 at
low temperatures and in magnetic fields up to 3 T. We
see a linear term at low temperatures that is enhanced as
we increase the field. This enhancement has already been
predicted by the work of Maki and of Fetter and Hohen-
berg; we compare the increase in the linear term that we

see to their predictions. Using Ginzburg-Landau theory
in the limit H„&~B«H„and for T «T„and taking
the anisotropic nature of these materials into account, we
have recalculated the expected enhancement of the
specific heat in a magnetic field. The results for the linear
term are still inconsistent with published values of the an-
isotropy and of the London penetration depth.

II. EXPERIMENTAL METHOD

A. Sample preparation

The interpretation of the specific heat data requires a
detailed study of the impurities in the sample. Even
small amounts of BaCu02 have been shown to contribute
greatly to the linear term in the specific heat at low tem-
peratures. We have made our samples carefully, and
using x-ray diffraction and Raman-effect spectroscopy,
we have measured the amounts and types of impurities
present in them.

In a glove bag filled with nitrogen, powders of BaC03,
Y203, and CuO (all 99.999% pure) were weighed,
thoroughly mixed, and ground with an agate mortar and
pestle. The mixture was heated in a platinum crucible in
air at 950 C for 24 h, with two intermediate grindings.
The reacted material was ground and pressed into 0.5-g
pellets under a pressure of 500 MPa applied for 5 min,
producing a sample with about 75 Jo of the ideal density.
After removal from the press, the pellets were placed on
YBa2Cu307 „powder, which in turn rested on a plati-
num sheet. This arrangement of pellets, powder, and pla-
tinum was placed in a tube furnace and heated in a
stream of pure oxygen at 1 atm. pressure. The heat treat-
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ment lasted for 24 h at 900 C, followed by a slow cool
(12'C/h) to room temperature.

We verified that the pellets were nearly single phase,
using x-ray diffraction. We saw evidence of small
amounts of Y28aCu05 (approximately 2 wt. %) and CuO
(approximately 1 wt. %) but did not detect the presence
of BaCu02 (to a sensitivity of roughly 1 wt. %). Because
very small amounts of BaCuOz could account for the
linear term we see in the heat capacity at low tempera-
tures, ' we needed to check for the presence of this im-
purity more sensitively. The work of Rosen and Macfar-
lane' shows that trace amounts of this impurity contrib-
ute greatly to the Raman spectra of YBa2Cu3O7 Fol-
lowing the method described in their paper, we measured
the Raman spectra of oxygen-enriched and oxygen-
depleted samples.

We cut one of the YBa2Cu307 „pellets in half and
heat treated each half in fIowing gas at 800 C for 24 h.
One piece was placed in Aowing 02, while the other was
placed in Aowing He. If the sample were contaminated
with BaCu02, the Raman spectra of the oxygen annealed
sample would show a peak at 640 cm '. This peak
would then disappear after annealing in helium. '

The Raman scattering was performed using the polar-
ized 5145 and 4880 A lines of an argon ion laser. The
scattered light was dispersed by a triple-stage monochro-
mator and detected by a nitrogen-cooled photomultiplier
tube. Together these instruments provided a resolution
of 3 cm ' and a dark count of approximately 1 count/s.
To ensure the homogeneity of the examined samples, the
laser spot was focused to roughly 0.5 mm and moved to
different regions of the surface. The sample's homogenei-
ty in depth was verified by scraping it and remeasuring
the Raman spectrum.

The pellets annealed in oxygen and helium exhibited
the Raman-active modes expected of an YBa2Cu307
superconductor" as well as modes attributed to the
Y2BaCu05 "green" phase. ' However, the 640-cm
mode associated with impurities of BaCu02 (Ref. 10)
could not be detected to within the sensitivity of the ap-
paratus. Assuming a linear dependence of the intensity
of the mode on the presence of the impurity, we compare
our data to those of Rosen et al. ' and calculate that the
maximum BaCu02 concentration possible in the sample
is 0.3%.

B. Magnetic susceptibility

Once the purity of the sample had been checked, we in-
vestigated the sharpness of the superconducting transi-
tion by measuring its magnetic susceptibility with an
SHE VTS150 susceptometer. The sample was placed in a
no. 5 gelatin capsule and cooled to 5 K with the magnetic
field set to zero. A field of 13.7 Oe was applied, and the
magnetic moment of the sample was measured while
warming the sample from 5 to 100 K. The data are
shown in Fig. 1. The zero-field data have an accuracy of
+10% because the zero-field condition is measurable by
our apparatus only to within an accuracy of 1 Oe. The
superconducting transition looks sharp except for a knee
near 60 K.
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FIG. 1. The magnetic susceptibility (Gaussian units) of our
sample in a 13.7-0e field. The circles represent zero-field cooled
data, while the field cooled data are plotted as squares.

