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Concentration dependence of the wave vector of the spin-density wave of chromium alloys
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The static, unenhanced paramagnetic susceptibility of pure Cr and its dilute alloys with V and
Mn is computed within the random-phase approximation at zero temperature. Matrix elements are
calculated using a linear-combination-of-atomic orbitals scheme and alloying is treated by both the
rigid-band and coherent-potential approximations. The susceptibility exhibits peaks at wave vec-
tors which correlate well with Fermi-surface nesting features and which are indicative of antiferro-
magnetic instabilities leading to spin-density-wave ground states. These wave vectors agree to
within 1fo with neutron scattering measurements of the spin-density-wave wave vector in pure Cr,
and the calculated dependence of this wave vector on V or Mn impurity concentration follows ex-
perimental variations closely. The unenhanced paramagnetic susceptibility of pure Mo is computed
as well; and the absence of a spin-density wave, despite strong similarities between the Fermi sur-
faces of Cr and Mo, is attributed to matrix-element behavior and exchange and correlation correc-
tions.

I. INTRQDUCTIQN

There has been considerable interest in the antifer-
romagnetism of Cr and its alloys for some time. This is
largely a result of the fact that Cr is the only element
known to have a spin-density-wave (SDW) ground state.
The SDW is slightly incommensurate with the lattice,
and it has a wave vector tlsDw =0.96(2m. /a ) in the [100]
direction as observed in neutron scattering experiments. '

The appearance of an SDW arises from a complex in-
terplay of Fermi-surface nesting, electronic exchange
and correlation, and matrix-element effects. In pure Cr
it has been recognized for twenty-five years that two
branches of the Fermi surface (the electron jack at l and
the hole octahedron at H) exhibit significant nesting at
the wave vector for which the observed SDW is found.
Consequently, one may infer that nesting is an important
mechanism for the SDW in Cr. This point shall be reem-
phasized in Sec. IV based on the results of the current
study.

While Fermi-surface nesting may very well be a neces-
sary condition for the appearance of an SDW in Cr it is
surely not suScient. This conclusion can be drawn from
several observations. First, such nesting is also associat-
ed with instabilities leading to charge-density waves.
Secondly, the Fermi surfaces of Mo and W also exhibit
nesting features, yet neither of these metals has been ob-
served to exhibit an SDW. As discussed in Sec. IV, the
behavior of the transition matrix elements in the case of
Mo suppresses the SDW, and it may be presumed that
the same mechanism is responsible for the absence of an
SDW in W.

Electronic exchange and many-body effects must also
play a role in the appearance of an SDW. On the one

hand, Coulomb renormalization of band energies and ma-
trix elements must be accounted for, although this can
cause only small quantitative changes in predictions
made using the corresponding bare-electron quantities.
Furthermore, it is well known that the Pauli paramagnet-
ic susceptibility is unaffected by the electron-phonon in-
teraction. On the other hand, however, exchange and
correlation effects on the polarization bubble can be re-
sponsible for qualitative changes in the susceptibility. In
principle, the full wave-vector dependence of the suscep-
tibility is affected and the SDW wave vector can be sub-
stantially shifted. Such enhancement could lead to an
SDW in systems where Fermi-surface nesting is not as
significant as in Cr, or conspire with matrix elements
effects to suppress an SDW where nesting is significant
(such as in Mo).

In this paper a detailed examination is made of the
random-phase-approximation (RPA) paramagnetic spin
susceptibility of Cr and its alloys with Mn and V, and of
pure Mo. The unenhanced susceptibility within the RPA
is calculated from first principles at zero temperature as a
function of wave vector. Since the calculation is done in
the paramagnetic phase, sharp peaks or poles in the sus-
ceptibility can be interpreted as an antiferromagnetic in-
stability leading to the SDW. Finding the wave vector of
the SDW in this way leads to good agreement with exper-
imental data for Cr and its dilute alloys.

