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Exact results for randomly decorated magnetic frustrated models of planar Cu02 systems
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We present exact results for a random annealed decorated square lattice in which the nodal spin
interacts antiferromagnetically (J& (0) with its nearest neighbors and ferromagnetically (J)0) with
a decorated spin on the bond between them. For the n-vector version of the model, we present an
exact calculation of the effective coupling of a decorated bond. Moreover, for the Ising version we
obtain exactly the magnetic phase diagram. In particular, we find that this model exhibits a critical
decorated bond concentration p, =(1—&2/2)/2=0. 1464. . . above which, for small values of the
ratio ~J~ /J~, the antiferromagnetic phase ceases to exist, i.e., the paramagnetic phase extends to
T=O. This intriguing exact result for the magnetic phase diagrams may possibly have relevance for
the planar copper oxide superconducting materials; although the Cu02 planes in these materials are
believed to be described by quantum Heisenberg spins, our results for the Ising model may capture
some of the relevant qualitative physics.

I. INTRODUCTION

The important structural feature common to all high-
T, superconducting materials discovered so far is the ex-
istence of CuOz planes. Currently, there are some
theoret'ical arguments' and growing experimental evi-
dence, including especially neutron scattering,
muon-spin rotation, ' ' nuclear-quadrupole-resonance
(NQR) technique, ' transport, ' and Mossbauer' mea-
surements, that magnetism plays a central role in
the Cu02-based superconductors. For instance, consider
the structurally simplest superconductor system,
La2 „(Sr,Ba) CuO~ . For a range of concentrations x
of doping material (Sr,Ba), the three-dimensional (3D) an-
tiferromagnetic long-range order undergoes a phase tran-
sition to a disordered phase (some authors find evidence
of a spin-glass phase' ' ). However, the experimentally
observed' 2D antiferromagnetic correlations strongly
suggest the existence of large domains of antiferromag-
netic 2D order in the superconducting state.

Of course, superconductivity in the new materials ap-
pears when antiferromagnetism decreases. However,
from the theoretical point of view —as has strongly been
argued by Schrieffer et al. —it is reasonable to believe
that 2D spin order exists over domains characterized by
large sizes compared to the size of the Cu02 unit cell.
Although this may not characterize the existence of
long-range 2D order, the size of such domains could be
large enough to create an antiferromagnetic underlying
local order in which the pairing of the conducting holes
occurs, as required by most of the pairing scenarios

presented so far. The exact connection between the
magnetism of these doped CuOz planes and the novel su-
perconductivity properties of these materials defies a
complete and consistent explanation.

It has been shown that the effect of doping" or
changing oxygen content '"' in pure La2Cu04 is to create
holes (0 ) on the oxygen atoms located between the adja-
cent copper ions in the CuOz planes. With each hole is
associated an unbalanced spin. This generates a local fer-
romagnetic exchange interaction with the two nearest-
neighbor copper ions, which will compete with the other-
wise antiferromagnetically coupled Cu + ions giving rise
to magnetic frustration. As a result of this frustration
mechanism one expects that the magnetic behavior of the
CuOz planes should be strongly influenced by the pres-
ence of these holes on the oxygen ions which are respon-
sible for carrying the supercurrent. This fact, by itself, is
a stimulating hint for the possible connection between the
magnetic and the superconducting properties of these
materials. Moreover, these holes can be conceptually
considered either as quenched or annealed random distri-
buted in the insulating and metallic phase, respectively.

If we denote the spins of the two neighboring Cu +

ions by S, and S2, and that of the O ion by o., then the
relevant magnetic Hamiltonian for each bond is
H&2 = —Jo (S,+S2) with J )0. Since J results from
overlap integrals over the Cu-0 distance, one expects J to
be larger than the original antiferromagnetic Cu-Cu cou-
pling J~. Indeed, very recently ab initio calculations'
have been used to estimate J~ /J = —0.36 in
La2 Sr Cu04. On the other hand, pure LazCu04 is or-
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thorhombic, but the substitution of Sr for La stabilizes a
tetragonal phase. The Sr-doped materials for x ~0.05
were shown to be superconductors with a maximum tran-
sition temperature at about 40 K when x =0.15 (see Ref.
21). The superconducting properties are lost for
x =x,„~0.32—for the best analyzed samples with no
oxygen vacancies (see Ref. 22)—well inside the tetrago-
nal phase where the Cu02 planes interact very weakly
with each other.