To investigate the cause of this knee, we ground the
sample and remeasured its susceptibility. The knee
disappeared, and the sample showed the sharp transition
seen in Fig. 2. We therefore attribute the knee seen in the
pelleted sample's data to intergrain coupling, which
causes Aux to be excluded from the voids in the sample.

Junod et al. ' measured the paramagnetic contribution
of Cu + atoms in the magnetic susceptibility of
YBa2Cu307 „. They were able to correlate the size of
this signal to the concentration of BaCu02 in samples
with fairly high levels of this impurity. With this in
mind, we measured the magnetic susceptibility of' our
sample at high temperatures and plotted yT versus T as
in Fig. 3. (There is a possibility that iron atoms, coming
from the starting materials, contributed to the suscepti-
bility of the sample. Based on the assays of our prereact-
ed powders, we placed an upper limit of 5 ppm iron
atoms in the sample. We calculated the expected Curie-
Weiss contribution from these iron atoms and found that
it was insignificant. ) The y intercept of the line yields the
coefficient of the paramagnetic contribution, from which,
assuming a moment of 1.5pz, we find that the ratio of the
number of Cu + to the number of Cu atoms ([Cu +]/[Cu]
concentration) is 8.3%. This, in turn, corresponds to a
concentration of 2.9 wt. % of BaCuO2. We have seen,
however, from our x-ray data and our Raman data that
there is less than 1% and 0.3%%uo, respectively, of BaCu02
in our sample.
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FIG. 2. The magnetic susceptibility (Gaussian units), of our
sample after grinding it. The data were taken by cooling to 5 K
in zero field (circles), setting the field to 11.5 Oe, and warming
the sample above T, . The solid square was taken after cooling
to 5 K in the 11.5-0e field.
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FIG. 3. The high-temperature magnetic susceptibility of our
sample (Gaussian units), measured in a field of 1 kOe. The
squares represent a Curie-law temperature dependence by plot-
ting gT vs T; the diamonds represent a Curie-Weiss dependence
by plotting y(T+39 K). The Curie-Weiss law gives a better fit
to the data.

One possible explanation for our high-temperature sus-
ceptibility data is that the paramagnetism arises from
Cu + atoms that are in one of the other common impuri-
ty phases. Our measured Cu + ratio corresponds to 5.71
wt. %%uoof YzBaCuO &(compare d to 2wt . %odetecte dwith
x rays) or to 1 wt. %%uoof CuO.

The spin susceptibility contribution from Cu + ions
is thought to be intrinsic to a related compound,
La& Sr Cu04 (Ref. 13), possibly because of missing
oxygen atoms in the neighborhood of some of the cop-
per atoms. That Cu + ions are also intrinsic to
YBazCu307 is not unlikely, and may affect the suscep-
tibility of this compound in the normal state.

We were able to get a much better fit by assuming a
constant term plus a Curie-Weiss type dependence with a
Neel temperature of —39 K. In Fig. 3, we plot y multi-
plied by (T+39 K) versus T to show the quality of this
fit. Again, assuming a moment of 1.5pz, we calculate the
number of magnetic atoms to be 0.123 per Cu atom.
Since a Curie-Weiss dependence has not been seen in Ba-
CuOz, ' we do not believe the high-temperature suscepti-
bility indicates the presence of this impurity.

We also needed to determine whether the magnetic
field would be distorted by the superconducting sample.
We therefore measured the magnetic moment of the pel-
letized sample in fields of I, 2, and 3 T. Before the mea-
surement in each field, the sample was warmed above its

B—= 1+4m',
H

which, as shown in Table I, is close to unity. The mag-
netic field can therefore be assumed to be essentially un-
disturbed by the sample.

