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We clarify the basic properties of superconductivity in the Kronig-Penney model, which mimics a
layered superconductor or superconducting superlattice, taking into consideration the electron's
motion parallel to the layer. The exact integral kernel of the Gor'kov equation is obtained by the
analytical Green s function and based on it a Friedel-type microscopic oscillation of the pair poten-
tial at the boundary is correctly treated for the first time. The transition temperature T, is calculat-
ed with a rigorous treatment of the interbapd effect. It is found that this quantity can only be
correctly determined by solving the Gor kov equation with proper inclusion of the spatial depen-
dence of the pair potential. It cannot be determined only by densities of states obtained from band
calculations with the use of a simple BCS equation. The dependence of T, on the superlattice
period and the spatial dependence of the pair potential are also discussed. The critical temperature
shows nonmonotonic behavior as a function of the thickness period, which cannot be explained by
the usual theory of the proximity effect by de Gennes.

I. INTRODUCTION

With the rapid development of technologies for fabri-
cating artificial materials, it is possible to design super-
conducting microdevices at the atomic scale, ' and su-
perconducting superlattices" " may become promising
candidates for new devices. Novel types of supercon-
ducting systems recently developed cannot be adequately
described by the existing theories of superconductivity
due to many limitations.

There still remain many difIIculties and unsolved prob-
lems in the theory of superconductivity in spite of its long
history. Superconductivity in nonuniform materials is not
fully understood on a microscopic basis, for example.
There are many phenomena that originate essentially
from the lack of uniformity of the system. For example,
the superconducting proximity effect' ' and the
Josephson effect are examples of nonuniform super-
conducting systems, and previous theories for such sys-
tems are rather phenomenological and cannot be con-
sidered fully microscopic.

Superconducting superlattices are very interesting be-
cause they can be designed at the atomic scale. By
changing the length of the unit period or choosing the
kind of material constructing the periodic structure, we
can fabricate many new materials. When its unit period
is large, the property of the superconductor —normal-
material superlattice is nearly equal to that of the
superconductor —normal-material junction. But reducing
the length of the unit period, the microscopic wave char-
acter becomes significant and would show exotic proper-
ties.

Most of the superconducting superlattices produced
thus far are dirty because of the atomic diffusion near the
interface; so we cannot fully control the character of the
superconducting superlattice at our disposal. But in the
near future it may be possible to fabricate clean supercon-
ducting superlattices by choosing -an appropriate com-

bination of materials and method of preparation. In such
a system, the motion of the Cooper pair cannot be de-
scribed by a diffusion equation, and the microscopic wave
character becomes significant. But there have not been
any theories to describe a clean superconducting super-
lattice on a microscopic basis.

We are especially interested in the properties and phe-
nomena related to the spatial variation of the pair poten-
tial in the unit period of a periodic nonuniform system,
which is an essential feature of superlattices. The one-
dimensional Kronig-Penney model can become the
starting model of superconductivity in many-band sys-
tems. But to make a more realistic model of supercon-
ductivity, it is necessary to take into account the three-
dimensional motion. The three-dimensional Kronig-
Penney model is the simplest but in a certain sense most
realistic model of layered materials. Therefore, in the
present paper, we aim to extend the one-dimensional
Kronig-Penney model to three-dimensional systems by
taking into consideration the electron's motion parallel to
the layer. This model can be treated analytically based
on the rigorous wave function and can describe the essen-
tial character of the periodicity, dimensionality, and lack
of uniformity of the superconductivity. Moreover, based
on the exact Green's function of the Kronig-Penney mod-
el, we can establish the theory of superconductivity of
many-band systems which is indicated by the Bragg
reAection. Since we are interested in the simplest super-
conducting system, Bardeen-Cooper-Schrieff'er (BCS)—
type local interelectron coupling is assumed, which is
constant in the constant-potential region. The interelect-
ron coupling changes like a step function at the interface,
as usually assumed in the theory of the proximity effect
(Fig. 1).