The outline of this paper is as follows. In Sec. II the
theoretical formulation of the paramagnetic susceptibility
and its ingredients is presented. The computational
method used in evaluating the susceptibility is discussed
in Sec. III and the results of the calculation are given in
Sec. IV, where comparison is made with experimental
measurements. The conclusions drawn from the present
investigation are discussed in Sec. V.
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II. THEORETICAL FORMULATION

A direct approach to this problem would be to perform
antiferromagnetic total-energy and band-structure calcu-
lations from the outset. DiNculties in such a procedure
have already been pointed out, and a calculation of this
type is not attempted here. An excellent, comprehensive
review of both theoretical and experimental studies of the
magnetic properties of chromium was published in 1988
by Fawcett, so it is not the intention here to review the
numerous theoretical papers. These papers fall into two
categories: (1) model studies incorporating the incom-
mensurate spin-density-wave structure and (2) first-
principles studies based upon the paramagnetic or com-
mensurate antiferromagnetic structure. Several papers in
the first-principles category are relevant to the present
approach and should be mentioned, although they did
not consider explicitly any of the alloys of chromium
treated here.

Gupta and Sinha made the first serious attempt to
compute the wave-vector-dependent susceptibility g(q),
but used non-self-consistent band-structure and
numerical-integration procedures which are not up to
today's standards. Windsor did a similar calculation and
furthermore included many-body enhancements with a
parametrized Stoner-like theory. Both authors identified
correctly the importance of interband and intraband con-
tributions to the susceptibility, but could not compute ac-
curately the wave vector of the spin-density wave.

On the other hand Skriver and Kubler' performed
first-principles studies for an assumed commensurate
form of antiferromagnetic chromium using more-
accurate band-theory techniques and modern local-
density theory. Skriver performed band calculations and
constructed an accurate Stoner-like theory of antifer-
romagnetism. He also warned about the possible sensi-
tivity of conclusions to the particular choice of density
functional employed in the calculations. Kubler mini-
mized the total energy of the commensurate structure
and showed that it was more stable than the paramagnet-
ic or ferromagnetic phases. He obtained a value for the
magnetic moment which compared well with the experi-
mental (incommensurate) moment. While both these
studies were satisfying in that they supported an antifer-
romagnetic state for chromium, neither approach was
able to explain the actual incommensurate structure of
the spin-density wave found experimentally in chromium
and some of its alloys.

In order to study the SDW in Cr and its alloys, in this
paper the paramagnetic susceptibility is examined for an
instability towards the antiferromagnetic phase. Such an
instability will be manifested by a divergence in the sus-
ceptibility at a wave vector qsD~ where the SDW could
be observed (as in a neutron scattering experiment, for
example). If the divergence in the paramagnetic suscepti-
bility at qsD~ is "smooth'*, then the transition to the anti-
ferromagnetic state would be expected to be second or-
der. The present work, as well as a previous calculation
of the susceptibility, finds behavior of this type, although
observation of logarithmic singularities with numerical
calculations is very dificult. Experimental evidence sug-
gests the transition is first order (or, at least, "nearly"

first order). It is apparent, as has been pointed out ear-
lier, that the physical system in question cannot be quan-
titatively described by paramagnetic theory in the vicini-
ty of the transition. It should not be surprising then that
the order of the transition may not be accurately predict-
ed using the present approach (see Ref. 11 for an alterna-
tive reason). On the other hand, the wave vector of the
SDW can be determined accurately since it is the wave
vector at which a divergence does occur in the paramag-
netic susceptibility.

The philosophy adopted in the present study is one
which leads to a detailed understanding of the properties
of real systems within the RPA. This has the inherent
shortcoming of neglecting short-ranged correlations in
the (long-ranged) RPA screened Coulomb interaction
(i.e., approximating the Coulomb vertex by unity). How-
ever, these correlations may often be approximately
separated from the long-ranged contribution. In this
way, expressions of the generalized Stoner-type can be
obtained for the enhanced susceptibility

x'(q)
x(q) = (1)

1 —I(q)y (q)
where y (q) is the RPA susceptibility and I(q) is an
enhancement factor containing the short-ranged correla-
tions.