We need to know the approximate spacing between
Auxoids so we can calculate the effect that the magnetic
field has on the heat capacity. If we assume an equila-
teral triangular lattice of Auxoids, we can find the dis-
tance I. between them by the formula

1/2
2+0
&3a (2)

(@0 is the fiux quantum and B is the value of the field in-
side the superconductor. ) The calculated spacing be-

superconducting transition and zero-field cooled to 2 K.
The data shown in Fig. 4 are nearly temperature indepen-
dent between 2 and 6 K in all fields except 1 T. The 1-T
data vary linearly between 2 and 6 K and are reproduci-
ble from sample to sample, and though this effect appears
to be dramatic in Fig. 4, it is really a small change in the
flux penetrating the sample (from 92%%uo at 2 K to 96%%ug at
6 K). The fraction of the field penetrating the sample is
given by the ratio
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FIG. 4. The magnetization of our sample taken in high fields
(Gaussian units}. The sample was zero-field cooled and the data
were taken while warming in the field. These data show that the
shielding of the sample is negligible for fields 1 T.

tween Auxoids in each field is given in Table I. Our
analysis of the specific heat data is una8'ected by our as-
sumption that the Aux lattice is triangular.

C. Heat capacity

We measured the heat capacity of a 2.567-g sample of
YBa2Cu307 in fields of 0, 1, 2, and 3 T and in the tem-
perature range from 2 to 10 K. The heat capacity was
measured with an adiabatic, computer-controlled
calorimeter, using the pulse method. ' When the sample
had reached thermal equilibrium, we measured the tem-
perature of the sample before and after applying a mea-
sured heat pulse. The heat was supplied by a current
pulse passing through a 1000-Q strain gauge, and the
temperature was measured with a calibrated carbon-glass
thermometer. ' [The results of Sample, Rubin, and
Brant' show that the field dependence of the calibration
for a carbon-glass thermometer is very small ((1% for
fields below 3 T)]. The total energy supplied by the
heater divided by the temperature rise is the heat capaci-
ty.

TABLE I. Magnetization data.

y t',memu/Oecm )

1.0
2.0
3.0

—4.25
—1.34
—0.723

0.95
0.98
0.99

503
349
284

We started each temperature scan by closing a
mechanical heat switch and cooling the sample to 4.2 K
in zero Geld. With the heat switch still closed, we turned
up the magnetic field and measured its value with a Hall
e8ect probe. ' The sample warmed to approximately 6 K
because of Joule heating from the eddy currents. After
the field was fixed, we pumped on the helium bath to
reduce the sample temperature to 1.5 K. We then slowly
opened the heat switch and measured the sample's heat
capacity while warming the sample from 2 to 10 K.
After reaching 10 K, we warmed the sample above its su-
perconducting transition, turned the magnetic field off,
and closed the heat switch to cool the sample back down
to 4.2 K.

We measured the heat capacity of the empty cell in
magnetic fields so we could subtract from the data any
e6'ects of the magnetic Geld on the addenda, which were a
thin copper stage, one carbon glass and one platinum
thermometer, a heater, and a small, measured amount of
vacuum grease used to stick the samples down. The heat
capacity of the addenda was field dependent; at 3 T, the
field-generated heat capacity of the addenda varied from
14% of the zero-field value at 2 K to 2.5% at 6 K. The
ratio of the addenda's heat capacity to that of the sample
was approximately 0.5.

We subtracted the field-dependent contribution of the
addenda and divided the heat capacity by the number of
moles in the sample, to obtain the specific heat, c (see Fig.
5}. In order to see more clearly the temperature depen-
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FIG. 5. The low-temperature specific heat of our sample tak-

en in zero field. The 1-, 2-, and 3-T field data lie very close to
the zero-field points and are omitted for clarity.
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dence of the specific heat, we plotted c/T as a function of
T, as shown in Fig. 6.

The data plotted in Fig. 6 show linear behavior at tern-
peratures below 7 K. The zero-field data begin to in-
crease faster than linearly near T=7.5 K, indicating a de-
viation from Debye behavior. The in-field data curve up-
ward from the straight line at a slightly lower tempera-
ture (approximately 6 K for the 3 T data). The c/T
versus T data are replotted in Fig. 7 to emphasize the
linear behavior at low temperatures. The data in all three
fields are linear below 6 K, and they show no evidence of
an upturn as the temperature decreases. Such an upturn
would have indicated magnetic impurities. Using a
least-squares fit, we can extrapolate these data to T=O to
extract the coefficients of
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c =a(H)T+P(H)T (3)

Defining ao and po to be the zero-field values, we rewrite
Eq. (3),

c = [ao+ai(H)]T+ [Po+P,(H)]T (4)

The measured values of ao and Po are 4.38 mJ/molK
and 0.478 mJ/molK, respectively. The field-dependent
coefficients are given in Table II and are plotted as a
function of the applied field in Fig. 8.