In order to make contact with doped La2CuO4, we
present exact results for a decorated square lattice in
which the copper spin interacts (i) antiferromagnetically
(Jz (0) with its nearest-neighbor Cu + ions, and (ii) fer-
romagnetically (J )0) with an oxygen hole on the bond
between adjacent Cu + atoms. The doping increases the
concentration of holes, which are assumed to be annealed
and randomly distributed. A decorated model is a spin
system in which the spins at the extremities of one bond
("nodal" spins) interact with any "physical system"
located on the bond that connects them. By integrating
out the degrees of freedom of the intermediate physical
system, one generates an effective coupling K,z between
the nodal spins. In general, K,& depends on the tempera-
ture and on the parameters which characterize the
decorating physical system. Although the decorating
system may be considered as general as one desires, most
of the decorated models studied so far consider only Ising
+1 nodal spins. Here, for the n-vector version of the
model we present an exact calculation of the effective
coupling of a decorated bond. Moreover, for the n =1
case (Ising model), we obtain exactly the magnetic phase
diagram for a square lattice. In particular, we find a crit-
ical decorated bond concentration p, =0.1464. . . above
which, the phase is unstable, i.e., ceasing to exist for
small values of the ratio

~ J~ /J~.
We argue that this antiferromagnetic breakdown may

account for the rapid downturn of Tc observed in
La2 (Sr,Ba) Cu04 well inside the tetragonal phase ~

for large values of x as well as favors any pairing mecha-
nisms' which require an antiferromagnetic underlying

I

order. Moreover, our calculation also provides a possible
interpretation for the low current density and the strong
2D antiferromagnetic Auctuations observed' in these
materials.

II. MODELS AND PHASE DIAGRAM

For the n-vector model, the decorated magnetic bond
Hamiltonian is

F exp(K, ffS, Sz) =Tr I o I exp[Ko" (S,+S2)+K~ S, Sz],
(2)

where K:J/kiiT—, K„:—J~/kiiT, kii is the Boltzmann
constant, T the temperature, and F, a factor that contrib-
utes to the free energy of the system, plays an important
role in the stabilization of the antiferromagnetic phase.

The trace in (2) is a constrained n-dimensional integral
and can be performed as in Ref. 29, leading to

F exp(K, ffS, .S,)=—,'(2m)" I( l2) —i(u)u

Xexp(K„S, Sz), (3)

where I (u) is the modified Bessel function of the first
kind of order rn, and

u =Kcr(S, +S~+2S,.S2)'~ (4)

where o=~o ~, S, =~S), and Sz=~Sz~. We can take
S, =S2=o.=1 and S& as the unit vector in the z direc-
tion. Hence S

& S2 =cos0, where 0 is the angle between S,
and S2.

From Eqs. (3) and (4) we see that F =F ( 8) and
K ff K ff ( 8 ). Furthermore, from symmetry considera-
tions, F(8+a)=F(8) and K,ff(8+sr)=K, ff(8). Using
these relations we obtain

Hb= J—o (S,+S2)—J„S,S2,

and the total Hamiltonian of the system is given by
H= gbH—b. Making use of the decoration transforma-
tion we write

F(8):—(27T) I(&y2)
02K cos — I(„/2), 2K sin
2

1 —(n /2) 1/2
0 0

sin —cos
2 2

K,ff(8) = ln .1

2 cos0

0I(,/2), 2K cos

0I(„/2), 2K sin
2

02K cos
2

02K sin
2

1 —(n /2)

(~/2) +Kg e (Sb)

The above equations are the generalization of the decora-
tion transformation introduced in Ref. 27. Table I shows

K,ff(8):—K,ff(8) —K„

for the special cases n = 1 —3, where we use the relation

lim I(„q~),(u)u' '"~ '=2' '"~ '/I (n/2) .
u~0

I

In Fig. 1 we show the variation of K,ff(8) with respect to
the reduced temperature kiiT/J, for several different
values of the configurational angle 0, for the cases n =1
(Ising), n =2 (XY), and n =3 (Heisenberg). Note that for
n =1, K,ff is 8 independent (see Table I). For the n =2
and 3 cases, however, there exists a weak dependence of
K,z on the angle 0 which is noticeable only at low tem-
peratures, as one can see from Fig. 1 for curves labeled
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TABLE I. The efFective coupling K,z(O)=K,&(O) —K~ for
decorated Ising (n =1), XP (n =2), and Heisenberg (n =3)
models. K,tt(K, K„,g) =K„+—,'ln