Strictly speaking, the susceptibility in Eq. (1) diverges
only when the denominator vanishes [apart from a fortui-
tous case in which I(q) is zero for the wave vector at
which the RPA susceptibility diverges]. This divergence
is a consequence of the interplay of the short-ranged in-
teractions embodied in I(q) and the "uncorrelated",
screened Coulomb interaction arising in the RPA. Such
a situation is reminiscent of the ferromagnetic instability
which arises from the behavior of I(0) and y (0).

In the limit that short-ranged correlations are neglect-
ed it becomes necessary to investigate the divergent be-
havior of the RPA susceptibility. Even when they are
considered, a divergence in the full susceptibility can gen-
erally be expected when y (q) diverges (or has a sharp
maximum). This conclusion can be drawn from the work
of Janak' who finds a smooth variation in I(q=0) as a
function of atomic number for the metals V, Cr, and Mn.
Since neither V nor Mn exhibit magnetic behavior and
both g (0) and I(0) are small for Cr, the SDW in Cr is
expected to arise primarily from single-particle proper-
ties, namely, Fermi-surface nesting, or from a strong vari-
ation of I(q) with q. The role played by I(q) in the sus-
ceptibility will be examined in detail in a future paper.
For the remainder of the present study the paramagnetic
susceptibility within the RPA will be considered.

The frequency-independent RPA susceptibility is

~M„,, (k, k+q) ~'
X'(q)= 2Vua g ~™~—~ (f~„—f~+~ »

k, p, p' kp k+ col

(2)

where Ek„ is the band energy for wave vector k and band
index p, fk„ is the equilibrium Fermi occupation factor
for this energy, p~ is the Bohr magneton, and po is the
magnetic permeability of the vacuum. When there is
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nesting of branches of the Fermi surface for a wave vec-
tor q, the energy denominator in Eq. (2) becomes small.
Consequently, if sufficient areas of the Fermi-surface nest,
the susceptibility can show strong peaking, indicative of
an antiferromagnetic instability. The behavior of the ma-
trix elements connecting kp and k+qp' modify nesting
effects, and may be expected to either sharpen or weaken
a tendency toward instability.

The form of the matrix clem. ents employed here is
based on the work of Callaway et al. who originally
developed the approach for application to ferromagnetic
metals. The matrix elements are written as

For the present study, a Slater-Koster version of the
coherent-potential approximation (CPA) is used. ' In
this treatment, an averaged lattice constant for the alloy

B is defined by

a =(1—x)a„+xaz,
where a~ and az are the lattice constants of the pure
metals A and B, respectively. The bond parameters for
the alloy may then be found by application of the Har-
rison scaling scheme. ' In an obvious notation, the alloy
bond parameters are written

n

M~„(k,k+q) = g 3 +„(k)I „(q)A„„,(k+q), (3)
az

V =(1—x)"i-x~x a
a&

V~,a
(9)

I,,(q) = o,J
I' '(q ) —5I"'(q)c,',"(q)

+9I' '(q)c '(q), (4)

where q is the unit vector in the direction q and the c;
are polynomials tabulated in Ref. 3. The superscripts in
Eq. (4) indicate the appropriate orbital angular momen-
tum quantum number and the I'"(q) are the radial in-
tegrals which for 3d metals are

where A„(k) is the eigenvector of a band Hamiltonian
for wave vector k and band p, and I „(q) is a form-factor
matrix element for the neutral atom. In practice, the
eigenvectors are obtained from a Slater-Koster fit to a
first-principles band structure as discussed in Sec. III.
The essential assumption which dictates the form of Eq.
(3) is that the overlap between the d orbitals on neighbor-
ing atomic sites can be neglected. The form factor is
written

where n is —2 for s—s, s—p, and p—p bonds, ——', for
s—d and p—d bonds, and —5 for d- -d bonds. These pa-
rameters are then used to generate the alloy band struc-
ture. The only remaining quantity in the susceptibility to
contend with in modeling alloys is the form factor which
is treated the same as in the rigid-band approximation
above, Eq. (7).