%'e are not the first to report the field dependence of
the specific heat of YBa2Cu307 . Phillips et al. ' and
van der Meulen et al. ' measured the field dependence of
the specific heat of samples for which c/T had significant
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FIG. 7. The low-temperature specific heat of our sample, em-
phasizing the behavior as T approaches zero. The data are tak-
en in fields of 0, 1, 2, and 3 T, and the values of the coefficients
of the linear and cubic terms are clearly varying with field.
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upturns in zero field at low temperatures. The in-field
data exhibited Schottky anomalies correlated with these
upturns. The presence of such a feature in the specific
heat probably indicates the existence of impurity phases,
which are apparently absent from our samples. Caspary
et al. ' measured the specific heat in fields of 0 and 8 T
and in the temperature range from 0.08 to 2 K. They saw
an upturn only at the lowest temperatures, and they saw
a term in the specific heat linear in T; it became vanish-
ingly small in the 8-T field. They attributed the tempera-
ture and field dependence of their data to spin glass be-
havior of the Cu + ions. Sasaki et aI. measured the
specific heat in 0-, 1-, and 3-T fields. Their data showed a
small, low-temperature upturn that increased with field.
They held the cubic term fixed and fitted the data to a
function of the form

10

I I ~ ~ I I I ~ I I I ~ I I I I I I I

25 75 100

FIG. 6. The low-temperature, zero-field specific heat of our
sample plotted as c/Tvs T .

c =a/T +aT+PT +gT
Their coefficients for the linear term were 5.1, 5.8, and
6.7 mJ/molK in fields of 0, 1, and 3 T, respectively.
(This compares to our measured values of 4.37, 5.11, and
6.74 mJ/molK in these same fields. ) Forgan et al. '

have also measured the magnetic field dependence of the
linear term in the specific heat of YBa2Cu307 „. They
find a linear term which is about twice as large as ours
when no magnetic field is applied, and a field dependence
of the linear term which is approximately half as large as
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K (T)

TABLE II. Specific heat data. The definitions of a, (H) and P, (H) are given in Eq. (4).

a, (H) (mJ/molK2) P, (H) (mJ/mal K ) bs (mJ/molK) OD (K)

0.0
1.0
2.0
3.0

0.0
0.74
1.99
2.37

0.0
—0.011
—0.049
—0.051

0.0
3.58
7.69

10.55

375
378
389
390

over the entire temperature range, 0.4—30 K. Baak et al.
did not plot c/T versus T, nor did they plot the temper-
ature dependence of their data on a linear scale; unlike
Baak et al. , we did not see a purely cubic temperature
dependence above 7 K. In contrast, von Molnar et al.
measured the low-temperature specific heat of a mosaic
of single crystals and did not see a fractional power
dependence of c on T at low temperatures.

Summing up, several authors have measured the field
dependence of the low-temperature specific heat and have
gotten a variety of results. Our measurements do not
agree with other results reported in the literature, em-
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FIG. 8. The values of the coefficients of the linear (circles)
and cubic (diamonds) terms. The zero-field contribution is sub-
tracted and the data are plotted as a function of field. The lines
represent linear least-squares fits to the points.

we find. The analysis of their data is, however, compli-
cated by an upturn in the c/T versus T curve, starting
about 10 K. Such an upturn makes it very dificult to ex-
tract the linear term, since this term is dependent on the
way the upturn is modeled.

Finally, Baak et a/. measured the specific heat of a
mosaic of 80 single crystals and found no evidence of a
linear term. Rather, they fitted their data to a function,

c =AT +BT

phasizing the importance of making more measurements
of the field-dependent specific heat of YBa2Cu307

We can now calculate several material parameters.
The Debye temperature, calculated from

' 1/3
12~4 nk~

5 Po

where n is the number of atoms per mole, is 375 K in
zero field. We can also determine whether the linear
dependence on temperature below 7 K is intrinsic or due
to BaCuOz impurities. .Using the data of Kuentzler
et al. , we calculate that an impurity level of 1% by
weight of BaCu02 would be necessary to explain the
linear term. The Raman data showed that there is less
than 0.3% of this impurity, so that BaCuOz impurities
cannot account for the size of the linear term seen by us
in zero field at low temperature.

Eckert et ah. have correlated the number of Cu +

atoms (and possibly the concentration of BaCuOz impuri-
ties) present in a sample with the size of the linear term in
the low-temperature heat capacity. Using the ratio of
[Cu +]/[Cu] concentration that we get from fitting a Cu-
rie law to our susceptibility data, we estimate that the
coe%cient of the linear term in the heat capacity would
be 17.7 mJ/mol K . This is about four times higher than
what we measure, suggesting that Eckert's correlation be-
tween the linear term in the heat capacity and the size of
the paramagnetic contribution to g( T) does not hold for
our samples.