1+2g cosh(2Ã)
1 +2n

decoration transformation we get for the Ising case

(7a)

E,ff(O)

—,
' in[cosh(2K) ]

Io(2K cosO/2)
ln

2 cosO Io(2K sinO/2)

O sinh(2K cosO/2)
ln tan

2 cosO 2 sinh(2K sinO/2)

F(K, rt) = [(I+2q)[1+2'cosh(2K)]I ' (7b)

where q =exp—(p, /ks T) is the fugacity.
For the square lattice, the partition function is

Z =F Z, (K,ft), where Z, (K, s) is the Onsager partition
function with effective coupling J,ff —=k~TK, ff and X is
the total number of bonds. We can eliminate the fugacity
in (7) in favor of

Hb = Jtbo (S, +Sz) —J—„S,S2 ptb, — (6)

where tb=1 if bond b is decorated and t„=O otherwise
and p is the associated chemical potential. Applying the

2.5

n =2 and 3. Hence, we should note that the nature of
variation of K,ft versus k&T/J for n =1—3 presents a
common basic behavior, which is the fact that EC,ff de-
creases when kz T/J increases, and the 8 dependence of
E ff for the XY and Heisenberg models is negligible at
high temperatures and is also weak in the low-temper-
ature region.

In the lanthanum cuprates the spins are more likely to
behave as Heisenberg quantum S =

—,
' spins, although

some weak Ising anisotropy has been observed. ' How-
ever, the lack of knowledge of the partition function for
the square lattice for the XYor Heisenberg spins prevents
us from using the results of the effective coupling for
n =2 and 3, although some approximate procedure can
be used. ' Hence, in this paper we restrict ourselves to
the Ising model, for which we will obtain the exact solu-
tion. Furthermore, as we are interested in the metallic
phase where the holes are mobile, it is more appropriate
to consider the annealed rather than the quenched case.

To take into account the concentration dependence of
the holes, we generalize (1) to

BK,s.(K,K„,g)
p =—(tb ) =g lnF(K, q)+e

. an
'

an

where p is the concentration of decorated bonds and

e= (S,S ) =—lim — lnZ, (K, ),1 a

(8a)

(8b)

is the nearest-neighbor pair correlation function.
Using the Onsager partition function, (8) yields

g=[A +(A +2pB)' ]/B,
where

(9)

and

A:—cosh(2K)(2p —1 —e)+2p —1+v,

B —= 8(1—p)cosh(2K) .

1
1

(1+2')(&2—1)
ln

2K I+2g cosh(2K)
(10)

with g given by (9). Here e is set equal to its critical
value, e, = —&2/2. In Fig. 2 we show the phase dia-
gram whose transition lines are obtained from Eq. (10)
for two particular cases, p =0.14 and 0.15.

Substituting (9) into (7) gives K,tt(K, K„,p) in terms of
the concentration p.

The Onsager solution, sinh(2K, &)= —1, can also be
used to obtain the phase boundary,

2.0—
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Keff

1.0—

0.5—

0
0

I

0.2
I I

0.4 0.6
kBT/ J

I

0.8 1.0

FIG. 1. The decorated eA'ective coupling K,z as a function of
the reduced temperature k& T/J for the Ising (n = 1), XY
(n =2), and Heisenberg (n =3). The curves labeled (a), (b), and
(c), are for 0=0, O= m/6, and O =2m /3, respectively.

III. DISCUSSION AND CONCLUSION

Here we discuss the magnetic phase diagram for the Is-
ing model and construct a hypothetical correlation be-
tween its features and the superconducting properties of
the Cu02 planes in the lanthanum cuprates. Although
for these materials the spins are more likely to be Heisen-
berg quantum spins, we hope that the qualitative physics
still holds.

Figure 2 clearly reveals the existence of two distinct re-
gimes for the phase diagram k&T, /J versus ~J„/J~.
Below a critical concentration

p, =
—,
'

( 1 —&2/2) =0. 1464. . .

the antiferromagnetic phase is stable for any value of
~
J„/J~ in the low-temperature region, while for p )p,

the antiferromagnetic ground state is stable only for
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FIG. 2. The exact phase diagram of the 2D decorated Ising
model for different values of the concentration p of decorated
bonds. The transition line for (a) p =0.14 (p &p, ) and (b)

p =0.15 (p )p, ) illustrates the drastic transition from one re-

gime to another. Here 2 and I' denote the antiferromagnetic
and the paramagnetic regions, respectively, and the exact fron-
tier between A and I' for p =0 is also shown.