The plan of this paper is as follows. In Sec. II the
analytical expression of the single-particle Green's func-
tion is derived, from which the exact integral kernal of
the Gor'kov equation can be calculated. The extension
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FIG. 1. The picture of the Kronig-Penney model. The quan-
tities dz and dz are the width of materials S and N, respectively,
and the quantity a is a length of the unit period. The height of
the potential is expressed as U. The interelectron potential in
each region is expressed as Vz and Vz.

to the three-dimensional system is done by numerical in-
tegration. In Sec. III we investigate the superconducting
transition temperature in the thin-layered Kronig-Penney
model. Our numerical result based on the rigorous equa-
tion is compared with the usual estimation of the critical
temperature with the use of the density of states. In Sec.
IV, the spatial dependence of the pair potential in the
Kronig-Penney model is clarified in the thin-layered ma-
terial and is compared with the result of the one-
dimensional Kronig-Penney model. In Sec. V, the criti-
cal temperature and spatial dependence of the potential
are also investigated, as well as their dependence on the
length of the superlattice period.

II. GENERALIZED KRONIG-PENNEY MODEL
AND SINGLE-PARTICLE GREEN'S FUNCTION

In this section we obtain the integral kernel for the
generalized Kronig-Penney model. The periodic square-
well potential assumed in the Kronig-Penney model is
shown in Fig. 1. Electrons that travel in the x direction
feel this potential change, but this system is uniform in
the yz direction. The system is a periodic array of the S
and N materials with thickness d& and dz, respectively.
We only consider the case in which the potential U in the
material N is positive, without losing generality. The
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FIG. 2. The energy band structure determined by Eqs. (2.11)
and (2.12).

value of the interelectron coupling V(x) in the S and X
region is denoted by Vz and V&, respectively. We can
change the band structure of the system in the normal
state by choosing the length dz, dz and the height of the
potential U. Previous theories of Lawrence and
Doniach and Klemm, Luther, and Beasley treat layered
materials with the use of a tunneling model. In this mod-
el the electron's motion perpendicular to the layer is ap-
proximated by a tight-binding model, and parallel to the
layer by a free-electron model. Our Kronig-Penney mod-
el becomes equivalent to the tunneling model when the
potential barrier at the N region is much larger than the
Fermi level. If it is wide, the previous theories ' can be
reproduced. In this case we consider only the lowest
band for the direction perpendicular to the layer. In our
theory, the pair potential 5(x) depends only on the x
coordinate due to the translational invariance for the yz
direction, and satisfies the following equation:

a(x) =S(x)= V(x)T y f" f" f" H (x,x')b(x')dx'dy'dz'

= V(x)T g f E„(x,x')h(x')dx' . (2. l)

In the preceding equation H (x,x ) is the usual integral kernel of the Gor kov equation in the three-dimensional sys-
tem, and K (x,x') is the integrated one in the direction yz, parallel to the layer plane:

K (x,x')= f f H„(x,x')dy'dz'= f f G„(x,x')G (x,x')dy'dz'

= I/(2m. )' f f G„(x,x', k, k, )G (x,x', k, k, )dk dk,

=m/(2') f G (x,x', E)G „(x,x', E)dE .
0

In Eq. (2.2) G„(x,x') is the single-particle Green's function and can be expressed as

G„(x,x')= I/(2m) f f G„(x,x', k, k, ) exp[ik (y —y')+ik, (z —z')]dk dk, .

(2.2)

(2.3)
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In the last line of Eq (2.2), we introduced 6 (x,x', k~, k, ) by

6 (x,x', E)=G (x,x', k~, k, ),
since it depends on k, k, by the combined quantity

s=(k, +k )/2m,

(2.4)

(2.5)

where m is the effective mass of the electron for the yz direction. At first we obtain the Green's function 6 (x,x', e),
which is given by the Green s function for the motion of the x direction for the erat'ective Fermi level EI; —c. %'ith use of
this Green s function, integral kernel K„(x,x ) can be obtained with the integration over E. The Bloch function 4k(x)
of the jth energy band with the crystal momentum k along the x direction is given by

'WJ, (x) =4k(x, a.(k)),
[u, (a —2mU)'~ sin(ax) —u2 cos(ax)]/A '

( —ds &x &0),
Vi, (x,a)= '

[u, a sin[(a —2mU)'~ x]—u2 cos[(a 2m—U)'~ x]] /A '~ (0&x &dz),

(2.6)