We do not believe that our samples are contaminated
with BaCu02 because we do not seen an upturn in the
low-temperature heat capacity measured in field. Under
the assumption that any Cu + atoms located in an impur-
ity phase would have their orbital moments quenched,
these Cu + ions would have two energy levels in a mag-
netic field, and their heat capacity would exhibit a
Schottky anomaly. This anomaly was seen in the field-
dependent specific heat of BaCuOz, measured by Arhens
et ah. "

We therefore believe the field-dependent coefFicients of
Table I represent intrinsic parameters of YBa2Cu307
The assertion that the linear term in the low-temperature
specific heat is intrinsic is further supported by other
specific heat data, as well as by the Raman data of Sla-
key et al. Their data suggest the existence of a low-
energy continuum of electronic states well below T, .

The field-generated contribution to the heat capacity
arises because the magnetic field increases the entropy of
the sample, which we calculate by integrating c/T. At
the superconducting transition, there is a field-dependent
decrease in the entropy; ' we want to find out how
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much of this entropy "shows up" at low temperatures. If
we assume that c/T versus T is linear from T=O to 6 K,
the field-dependent molar entropy change hs can be cal-
culated from

bs =a, T+ ,'P, T—

The values for the excess entropy up to 6 K are given in
Table II. The field-dependent decrease in the entropy at
the superconducting transition can be found from Fig. 2

of Salamon et aI. Estimating

b s ( T„3T)=71.3 mJ/K mol,

a, /B =7.96X10 erg/K cm G and P&= —4.70
erg/K cm at 20 kG. The change in the coeKcient of the
cubic terms agrees neither in sign nor in magnitude with
the calculated value. The field-dependent enhancement
of the linear term's coe%eient is quite close to the value
predicted by Maki. This is probably a coincidence, be-
cause the ratio of I to g shows YBa2Cu3G7 to be in the
elean rather than the dirty limit.

We next compare our data to the conclusions of Fetter
and Hohenberg. Using the preceding analysis and as-
suming the clean limit, their Eq. (E10) gives the following
expression for the heat capacity difference hc,

the entropy change seen in the low-temperature data ac-
counts only for only 15% of this.

III. CALCULATION

We have seen field-induced changes in both the linear
and cubic terms of the low-temperature heat capacity.
These have been predicted theoretically by Maki and by
Fetter and Hohenberg by analyzing the free energy of
the superconducting electrons in a magnetic field. The
London model (g«A, ) is assumed. For YBazCu307
/=10 A, and A, =1200 A. When the field is turned on,
the free energy is increased by

2 2

TB d H) T dHi
b,c=- '+ —

' + ~

4m dT2 4m dT

Combining these equations with

In~3(t)H„= 2H, (t)
2&3 t

and

~,(t)=&2 H(t)A. '(t),

and using

(13)

(14)

(15)

I[h'+A'(V X,h)']d'x;
8m

(9) H, (t) ~1—t' (16)

p2(p Xh )2 is the kinetic energy density and h is the local
magnetic field, the spatial average of which is B. From
this, they calculate the Gibbs free energy difference,

(10)

The difference in entropy is calculated,

we find that

C'o
0.) = 8

SmA, T

(17)

(18a)

BAG
aT

(11) and

This expression ignores the contribution to the entropy
made by the electrons in the normal cores. Using a Som-
merfeld constant of 3X10 erg/em K, we find the con-
tribution of the normal electrons is 2% of the measured
entropy change in field, so ignoring the normal-core con-
tribution to the entropy is justified. Finally, the specific
heat enhancement caused by the magnetic field can be
found from the derivative of the entropy difference,

hc =T Bhs (12)

Maki calculated the change in the heat capacity of a
superconductor in a magnetic field, by assuming the su-
perconductor is in the dirty limit (the mean free path / is
much smaller than the coherence length g). Since the
coherence length of Yaa2Cu3O7 „ is extremely small,
these materials cannot be in the dirty limit. Nevertheless,
we calculated the expected enhancements from Maki's
theory and found that a&/B =6.90X10 erg/K cm G
and p& =0.114 erg/K cm at 20 kG. We measure

4O
P, = 3B+

8m' T,

40
2mk2

(18b)

These two expressions are inconsistent with our data.
From Eqs. (18a) and (18b), a, /P, is of order T, = 10 K;
this is not seen in our data. If we solve Eq. (18a) for A,

and replace a& by its measured value, we find that A, must
be 638 A. As the measured values published for the
penetration depth range from 900 to 1400 A, ' it is
unlikely that these theoretical expressions correspond to
our data.