III. COMPUTATIONAL SCHEME

As a first step in reducing the susceptibility [Eq. (2)] to
a form convenient for numerical calculation, the wave-
vector sum is restricted to an irreducible —,', of the Bril-
louin zone (IBZ). In this way

~M„„,(gk, ,Pk, +q) ('
X'(q)= —qua X X X

p p, p' k, GIBZ Pk,.p Pk,. +qp'

I'"(q) = J r R (r)j &(qr)dr, (5) x(j"p,, jp, +

where the R (r) are Clementi wave functions for the d
states of the neutral atom

R(r)= g a~r e
J

The quantities a. and p are tabulated parameters. '

Equation (5) can now be integrated analytically, resulting
in an algebraic expression for the form factor. Full de-
tails of the evaluation of the form factor are given in Ref.
3.

In order to treat alloying within this framework, the
rigid-band approximation can be employed. This as-
sumes that atoms of the impurity species only serve as
donors or acceptors of electrons. The electron density
and Fermi energy are altered, but the underlying band
structure of the host metal is not affected. Since atomic
wave functions appear in the form factor, the latter must
be modified to accommodate alloying. This is done by as-
suming that the impurity atoms contribute to the alloy
form factor proportionally to their concentration with
the host atoms making up the balance. For example, for
Cr, V alloys the form factor is approximated by

I; ' " "(q)=xI; (q)+(1—x)I;~.'(q), (7)

where x is the impurity concentration.

E~ =Ek „, (1 la)

Pk,. +qp' k. +P qp'
(1 lb)

Since the occupation factors depend only on energy, it
remains only to consider the role of the p rotations in the
matrix elements. The eigenvectors transform under rota-
tion according to

A(Pk; ) =P A(k; ), (12)

so that the matrix elements appearing in Eq. (10) may be
written

M„„(Pk;,Pk;+q)= g [PAt(k;)] I „(q)
m, n

X [PA„(k;+P 'q)]„. (13)

Consequently the susceptibility takes the form

(10)

where the k; are restricted to the IBZ and the p sum runs
through the 48 rotation operators which map the IBZ
into the full first zone. An immediate simplification
arises since the band energies are invariant under rotation
to an equivalent point in the zone
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~M„„,(Pk, ,Pk, +q) ~'
X'(q)= —

2/ ua g g
p )M, p'k. eIBZ k p &;+q')M'

x(f„f„—~ ),
(14)

where q'=P 'q and the matrix elements are written out
in Eq. (13).

In Eq. (14), the rotation operators p appear generally
in the role of transforming q. Depending on the symme-
try of q, not all of the 48 rotations yield a unique vector.
In particular, there are only 6 distinct rotations for
qcc(1,0,0), 8 for qo:(1, 1, 1), and 12 for qcc(1, 1,0).
Since the symmetry directions are generally of the most
interest, this yields a further simplification which
significantly reduces computing times. The primary
reduction results from the fact that the band structure,
Ez +q.„and A„.(k;+q'), need only be found for the dis-

t

tinct q'. The P rotations of the eigenvectors in calculat-
ing the matrix elements do not constitute a substantial
expense of time.

As a matter of convenience, and to gain an additional
savings of computing time, the band structure is obtained
from a 34-parameter Slater-Koster fit' to a first-
principles linear-combination-of-atomic-orbitals (LCAO)
calculation for Cr. ' Since the details of the calculation
and fitting procedure are discussed elsewhere' it su%ces
to indicate here that the fit has a rms error of less than
0.3 mRy. As is appropriate for a transition metal such as
Cr, 9 bands (and basis vectors) —ls, 3p, and Sd —must be
summed over in an expression such as Eq. (13).