(2.7)

u, = cos[(a —2mU)'~ d~] —cos(ad+) exp(ika),

u2=asin[(a —2mU)' d&]+(a —2mU)' sin(ad&)exp(ika),

3 =[c)f(k, a)/c)a] Isin(ad&) cos[(a —2mU)'~ d~]+ sin[(a —2mU)'~ d&] cos(ad&)[a/(a —2mU)'~ ]I,
f (k, a)= cos(ka) —cos(ads) cos[(a —2mU)' d~]

+ [(a —2m U)' /a+a l(a 2m U—)'~ ] sin(ads ) sin[(a —2mU)'~ dz]/2 .

(2.8)

(2.9)

(2.10)

In Eq. (2.6) a.(k), are the jth solution of the following equations:

a /2m =P /2m+ U,
2apcoska =2apcos(ads) cos(pd„) —(a +p~) sin(ad+) sin(pd~) .

The energy of this state measured from the bottom of the potential in S is given by

E, (k)=a~. (k) /2m,

(2.11)

(2.12)

(2.13)

and the wave function O'Jk(x) depends on k through the form exp(ika). The wave function Wz(x) is normalized in the
0

unit cell, and an example of its band structure is given in Fig. 2 by the case of U =0.5 eV, d&=d&=5. 0 A. The
Green's function can be obtained by

6 (x,x', s)= g%'Jk*(x)&q(x')/Iico [E (k) —EF+c,]I, —
jk

(2.14)

where E~ is the Fermi level and ru is the Matsubara frequency. Thanks to the property of f (k, a), c)f (k, a)/c)a, this
summation can be written by the integral along the path C shown in Fig. 3 for positive co as

G„(x,x', E)=(a/2')(1/~i) f, J [c)f(k, a)/ ) c]aP ( k, x)'aP ( k',x)/a[(ico a l2m +—EF —E)f (k, a)]dadk . (2.15)

It is easily shown by the translational symmetry of this system that

G„(x+na, x'+na, E)=G„(x,x', E) (n is integer) .

It is verified as shown in the Appendix that

6„(x,x'+na, E) =6 (x,x'+ncc —a, s) exp(iu+ ) (n ~2),
6 (x,x' na, E)=6„—(x,x' a+na, —)exsp(iu+ ) (n ~ 2)

for ~x
—x'~ & a. In the preceding equations u+ is defined by

cos(u+ )= I cos[a+dz+(a+ —2mU)' d&] —cos[a+ds —(a+ —2mU)' d&]r+ I /(1 —r+ ),
where a+,p+, r+ are determined by

a+/2m =ico+EF E=P+/2m + U, —r+ =(a+ —.P+)/(a++P+) .

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

With use of Eq. (2.12), the Green's function for all values of x,x' are obtained. The typical example is written as follows
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FIG. 3. The integral path in the complex a plane in Eq. (2.15).

for the positive Matsubara frequency:

G (x,x', E)=(m/ia+)[(1 r+ ) sin(u+ —)]
X I cos[a+(x —x')[ sin(a+dz+P+dz ) r+ sin—(a+de —P+d&)]+2r+ cos[a+(x +x'+dz )] sin(P+d&)

+i sin(a+ ~x —x'~ ) sin(u+ )(1 r+ ) j
—( —dz &x &0, —dz &x' &0) . (2.21)

The Green's function for negative co can be obtained by the same procedure, and the Green's function obtained above
can be used for the calculation of the Gor'kov's integral kernel with the use of Eq. (2.2).

III. SUPKRCQNDUCTING TRANSITION TEMPERATURE OF THE KRQNIG-PENNEY MQDKI.

In this section- we consider the superconducting transition temperature T, of the Kronig-Penney model. In this mod-
el, with the use of the periodicity and the property of the single-particle Green s function (see the Appendix ), the
Gor'kov equation can be transformed as

b,(x)= V(x)TQ f K (x,x')b, (x')dx'

= V(x)T g f " f"m/(2m) (K (x,x', 8)+[K„(x,x'+a, E)+K (x,x' —a, e)]/[1 —exp[ —a/g'(E)]I )
0

Xb,(x')dx'dE, (3.1)

where the integral kernel K (x,x', E) is given by the single-particle Green's function as

K (x,x', E)=G (x,x', e)G (x,x', e) (3.2)

and the decay length of the integral kernel g(E) is given by Eq. (A13) in the Appendix.
We solve this integral equation numerically by dividing the x axis into fine meshes [x;; i =1,2, . . . , NI and trans-

form it into a secular equation,

b, , =b,(x;),
J

(3.3)

A,"=(aVT/X) g m/(2n. ) f de(K (x;,x', E)+[K (x, ,x,'+a, e)+K„(x;,x~.
' —a, e)]/I 1 —exp[ —a/g(e)]I ) .