The problem with this analysis may be that it assumes
the superconductor is isotropic. This is unlikely, as
workers have seen large anisotropies in the upper and
lower critical fields of the YBa2Cu307 superconduc-
tors 31,33,34

Kogan and his collaborators ' have investigated the
effect of including anisotropy in the effective mass tensor
on the Helmholtz free energy of a superconductor. They
find that the field-dependent free energy term calculated
in the London limit (g«A, ) is replaced by one of the
form
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P= J[h +A, m J(VXh);(VXh) ]d x .1
(19) aH

BT

(m; is a component of the reduced eff'ective mass tensor
and A, is the mean square of the penetration depth aver-
aged over the principal directions of the crystal. ) Later,
we will introduce the variables m& 2 3, the diagonal ele-
ments of the effective mass tensor corresponding to the
a, b, c crystal directions, respectively. We will find that
the term X m;~ ( V X h );( V X h ), the kinetic energy densi-
ty, is responsible for a field-induced change of the linear
term in c ( T). If we assume uniaxial symmetry, m i

= mz,
Eq. (19) can be expanded to second order in L/A, to
yield

1 @'om
H, =B, 1+ ln

8~ A, 'B+m„
gH, 2

8

and

1 0 7

1
9 c2N m. H

8~ X'B+m
(27b)

Cambell, Doria, and Kogan have already found the re-
lationship between H and 8,

m
8rr9'=B +B g'(m„g +m3g )

ml

with

(20)

(21)

In order to evaluate this derivative, we need to know
dL /dB. For a periodic array of Auxoids, each carrying
one Aux quantum @0,

%0
L =constX 8 (22)

m„=m&sin 0+m3cos 8

(g; is a dimensionless reciprocal-lattice vector;
g; =+4&o/B 6;, where 6, is a reciprocal-lattice vector of
the fluxoid array. ) The sum is carried out over nonzero
vectors of the reciprocal Aux lattice. The three com-
ponents of the magnetic field can be found by
differentiating the expression for the free energy,

I 2

H, = B +B g'(m„g +m3g~)I 8 g2 zz x

m, sin (8)+m3cos (8)
H2 —82+282

8 mzz

40 gH 2X ln
8~~2

(28)

Substituting m
&
sin 0+m 3cos 0 for m„,

2+m„@o i)H, 2H =8 1+ ln8~8'

1/2

(29)

Expanding the square root to first order in H„/B and
defining

[i), defined as P in Eq. (3.64) of de Gennes, is a geome-
trical factor of order unity that depends on the shape of
the unit cell of the flux-lattice. j The second term in each
of these expressions is of order H„/B. Since this ratio is
much smaller than unity, we want to find the value of the
magnitude of H only to first order in this term. There-
fore, using 8„=8sin8 and 8,=8 cosO, we find

Therefore,

BL C'0 L'= —const X
BB 82 8 (23) we have

m„40
8m

(30)

If we evaluate the derivative of V with respect to B and
define

gH, 29 c2

8 (31)

5„=(m„g +m3g ),
then

(24) Hence,

BH
aT

aB
~T (3T 8

2 mi
(25) Combining terms,

2 1 ~Hc2 1 BB
H, BT 8 3T (32)

Substituting into Eqs. (10)—(12), we find

T BB i3 8Ac=
4~ (jT gT2

(26)

The partial derivative of 8 with respect to T can be found
if we use the condition

aB
aT 8 =r ln

BT 8

g
—2 BH,+ H„aT (33)

The second term on the left-hand side is of order



FIELD-DEPENDENT SPECIFIC HEAT OF POLYCRYSTALLINE. . . 4581

H„/B ((1. The derivative of B with respect to T is
therefore

with respect to temperature, calculated in the Appendix,
we 6nd

dT dT B H, dT

24a
A, (0)T,

(35)

Using the first and second derivatives of A, and H, z

l

to second order in t (t—:T/T, ). Taking the second
derivative of B with respect to T,

1 BB M. (T)
(jTz AT

BH, (T)
H, q( T) d T

1 M 8 A, (T) 'QH2 BA, (T)
B aT aT B 8T

BH,~( T)

H, (T) BT

BH,2 g
—2(T) & H, q(T)