In order to find the matrix elements it is necessary to
evaluate the form factor I;J(q); note that this quantity
need only be calculated once for each q. As indicated in
Sec. II, the formulation by Callaway et al. for I;J is ap-
propriate only for the d basis vectors, and these are ap-
proximated by the neutral atom wave functions of
Clementi and Roetti. ' For the calculation to remain
tractable, the s and p contributions to the form factor are
treated as plane waves iq the Born approximation. This
is equivalent to sitting the s and p parts to a Kronecker 5
function and ignoring s-d and p-d mixing.

The wave-vector suin in Eq. (14) is performed using the
analytic tetrahedron method (ATM). ' In this approach,
the IBZ is decomposed into a integral number of non-
overlapping tetrahedra, each of whose four vertices lies at
the tip of one if the k,. participating in the wave-vector
sum. Three sets of k; are used in this calculation generat-
ed from 8, 20, or 24 equal divisions along the 6 line.
These correspond, respectively, to 55, 506, and 819 k;
points in the IBZ.

For a tetrahedron defined by four wave vectors k~ to
contribute to the susceptibility, it must contain at least
some occupied states in the band p, and the correspond-
ing tetrahedron defined by k~+q must contain some
unoccupied states in the band p'. If a branch of the Fer-
mi surface passes through a tetrahedron, the surface ele-
ment is assumed to be a plane. In the limit of sufficient k;
point density, this becomes a reasonable approximation.
The Fermi wave vectors within a tetrahedron through

which the Fermi surface passes are determined by inter-
polation between the band energies at the vertices and the
Fermi energy; the latter quantity is found from an in-
dependent density-of-states calculation. The two sections
of the tetrahedron separated by the Fermi surface are
subdivided into smaller tetrahedra with the matrix ele-
ments at the vertices determined by interpolation. This is
generally preferable to constant matrix-element schemes
employed by earlier workers since it improves the accu-
racy of the computed susceptibility using a relatively
modest number of wave vectors k, in the IBZ.

Results for the susceptibility presented in Sec. IV are
calculated using 506 k; points in the IBZ. Comparison
with calculations along the major symmetry directions
using 819 k, points yields agreement to within one per-
cent of the 506-point calculations, and it may be conclud-
ed that the mesh density used here provides accurate re-
sults for the susceptibility within the theoretical formula-
tion described earlier.

IV. RESULTS

21D

200

190
Mo

180
0.0 0.2 0.4 0.6 0.8 1.0

(a/2it:} q
FICx. 1. RPA susceptibility for Cr and Mo along the 6 line in

the bcc Brillouin zone using matrix elements of unity.

In order to gain insight into the role of Fermi-surface
geometry in producing the SD%' in Cr, it is useful to con-
sider a calculation of the paramagnetic susceptibility in
which the matrix elements are taken to be unity. This
permits matrix element behavior to be partially dis-
tinguished from nesting effects, clarifying the physical
origins of the SDW. The results of this calculation are
shown in Fig. 1. As may be seen, there is significant vari-
ation of this "unnormalized" susceptibility over the zone.
In particular, a well-defined peak appears at the nesting
wave vector which, as previously discussed, corresponds
to the observed SDW wave vector. This is strongly sug-
gestive of a connection between the two, but several prob-
lems with Fig. 1 should be pointed out. First, the peak
(pole' ?) sharpness is hard to estimate. Second, there are
other maxima present, including that at q=O. Third, the
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FIG. 2. Same as Fig. 1, except the properly normalized
wave-vector-dependent matrix elements discussed in the text
were employed.

q~O limit is wrong by an order of magnitude because of
the failure to include matrix elements.

Since the Fermi surface of Mo is very similar to that of
Cr, one may infer that the unnormalized paramagnetic
susceptibilities of the two metals are also similar. This
point is established in Fig. 1 where a peak appears at the
nesting wave vector of Mo. On the other hand, however,
an SDW (or other magnetic instability) has not been ob-
served in Mo. For this absence to be fully understood, it
becomes necessary to include matrix elements, as well as
exchange and correlation enhancement, in a calculation
of the susceptibility.