0
(3.4)
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The transition temperature is so determined that the
maximum eigenvalue of the matrix 2, becomes unity.
In this section, for the sake of simplicity, V(x) is assumed
to be constant. Due to the c. integral for the calculation
of A, , the numerical calculation becomes much more
tedious as compared to the case of the one-dimensional
case. In the first place we see the Fermi level (EF)
dependence of the critical temperature for typical cases.
In Fig. 4(a) the critical temperature T, is plotted by aster-
isks, as the function of Ez for the case of U=0. 5 eV,
dz=d~=5. 0 A. For the case of k~~=(k~, k, )=0, the
dispersion of the lowest and the second band in the k
direction extends in the region 0.22 —0.47 eV, and
0.79—1.75 eV, respectively. In the region between 0.47
and 0.79 eV, the lowest band shows only the two-
dimensional dispersion of k~~, thus the density of state

(DOS) is constant in this region.
Usually the critical temperature is estimated by the

density of state N with the use of a simple BCS relation as

1=T, g vrN/I~, I, T, —exp( —I /VN) . (3.5)

It is very interesting whether or not this relation is
satis6ed even in the system with a nonuniform local DOS.
As the reference the critical temperature with the use of
Eq. (3.5) is also plotted on the solid line in Fig. 4(a). Our
exact numerical calculation shows similar behavior to
that shown by the simple estimation of Eq. (3.5). For ex-
ample, in the energy region where there is no energy
dispersion for the k„direction (0.47—0.79 eV) T, takes a
nearly constant value rejecting the constant value of the
DOS. But it can be seen that there exist some di6'erences
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FIG. 4. The critical temperature T, is plotted by asterisks as the function of Ez for (a) U=0. 5 (eV), dq=d&=5. 0 A and (b)

U =0.0 (eV). As the reference T, is plotted on the solid line with the use of simple BCS estimation. In this figure T,D is the critical
temperature of the system with U =0.0 {eV),EF= 1.0 (eV). {c)The distribution of the local density of states (LDOS) at T, is plotted
as the function of x for case {a)and EF=0.61 eV. In this figure maximum value is normalized to 1. (d) b (x) is plotted as the function
of the same parameter in {c). The maximum value is normalized to 1.
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between the two results for the nonuniform system
(UWO): the curve of the calculated T, always takes a
higher value than expected from Eq. (3.5) and is smooth
at the edge of the bands. On the other hand, there are no
differences in the case of the uniform system U =0.0 eV
as shown in Fig. 4(b). To show the nonuniformity of our
system, the local DOS, p (x) at Fermi energy E~=0.61
eV for the lowest Matsubara frequency (co=n T, ) at criti-
cal temperature,

p (x)= —I/n ImG (x,x) (3.6)

(3.7)

is plotted in Fig. 4(c). This quantity is almost equal to
the usual local DOS at EF=0.61 eV, but includes the
lifetime effect at finite temperature of the quasiparticle.
Since the Fermi level does not lie at the band edge in this
case, the difference between the two is negligible. As
shown in Fig. 4(c), p (x) becomes maximum at the center
of S and becomes minimum at the center of X. The pair
potential b, (x) shows similar behavior to p (x) as shown
in Fig. 4(d). Based on the spatial variation of b, (x) and

p (x), why the critical temperature cannot be estimated
by the DOS as in Eq. (3.5) is explained. With use of the
Gor'kov equation, T, can be obtained by the solution

1 —T, g I „p (x)b, (x)dx J b, (x)dx
"s S

of the electron prevails. Therefore de rennes' assump-
tion, on which Eq. (4.1) is based, cannot be valid in such
cases. In this section, we study the basic property of the
superconductivity of the layered system with ds, dz & 1.
In particular, we investigate the dependence of T, on the
ratio of the coupling constant in the two materials and
the spatial variation of the pair potential in the unit cell.