H, ~( T) dT H, p( T) BTi
(36)

Keeping terms of order t, we have

1 dB dA. (T)
~ dT' dT'

2 1 dH 2 g 2(T) d H, 2,(T)
H„(T) dT H(T) dZ' (37)

Substituting values from the Appendix and defining g,

gH, z$=21n B (38)

I' dT A, (0)T

2—2atH, z(0)

A,2(0) T, Hz(0)(1 at ) —
A, (0)T,

H, 2(0)( —2a + 12dt 2)

H, 2(0)(1—at i) (39)

Expanding and keeping terms up to order t,
1 dB
~ dT'

12t g 4a t —2a+(12d —2a )t
g2(0) T2 2 g2(0) T2 $2(0)T2

[—a+3( —g —a +2d)t ] .
A. (0)T,

Substituting the first and second derivatives of B with respect to T into Eq. (26) to find b.c,

4m z 4a zAc = I 2 t2 BI [——a +3( —
g
—a +2d)t ]

2 2 2

T A, (0)T, A, (0)T

=I 28
a —3 —g —a +2d —I' t2 2Q

/2(0) T2 3BA, (0)

(40)

(41)

The last term in the parentheses is of order a H„/B and
may be neglected compared to the second term. Substi-
tuting for g and I and rewriting b,c as in Eqs. (18a) and
(18b),

IV. DISCUSSIGN

We compare the results to our data for polycrystalline
samples by averaging Eq. (42a) over a spherical shell, ob-
taining

+mzz @o 2aB
4~~'(0) T,' (42a) +0 aB

8~ 4~~'(0»'
and

+m„eo
8m.

6B H
4m-X'(0) T4

(42b)

1 m3
X f d(cose) m, sin 0+ cos28—1

The anisotropy factor y is de6ned by

y=+m, /m, ,

1/2

(43)

(44)
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where m&, m2, and m3 are the diagonal elements of the
effective mass tensor corresponding to the a, b, and c
crystal directions, respectively. Rewriting Eq. (43),

a& 2 1
2 1/2

32~A, T, y
(45)

The solution is

Noa

32k, TQ

1
1

y+(y —1)'/
2(y2 1)1/2 y (y2 1)1/2

(46)

&&/B =7.96X 10 erg/Q K crn (47)

We put this value into Eq. (46) and solve for the penetra-
tion depth, A, +m „with the magnetic field pointing in
the c direction, as a function of the square root of the
effective mass ratio (see Fig. 9). The anisotropy factor
can be calculated from the ratio of dH, 2/dT parallel to
the c axis to that perpendicular to the c axis, the mea-
sured values of which vary from 4 (Ref. 33) to 10 (Ref.
34). Using the Sommerfeld constant y, Bardeen et al.

365

360

The experimentally measured value of a, /B can be found

by fitting the data of Fig. 8 to a straight line. We scale
the linear coefficients by the density, 6.38 g/cm, and the
atomic weight to find

have calculated a value of 9 for the square root of the
effective mass ratio, Qm3/I, . Our values for A+m,
plotted in Fig. 9 vary from 370 to 353 A for y ranging
from 4 to 10. These penetration depths are lower than
the measured values. ' Farrell et al. measured the
intrinsic transverse magnetization for YBa2Cu307 in a
magnetic field. From this measurement, they determined
y to be 5.1, corresponding to a penetration depth with
the field parallel to the crystal's c axis of 363 A. This is
outside of the range of the measured values of
900-1400 A."-"

To check the agreement between the calculated and
measured values of /3, we look at the ratio a, /p, . We cal-
culate the ratio of the theoretical values using Eqs. (42a)
and (42b) and compare to the experimental data,

aT
3[2 In(i)H, z/B)+a —2d]

(48)

H, 2 has not been measured, but is thought to be extreme-
ly large. To obtain a lower bound on a, /p„we assume
that

H, 2

B
1000 T

1T
The value of the lower bound on a&/p& is then 250 K .
From our data, the measured value of this ratio is —43.7
K; it has the wrong sign and is too small in magnitude.
This probably means that the calculation does not ac-
count for all the mechanisms that contribute to p, .

Could the decrease in the cubic term with increasing
field be explained as arising from a change in the phonon
spectrum? Zhao and Ketterson"' have measured the
sound velocity as a function of magnetic field at 4.2 K in
sinter forged samples of YBa2Cu307 „. They see no
change in the sound velocity between 0 and 8 T to a sen-
sitivity of 0.074%. The Debye temperature is directly
proportional to the sound velocity, so it should change
by less than 0.028&o between 0 and 3 T. We see much
larger changes than this in the heat capacity data (see
Table II), however, so we conclude that the decrease in
the coefIicient of the cubic term with field may not come
from shifts in the phonon spectrum.