The computed susceptibility using the matrix elements
discussed in Sec. II is shown in Fig. 2 for pure Cr and
Mo. In both cases the q~0 limit correctly recovers the
density of states at the Fermi surface as found in a
separate calculation. Both also exhibit broad maxima in
the vicinity of vr/a along the b, line. These maxima arise
from the interband matrix elements which increase rapid-
ly with q, while intraband matrix elements rapidly de-
crease with q. While enhancement corrections will be ex-
amined in detail in a future publication, preliminary re-
sults' indicate that these remove the broad maxima.

The principal feature seen in Fig. 2 is the peak persist-
ing in Cr at the nesting wave vector: Matrix-element
variation does not alter qsow. Moreover, it reinforces the
suggestion that Fermi-surface geometry plays a leading
role in the formation of the SDW. In the case of Mo,
however, the peak in the susceptibility at the nesting
wave vector is reduced, suggesting that matrix elements
may eliminate the sharp feature. The "sharpness" of
these peaks is difficult to determine accurately, and
whether there is a logarithmic singularity at qsow for the
true band structures with an exact calculation of g(q)
may only be surmised. Numerical calculation of the
Hartree-Fock density of states for the uniform electron
gas is unable to produce the known logarithmic depen-

dence using the ATM with a very large number of
tetrahedra.

The results discussed above for the paramagnetic sus-
ceptibility of Cr agree qualitatively with a previous study
of the problem reported by G-upta and Sinha. Their pre-
diction for the wave vector of the SDW, 0.88(2m/a)
along the 6 line, was based on arguments similar to those
here since their susceptibility did not exhibit a divergence
either. The discrepancy with our value, and the experi-
mental one, is apparently due to di6'erences in band-
structure and matrix elements, and the use of a less accu-
rate integration method than that employed here to com-
pute y (q).

At this stage it is worth emphasizing a few of the
points made above. For one thing, the SDW in Cr is in-
ferred j;o exist at a wave vector. where there may not be
true divergence in the susceptibility. Secondly, the
wave-vector dependence of the exchange and correlation
enhancement could lead to changes in the structure and
position in the zone of the SDW. In the first case, there
is structure in the portions of the Fermi surface where
nesting occurs. In addition, the energy denominator in
the susceptibility is small in these regions. Thus, while an
accurate calculation of unenhanced susceptibility has
been achieved, numerical error can possibly be responsi-
ble for suppressing the very fine features associated with
the nesting which lead to divergent behavior is y (q). On
this basis, and the sharpness of the peak which is found,
it may be concluded the SDW does indeed appear at the
wave vector of this peak. In addition, the wave vector of
the peak agrees closely with the wave vector of the SDW
found experimentally. This lends support to the notion
that single-particle effects (nesting and matrix-element
variation) are primarily responsible for determining the
wave vector of the SDW in Cr. For pure Cr, many-body
enhancements have been included in the calculation of
y(q), resulting in a slight shift in the location of qsDw and
producing almost exact agreement with the experimental-
ly observed value. In addition, the enhanced g(q) shows
a pole instead of a peak at qsow.

'

Alloys of Cr with V and Mn also exhibit spin-density
waves. The neutron scattering data of Koehler et ai. ' in-
dicate that qsow increases with increasing concentration
of Mn and decreases with increasing concentration of V.
By modeling dilute alloys within the rigid-band or CPA
approximation the present calculation is able to account
for this behavior very well. Results are shown in Fig. 3
and are listed in Table I. Not. only are the trends in the
data followed closely, but the quantitative agreement is
very good as well. The CPA and rigid-band results are
essentially the same at these alloy concentrations, so only
CPA values are shown in Fig. 3.