The effective local density of states takes a larger value
in the S region as shown in Fig. 4(c). In the following we
denote the value of the effective interelectron coupling V
used in Sec. III as Vo (V0-0.4 eV). The critical tempera-
ture is shown as the function of V~/Vo for Vs/V0= 1.0
in Fig. 5(a) and as the function of Vs / Vo for
Vz/Vo = 1.0 in Fig. 5(b). For the sake of comparison, we
also calculated T, of the same Kronig-Penney system, but

/

/

/
/

/

For the case of a uniform system in Fig. 4(b), b,(x) is con-
stant and we can estimate T, correctly with the use of
Eq. (3.5). However, in general b, (x) does not take con-
stant value, and thus the estimation of T, by Eq. (3.5) is
not valid for the nonuniform system. In the case of Fig.
4(a), h(x) becomes large when the eff'ective DOS p (x)
becomes large, as shown in Fig. 4(c) and 4(d). So the
transition temperature T, is enhanced. The enhancement
of T, is generally expected when the periodic variation of
the potential is introduced.

1.0

/
/

/
/'

/

Nf

IV. PERIODIC SPATIAL VARIATION
OF THE PAIR POTENTIAL

In this section, the variation of the pair potential b,(x)
within the unit period of the Kronig-Penney model is dis-
cussed. We will mainly treat the region where the length
of the unit period is smaller than the decay length of the
integral kernel g(s). De Gennes considered superconduc-
tivity of thin layers in the limit 1 «ds, d~ &&f, where I is
the mean-free path of the electron. He concluded the sys-
tem is equivalent to the uniform system with the effective
interelectron coupling V,z and the effective DOS p, ff,
satisfying

0.0 i

-1.0

/
/

/

/

%/V 1.0

PeffVeff ( V&PN N+ VSPsds)/(PNdN+Psds) ~ (4.1)

where pz and p& are the DOS in the uniform material X
and S, respectively. However, if the thickness d&, d& are
comparable or even smaller than the mean-free path I,
the behavior of the Cooper pair in the slab cannot be de-
scribed by the diffusion motion, since the wave character

FIG. 5. The critical temperature T, of the system with
Vs&V+ {solid line) as the function of (a) Vx/Vo (Vo= Vs) and
(b) Vg/Vp ( V~ = Vp) for dz =d& =5.0 A, EF=0.61 eV, and
U=0. 5 eV. As the reference, the corresponding system with
uniform coupling is expressed as a dashed line. In this figure
T o is the value of that of EF=0.61 eV, V& = Vz = Vp, U =0.5

0
e» ds =d~ =5.0 A.
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with the uniform interelectron coupling constant

s.= ds Vs+de Vx)/(ds+dh) . (4.2)

The result is plotted by the dashed line in Fig. 5(a) and
5(b), respectively. In the case of Fig. 5(a) the critical tem-
perature T, of the system with the uniform coupling V,ff
is lower than that of the system with Vs&V~. On the
other hand, in the case of Fig. 5(b), T, of the former is
higher than that of the latter. In this case, the DOS in
the region of the larger interelectron coupling is the
smaller. Therefore, T, is suppressed as compared to that
in the uniform V,s system [Fig. 5(b)]. It is remarkable
that the superconducting state cannot be realized if the
coupling Vz becomes negative in the region of the higher
local DOS. The characteristics of the results of Fig. 5(a)
and 5(b) are summarized as follows. If the local DOS in
the N region is smaller than the S region, the decrease in
critical temperature as V& decreases is less extensive.
But as indicated in Fig. 5(b), when the local DOS of re-
gion S with weaker interelectron coupling is the higher,
the suppression of critical temperature due to the de-
crease of the coupling constant at that region is conspicu-
ous.