~J„/J~ 1. Since the antiferromagnetic order is essential
for most of the recently proposed magnetic-pairing mech-
anisms, the drastic transition from antiferromagnetic to
paramagnetic phase, observed in Figs. 2(a) and 2(b) for
small values of

~
J„/J~, can well account for the rapid

drop of T, (x) as one increases the doping concentration x
beyond x

We note that our concentration p of decorated bonds is
a number that varies between 0 and 1, while the real con-
centration x of doping Sr or Ba is a number between 0
and 2. As has been shown, below x =0. 15 there is a
one-to-one correspondence between the density of holes
and x, so we assume x =2@. If this relation holds for all
values of p it will lead to x,„-0.2928, above which the
superconducting state, if supported by antiferromagnetic
based pairing mechanism, should disappear. However, as
in the regime x ~0. 15 some of the holes may be associ-
ated with ions of Cu or even trapped by the dopant
atoms, one expects x „+0.2928, which seems to be in
good agreement with the recent experimental observa-
tions due to Torrance et al. of x,„=0.32. It is be-
lieved for the La2 (Sr,Ba) Cu04 compounds that
~J„/J~ &0.45; e.g. , the ab initio calculations in Ref. 19
suggest

~ J„/J~ =0.36. Then from the strong dependence
of the transition lines on p we can understand on purely

statistical mechanical grounds why the antiferromagnetic
2D order (and, as a consequence, the superconducting
state) is so sensitive to the doping concentration.

Also, the reentrant antiferromagnetic phase which we
find between J„/J =0.45 and ~J„/J =1, for p )p„
can be understood. One must consider that the interac-
tion Hamiltonian of the decorating spin with the nodal
spins is of the form —Jo (S&+S2). As p increases, at low
temperatures the antiferromagnetic state will become un-
stable due to the "dilution" of the effective ferromagnetic
coupling induced on the decorated bonds. As this con-
centration is still too small to support a ferromagnetic
long-range order, the system will undergo a phase transi-
tion to a paramagnetic state in order to minimize its free
energy. However, as the temperature increases, the sys-
tem will prefer to recover its antiferromagnetic order,
since this state will satisfy the direct antiferromagnetic
interaction —J~S,S2 between the nodal spins and will
free the decorating spin to make a large contribution to
the entropy of the system, minimizing this way its free
energy.

The existence of the reentrant antiferromagnetic phase
may help in finding higher-T, superconductors, if it is
possible to find compounds in which the competing ex-
change ratio

~ J„/J~ is aboue 0.45, since in that region of
the phase diagram [see Fig. 2(b)] the antiferromagnetic
order survives for concentrations above p, . We also pre-
dict that in this

~
J„/J~ regime one should expect also a

reentrant superconducting state, since the antiferromag-
netic order disappears as the temperature is lowered.
This idea is supported by the fact that an apparent reen-
try behavior has experimentally been observed in a
high-T, superconductor YBa2Cu307 at low temperatures.
The nature of this predicted reentrant superconducting
state should not be the same as the states observed in su-
perconductors doped with ferromagnetic impurities, for
in that case the disappearance of the superconducting
state is driven by the onset offerromagnetic ordev while in
our case it should occur with the breakdown of antiferro
magnetic order.

Before concluding, we note some parallels between our
model and (a) current ideas on the granular nature of the
high-T, superconductors and (b) the strong 2D antiferro-
magnetic fluctuations observed in these materials. ' For
the 2D antiferromagnetic order in these grains, the local
concentrations of decorated bonds in different domains
are difFerent. Some domains will have p closer to p, than
others. The migration of holes through the weak links
from one domain to another may increase the local con-
centrations of some of the domains above p, and this will
destroy the local antiferromagnetic order and conse-
quently the superconducting state. The holes will then
migrate to other superconducting regions, lowering again
the local concentration of the region left and thus giving
way to a reconstruction of the antiferromagnetic order.
The same effect will now occur in the destination
domains, some of which will also undergo a supercon-
ducting to normal state transition. This picture is con-
sistent with the strong 2D antiferromagnetic Auctuations
observed' in the La2 „(Sr,Ba) Cu04 . If one could
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find compounds with
~ Jz/J~ above 0.45, we predict that

the antiferromagnetic Auctuations should be reduced.
Hence, the critical current should also increase since the
underlying antiferromagnetic order is much less sensitive
to the hole concentration.
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