Figure 3 includes the low-temperature data of Ref. 1,
which is only slightly lower than the high-temperature
data reported there. For pure chromium the many-body
enhanced susceptibility' displays a pole at q =0.95
(2'/a ), yielding almost exact agreement with the data in
Fig. 3 at ~=0. The enhanced susceptibility is much
more dii.cult to compute for the alloys and has not yet
been obtained. Assuming that the same small shift in

qsDw occurs when enhancement of y (q) is done for the
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1.00 TABLE I. Peak positions, q»w of y (q) for Cr& „(V,Mn)„
alloys. Here q»~ is along the 6 axis and is given in units of
(2m/a ), where a is the lattice constant for the alloy.

0.98
'0 SDW

V
9 sDw

Mn

0.96

U

C4
0.94

0.92

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

0.9635
0.9565
0.9495
0.9425
0.9330
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0.9695
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0.9910
0.9950
0.9995

0.90
0.0
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I

3.0
I

4.0 5.0

alloys, the values of qsDw in Table I and Fig. 3 would be
lowered by about 0.01(2n /a ), and the estimated
difference between theory and experiment for Mn and V
alloys would be about 1%. Agreement to within this
small difference provides further evidence of the strong
relationship between the Fermi-surface features of Cr and
the wave vector of the associated spin-density wave as
originally postulated by Lomer. Note that the spin-
density wave is predicted to be commensurate with the
lattice in Mn alloys of about 7 at. % (Table I).

A further check of the calculated values is provided by
the recent work of Fawcett et al. ' in which the wave
vector of an incommensurate spin-density-wave paramag-
non was determined from inelastic neutron scattering
in Crp 95Vp p5 ~ Their high-temperature result is
q =(0.916+0.002)2m /a, which agrees well with the value
at x =0.05 if. it is corrected by the same enhancement
shift as in pure Cr. It should be remembered, however,
that temperature corrections to the band structure and
susceptibility have not been considered in the present
theoretical study.

Apparently, the only previous theoretical work on the
role of alloying on the SDW is that of Machida and Fuji-
ta." They obtained an exact solution to a mean-field
Hamiltonian using a two-band, one-dimensional imper-
fect nesting model. The physical origin of their model is
the Fermi-surface nesting that appears in Cr and was
originally exploited by Lomer. Their results for the con-
centration dependence of qsDw are similar to those

x('/)
FIG. 3. Concentration dependence of the wave vector of the

spin-density wave in alloys of Cr with V and Mn. The origin of
the q axis on the graph has been chosen to exaggerate
differences between theory and experiment. Squares connected
by dashed lines represent the experimental values of Ref. 1 of
the text. Solid dots connected by lines are the RPA computed
values. x is the concentration of V (Mn) in percent.

presented here. The results reported here are derived us-
ing accurate band-structure and matrix elements in the
calculation of the susceptibility. While approximations
were made, the present work is a first-principles calcula-
tion which does not rely on empirical parameters for ac-
curate comparison to experiment.

V. CONCLUSION

The unenhanced paramagnetic susceptibility of pure
Cr has been computed within the random-phase approxi-
mation. At a wave-vector qsDw=0. 96(2m/a) along the
b line there appears an antiferromagnetic instability to-
wards an SDW ground state. The calculated qsow corre-
lates well with Fermi-surface nesting features and is in
very good agreement with neutron scattering measure-
ments of the SDW wave vector. This result confirms that
the role of Fermi-surface geometry is primary in the ap-
pearance of the SDW.

The calculation of the unenhanced susceptibility of
pure Mo shows virtually no peak at the nesting vector
despite the fact that the Fermi surface of Mo is very simi-
lar to that of Cr. This absence is due largely to matrix-
element variation over the Brillouin zone. When many-
body enhancements are included, this RPA peak is not
sufficient to produce a pole in Mo. '

Dilute alloys of V or Mn in Cr also exhibit spin-density
waves at wave vectors which vary with the concentration
of impurity species. The computed concentration depen-
dence of qsow for both V and Mn in Cr closely follow ex-
perimentally observed trends, further substantiating the
long held belief in the relationship between paramagnetic
Fermi-surface geometry and the spin-density-wave
ground state of Cr and its alloys.
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