The spatial behavior of the pair potential is shown for
various Vz in Fig. 6(a) and for various Vs in Fig. 6(b).
We cannot know the absolute amplitude of the pair po-
tential, because our treatment is based on the linearized
equation for the pair potential. Therefore we normalize
the maximum value of the pair potential as unity. In the
first place, we see the case where the interelectron cou-
pling constant in S is higher than in N in Fig. 6(a). The
values of the parameters are the same as in Fig. 5(a).
Even for the case where the common interelectron poten-
tial Vz = V&, the pair potential is not constant in the unit
cell due to the lack of uniformity. The pair potential be-
comes large in the region with the higher DOS. As
shown in Fig. 6(a), even when pair breaking occurs in N,
i.e., V& becomes negative, the behavior of the pair poten-
tial in the region S hardly changes. On the other hand,
the pair potential in X changes drastically depending on
V&. It can be shown analytically by Eq. (3.1) that b, (x)
satisfies the following relation:

b.(x =0+)/b. (x =0 ) = V~/Vs, (4.3)

which is also verified by the numerical calculation. Next
we discuss the case where the effective interelectron po-
tential in S becomes smaller than that of N as shown in
Fig. 6(b). The same values of the parameters are used as
in Fig. '5(b). The pair potential shows very diff'erent be-
havior from that in Fig. 6(a). When Vs/Vo decreases
from unity to 0.8, the normalized pair potential increases
in the region X while it does not change significantly in
the region S. When Vg/Vo decreases further below 0.5,
the pair potential in the region S starts to diminish. The
pair potential becomes maximum at the S-% interface.

When two conditions favoring the superconductivity,
i.e., the higher DOS and the stronger interelectron cou-
pling, are not satisfied simultaneously in the same materi-
al side, the competition of the two effects occurs. This
seems the reason why the pair potential concentrates to

V=

v„=0.5U

v. =0.0

U.=0.4V,

1.0
—50

S

0 x(A) 5.o

1.0

=0.5&~.

Q, =O. SV,
p, 2 &o

=P. OS/

V, =O.2V,

&=V,

V, =Q.O5V,

0.0 i

—5.0

S
I

x (A)

FIG. 6. The spatial dependence of pair potential h(x) is plot-
ted for various Vx/Vo (Vs= Vo) ~n (a), and for Vs/Vo (Vx= Vo)
in (b). The maximum value of A(x) is normalized to 1.0.

the S-X interface in such cases as shown in the above nu-
merical results. If either side of the material, S or X,
satisfies both of the conditions, the pair potential takes a
maximum value at the middle of the layer of that materi-
al. However, when only one of the conditions is satisfied,
the pair potential can take a maximum value at the
boundary. We have already found these features in the
simple one-dimensional Kronig-Penney model. In the
present work, it is verified that this feature is not changed
in three-dimensional thin superlattice system.

V. DEPENDENCE OF THK SUPERCONDUCTING
PROPERTY ON THE LENGTH

OF THE UNIT PERIOD OF THK SUPERLATTICK

In this section, we consider the case where the unit
period length is increased to exceed the decay length
g(E). In such a case numerical calculation becomes tedi-
ous because the number of meshes of numerical integrals
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over the unit periods increases. As in the previous sec-
tions, it is assumed that the DOS in the S region is larger
than in the N region. We consider the typical three cases,

2.0

(a) U=0. 5 eV, E~=0.7 eV (metal-metal junction),

(b) U=0. 5 eV, E~=0.5 eV

( metal-semiconductor junction ),
(c) U = 1.0 eV, E„=O.5 eV

(metal insulator junction) .

/'y

i

I
I
I
I

For (b) and (c) there are no conducting electrons in the N
region. For the first step we take the interelectron poten-
tial V(x) as constant ( Vs = Vz) and treat only the case
of ds=d~. It should be remarked that in (b) and (c),
since there is no conducting electron, the isolated X sys-
tem cannot become a superconductor as the system of X
alone. But in (a), N can become a superconductor that
has a lower critical temperature than S. The critical tem-
perature T, obtained by numerical calculations as de-
scribed in Sec. III is plotted by the solid line in Fig. 7 as
the function of a =ds+d~ for the three cases (a), (b), and
(c). For the case of a very thin limit,

-1 0 lo g (d,+ d„)
~0 I I I I I I t i I0

3.0

aIa+I «1 aIP+ «I (5.1)

the local DOS becomes constant in the unit period, and
proportional to the square root of the average kinetic en-
ergy at the Fermi level, (E~ —U/2)'~ . So the character
of superconductivity is described by the uniform system
with the averaged potential. In case (c), E~ —U/2 be-
comes zero and the DOS of the averaged system at the
Fermi level becomes zero, so that the critical temperature
vanishes.