V. CONCLUSIONS

355

8
gm~/m,

10 12

FICx. 9. The penetration depth [defined in Eq. (19)]as a func-
tion of the square root of the effective mass ratio, Qm 3/m, =y.
This curve is calculated using the value of the enhancement of
the linear term with Geld as a parameter.

We have measured the heat capacity of YBa2Cu307
as a function of temperature and magnetic field. Below
10 K, we see a linear plus cubic temperature dependence
that varies with field. Based on our correlations with x-
ray, Raman, and magnetic susceptibility data, all mea-
sured on the same sample, we believe that the linear term
is intrinsic to this material.

Much of the low-temperature heat capacity data re-
ported in the literature exhibits an upturn below 4 K.
Our data show no evidence of an upturn in zero field or
in magnetic fields up to 3 T. This indicates that our sam-
ples are free of paramagnetic impurities. Specifically, we
believe our samples are nearly free of BaCu02. Our heat
capacity data exhibit a different field dependence than the
data reported in the literature by other groups; further-
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more, the results of these other groups differ from each
other. We believe this is due to variations in the amount
of BaCuO2 impurity in the samples of the various groups.

The field dependence of the linear term in our heat
capacity data can be interpreted by using Ginzburg-
Landau theory. We calculate the expected enhancement
for a strongly type II (London limit), anisotropic super-
conductor. We are able to get good agreement between
our measured coefficient of the linear term and our calcu-
lation -if we assume that the square root of the effective
mass ratio, (m3/m, )', is 5.1, and the London penetra-
tion depth, with the field parallel to the c axis, is 363 A.
This value of the penetration depth is, however, smaller
than the measured values, so the Ginzburg-Landau
theory is apparently unable to explain the magnetic-field-
induced enhancement of the heat capacity of
YBazCu307 . The measured field dependence of the
specific heat is larger than that indicated by theory for
accepted values of the London penetration depth. Ir-
reversibility effects, including Aux pinning, cannot be re-
sponsible for this difficulty, since they would cause a
discrepancy of the opposite sign. We note that the
theory, as applied here, does not take account of the lay-
ered structure of the compound or a possible field depen-
dence of the coupling between the layers.

We do not understand why the cubic term decreases
with increasing field. A change of this magnitude is in-
consistent with measurements of the field dependence of
the sound velocity and is not predicted by the enhance-
ment calculated from Ginzburg-Landau theory. Perhaps
the reason that the Ginzburg-Landau theory fails to ac-
count for our data is that the superconducting order pa-
rameter does not change slowly over a length characteris-
tic of the atomic structure of these materials.
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APPENDIX

In this appendix, we calculate the first two derivatives
with respect to temperature of the upper critical field and
the penetration depth. According to Muhlschlegel, as
T approaches zero, the value for [A, —k (0)] predicted by
BCS theory should be proportional to exp( —b/kT).
Therefore, the first two derivatives of A, vanish for
T((T,. Also, the dependence on temperature of the
critical field, H, ( T), is nearly equal to the two fiuid model
expression,

H, (t)=H, (0)(1—t2) . (Ala)

A, '(t)=A, '(0)(1 t4),— (Alb)

where

(A lc)

The values of A. and its first two derivatives are given to
order t by

(0), (A2a)

(A2b)

e) A, (t) 12K, (0)
BT2 T2

(A2c)

The temperature dependence of H, 2 has been calculated
in the clean limit for T (& T, .

H, 2(t)=1.77aH, (t)(l+bt +ct ),
H, (2t)=1.77 IeH( 0)(1 —t )(1+bt +ct ),

H, 2(t) =H, ,(0)[1+(b—1)t2+(c b)t4] . —
(A3)

(b = —0.43/1.77 and c=0.07/1.77. ) Let a = 1 —b and
d =c —b. Then, a=1.24 and d=0.282. Rewriting H, 2

and its derivatives to second order in t,

H„(t)=H„(0)(1 at'), —

BH„(t) H„(0)
2at,aT T.

B H, ~(t) H, 2(0)
(
—2a+12dt ) .

BT2 T2

(A4a)

(A4b)

(A4c)

The temperature dependence of the penetration depth in
the two-Auid model is given:
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