The transition temperature approaches that of the pure
S system in the large-a limit. With a decrease of a, T, is
gradually lowered for cases (a) and (b). This effect is ex-
plained by the proximity effect which reduces T, of the
thin-film superconductor. The thinner the slab, the more
T, is reduced. The lowering of T, is less significant in (c),
as compared to case (a) or (b). This can be understood
easily, since the barrier of the X region suppresses the
proximity effect. When the length of the period is shor-
tened to the same order as the decay length g(E), an oscil-
latory behavior of T, sets in. This is caused by the oscil-
latory change of the DOS at EF due to the band effect.
The amplitude of the oscillation is much larger in case (c)
than in case (a), since the corresponding energy gap is
larger in the former case reAecting the higher potential
barrier. When the period of the superlattice becomes
very short as given by the condition (5.1), T, again ap-
proaches some constant value. This is because the super-
lattice system becomes a uniform system in which the lo-
cal DOS and the pair potential take constant value.

In the following, we describe the spatial dependence of
the pair potential. For very small a satisfying Eq. (5.1),
the pair potential takes a constant value in all cases
[(a)—(c)]. When a is increased to the order of 10 A, the
pair potential shows a sinusoidal behavior taking the
maximum value at the middle of S, and becomes

~ I I f I I I I I I I I I i I 'i I I

log (d,+d„)

2.0
(c)

0.0
-1.0 log) (d,+g) 3.0

FIG. 7. The critical temperature is plotted as the function of
0

the unit period a (A) =dz+d&. This value is normalized by the
value of that of S alone, T,o. The solid line is V&= Vz and the
dotted line is V& =0 for fixed Vz. (a) U =0.5 eV, EI; =0.7 eV;
(b) U=0. 5 eV, E+=0.5 eV; (c) U=1.0eV, E+=0.5 eV.
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perconductivity except for the case of very small a.
When the length of the period is shortened to the same
order as the decay length g(c. ), an oscillatory behavior of
T, sets in as in the case of V& = V&. It can be concluded
that the value of Vz affects very significantly cases (a) and
(b), especially for small a, but in case (c) this effect is verec is very
small. Whether the X region is a barrier or not is the
most important factor in determining the strength of the
proximity effect. But regardless of the value of V& the
oscillatory behavior of the critical temperature can be ob-
served due to the band effect.

VI. CONCLUSION

-200 0 xg, ) 2oo

(b)

o x(~i

(c)

0.0
N

0 xIA)

FIG. 9. The spatial dependence of the pair potential is plot-
ted for dz=d&=200. 0 A. (a) U=0. 5 eV EF=0.7 eV; (b)
U=0. 5 eV, EF=0.5 eV; (c) U =1.0eV, EF=0.5 eV.

In this paper, we have developed a theory of supercon-
ductivity in the Kronig-Penney model for the layered ma-
terials. As the model is three-dimensional, this is the
simplest realistic theory of the layered material and su-
perlattices. So the results obtained here based on the ex-
act Green's function represent characteristics inherent in
layered superconductivity. With use of this model, we
have clarified several new features of the nonuniform su-
perconductivity.

(1) The critical temperature in the nonuniform system
cannot be determined by the simple DOS, but by the
DOS weighted by the spatially dependent pair potential.
Therefore it cannot be determined unless we solve the
Gor'kov equation.

(2) For thin superconducting superlattices, we clarified
the interplay of two factors favoring the superconducting
state, the high DOS, and the large interelectron potential.
When in either side of material, these two factors are
satisfied at the same time, the pair potential becomes
maximum in this side. But when these two conditions are
not satisfied simultaneously a competition of these two
effects occurs, and the pair potential can-take the max-
imum value at the interface.

(3) The critical temperature shows characteristic be-
havior as the function of the length of unit period a. The
critical temperature oscillates as the function of a, the
origin of which is ascribed to the oscillation of the DOS
with the lattice constant a. The amplitude of oscillation
is much reduced when a is large. The spatial dependence
of the pair potential in the unit period changes drasticall
with the length a. With the increase of a, macroscopic
behavior of the proximity effect of the S-X junction
emerges as the coarse grained part of the pair potential,
on which microscopic oscillation overlaps.

We have planned to publish elsewhere our calculations
of the superconductivity of the same model with the ex-
tension of the phenomenological theory by de Gennes. In
this treatment, the superconducting transition tempera-
ture shows only monotonic behavior. Comparing the re-
sult based on the exact microscopic theory of the present
paper with such a theory based on de Gennes' treatment,
it is confirmed that the picture of the previous theory of
proximity effect is obtained by coarse graining of the mi-
croscopic oscillation of b,(x). This oscillation, however,
becomes dominant when a becomes small, and governs
superconducting properties of thin superlattice. In the
present theory we discovered a new type of oscillation of
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the critical temperature as a changes which originates
from the microscopic nonuniform electronic property
due to the Bragg reQection. In the previous treatment of
de Gennes, the microscopic electronic property cannot be
taken completely, and this oscillation cannot be expected.
This oscillation should be examined in the clean super-
conducting superlattice in the near future. Although the
interelectron potential is assumed phenomenologically at
this stage, our theory is interesting in the scope of mi-
crofabric ation.

We discussed many aspects of superconductivity with
the numerical solution of the Gor'kov equation obtained
by the Green's function of Kronig-Penney model. There
remain many problems to be addressed in the next stage:
To make a more realistic theory of superconductivity, the
assumed interelectron potential must be determined in a
more realistic way from the microscopic level. Our
theory must be extended to the region below critical tem-

I

perature and the absolute amplitude of the pair potential
should be discussed.
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APPENDIX

In this appendix, we derive Eqs. (2.17)—(2.21). We take
the summation over index j by transforming a discrete
summation to an integral along the path shown in Fig. 3.
Evaluating this integral, we obtain the following expres-
sions:

6„(x,x'+a, E)=(a/2~) f dk F+(x,x', exp(ika))[sin (ka/2) —sin (u+/2)]—vr/a

G (x,x'+na, E)=(a/2n) f dk F„(x,x', exp(ika)) exp[ik(n —1)a][sin (ka/2) —sin (u+ /2)]—
71 /a

~/a6 (x,x' —a, s)=(a/2') dk F (x,x', exp(ika))[sin (ka/2) —sin (u /2)]—71.a

6 „(x,x' na, —e)=( a/2m) f dk F (x,x', exp(ika)) e px[ik(n —1)a][sin (ka/2) —sin (u /2)]—77./a

In the preceding equations, u+ and u are given by

cos(u+ ) = I cos[a+ds+(a+ —2mU)'~ dz] —cos[a+ds —(a+ —2m U)' d&]r+ I /(1 r+)—
= cos*(u ),

~ exp(iu+ ) ~
(1,

~
exp(iu )~ (1,

a+/2m =icu+EF —E=/3+/2m + U,

(Al)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

and co is the positive Matsubara frequency.
The quantities F+ (x,x'exp(ika)) and

F (x,x, exp(ika)) have no singularity as the function of
k and the integrals in Eq. (Al) —(A4) can be estimated by
the residue of

[ sin (ka/2) —sin (u+ /2)]

Finally the following equations are obtained:

G„(x,x'+na, E)=6 (x,x'+a, e) exp[iu+(n —1)a],

6 (x,x'+a, E) with the use of the preceding discus-
sions, and the following relations for the integral kernel
Eq. (3.2) are obtained:

Ko (x,x'+na, E) =K (x,x'+a, E) exp[ —a (n —I)/g],
(Al 1)

&0(x,x' —na, E)=K (x,x' —a, E) exp[ —a(n —1)/g],
(A12)

(A9) g(E) =a/2 Im(u+ ), (A13)

G (x,x' na, E, )=6„—(x,x' —a, E) ex [piu (+n
—l)a] .

(A 10)

We can obtain the same relation for 6 (x,x' —a, E) and

for positive co, and

g(e)=a/2 Im(u ),
for negative co.

(A14)
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