
PHYSICAL REVIEW B VOLUME 40, NUMBER 7

Information-theoretical approach to Joseyhson tunneling

1 SEPTEMBER 1989

J. Aliaga*
Instituto de Fs'si ca, Universidad Estadual de Campinas, Campinas, Sao Paulo, Brazil

Hilda A. Cerdeira
International Centre for Theoretical Physics, Trieste, Italy

A. N. Proto
Laboratorio de Fssica, Comision Nacional de Investigaciones Espaciales,

Avenida del Libertador 1513 (1638) Vicente Lopez, Buenos Aires, Argentina

D. Otero

Avenida del Libertador 8250, 1429 Buenos Aires, Buenos Aires, Argentina
(Received 18 January 1989)

A simplified Hamiltonian model of pair tunneling between two weakly coupled superconductors
is used to obtain the ac Josephson current. A closed operator algebra is defined through commuta-
tion with the Hamiltonian. With the use of information theory, we find a subalgebra (quasi-
angular-momentum operators) that allows us to obtain naturally the dependence of the Josephson
current on the phase, as well as a geometric interpretation of the phase. The quasi-spin algebra per-
mits us to find a consistent solution for the imbalance of charge without resorting to further con-
straints.

I. INTRODUCTION

The use of the pseudospin model proposed by Ander-
son, ' based on pseudo-angular-momentum operators, to
solve the problem of tunneling of pairs of electrons in
weakly coupled superconductors, gave rise to extensive
discussion due to some inconsistencies it presented.
The main dim. culty is related to the imbalance of charge,
which was found to be zero even for voltage-biased junc-
tions. ' It was pointed out by Ferrell that the
Josephson-Anderson number phase formalism provides a
complete description of pair tunneling when the algebra
is properly defined. He argues that the identification of
the pair number operator with the commutator of the
pair current with the pair tunneling Hamiltonian is
wrong since, due to a symmetry of the underlying micros-
copical theory, this commutator is zero. Here, we show
that, taking a simple model Hamiltonian, but using the
complete Hamiltonian in the definition of the new opera-
tors through commutators, the aforementioned problems
can be solved. The model, introduced by Eckmann and
Guenin, in spite of its simplifications, allows us to repro-
duce the main features of the theory. To solve it we
define a closed-operator algebra through commutation
with the Hamiltonian and use information theory
(IT) " to calculate the expectation value of those opera-
tors. Finding the dynamical invariants of the algebra, we
define a subspace where the dependence of the Josephson
current with the phase arises naturally, as well as a
geometrical interpretation of the latter. We show how to
find properly the imbalance of charge and point out the
difficulties that led to the misinterpretation of the opera-
tor, which in turn produced the inconsistencies men-

II. BRIEF REVIEW OF THE FORMAI. ISM

The inverse problem of reconstructing the density ma-
trix for a system when the expectation value of dynamical
operators is known can be approached through informa-
tion theory. This formalism provides a well-defined
prescription by incorporating the principle of maximum
entropy, " which is summarized here briefly. Given
the expectation values 0 of operators 0 the statistical
operator p(t) is defined by:

M
p(t)=exp —

Ao
—g k (t)O, (2.1)

The A, s, M + 1 of them, are Lagrange multipliers which
will be determined to fulfill the set of constraints

(O ) =Of =Tr(pO ), j=1,2, . . . , M (2.2)

and the normalization condition

Tr(pI ) =Tr(pOO ) =Trp = 1, (2.3)

where I is the unity operator. Under the conditions stat-
ed through Eqs. (2.1)—(2.3), if the time evolution of the
statistical operator is given by

tioned previously. Finally the Josephson equation for the
phase is also recovered from the theory without further
ansatze.

The paper is organized as follows. A brief resume of
basic ideas about information theory is given in Sec. II,
our model for Josephson tunneling is developed in Sec.
III, and finally, some conclusions are drawn in Sec. IV.
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dpiA P =[H,p],
the entropy, defined by

S(p) = —k~Tr(p lnp)

(2.4)
F(t, to) is a square matrix defined by

BF
Bt

In the Heisenberg representation we can write

(2.13)

is maximum, and a constant of the motion. '"' In Eqs.
(2.4) and (2.5), A' is Planck's constant, H is the Hamiltoni-
an, and kz, Boltzmann's constant. The relevant question
now is which are those operators whose expectation
values we need to know in order to construct a density
operator that fulfills Eq. (2.4)'? The answer is that those
"relevant" operators 0 belong to a set that closes under
commutation with the Hamiltonian, "such that

M

[H, O, ]=i% g O, g,;, (2.6)

in this way defining a Lie algebra of (M+1) elements,
whose structure constants are given by the matrix G, '"
which can be time depend6nt if H is. We are restricting
ourselves to the case when we know the expectation
values of all the elements of the algebra. The Liouville
equation (2.4) can be substituted by a set of coupled equa-
tions for the Lagrange multipliers A, ; as follows:

0, =0, F(t, ro) . (2.14)

For the Lagrange multipliers we have

(2.15)

The subscript or superscript t, to in Eqs. (2.11)—(2.15) in-

dicates whether we are working with a covariant or a
contr avariant vector, respectively. The information
about the dynamical behavior of the system is completely
contained in the matrix F(t, to) [or G(t, to)]. This infor-
mation is obtained through the investigation of the trans-
formation properties (and invariants) of spaces defined by
the matrix F. The covariant or contravariant nature of
the vectors is also defined with respect to these transfor-
m ations.

In order to define vectorial Reimann spaces with (0, )
(or 0, ) and ?i.

' as elements, we need first to specify the
form of the scalar products, which are invariants, as

dk,'= gg)A, ,
. =o

~ ~ ~ 7 1lf 0 (2.7)
or

&o),&o)'=&o),&o &' (2.16)

Solving this set of equations and using the Ehrenfest
theorem: and

o,o'=o,o' (2.17)

d(o, )
dt

= y (0, )g„,
j=0

the entropy becomes

S[p(r)]= g A, (r)(OJ. ) .
j=o

(2.8)

(2.9)

(2.18)

where the index zero refers to the time t = to before the
transformation is applied. Given a covariant vector 0,
we need to find the metric tensor of the space e (such that
e e '=1) for which

Since the entropy is a constant of the motion, Eq. (2.9)
provides the constraint in the time evolution of the O. s.
The equations for the commutators Eq. (2.6) are defined

through commutation with the Hamiltonian. As shown

by Cerdeira et al. ' in a different context, the relevant set
is generated taking the operation (adH) 0„
(—= [H, o„] ), M+1 times until we close the subalgebra.

0„ is the operator whose dynamical evolution we want to
study. Therefore the set contains all the O. 's that are
relevant to the knowledge of 0„.

It has been shown that the mean value of the operators
and the Lagrange multipliers are related by '"

Bko =(o).
aA;

(2.10)

Following Duering et al. ' we can write for the time evo-
lution of the (O~ )'s,

(0, ),= g (0, ), F,, (t, r, )

(0)'=e(o &, . (2.19)

(2.20)

where F indicates transposed matrix. Furthermore

F 'e'F ' =e', (2.21)

where

A, =A, 'e' . (2.22)

If we use Eqs. (2.7) and (2.8), we can replace Eqs. (2.20)
and (2.21) by

Ge= —e G (2.23)

and

In this way we shall be able to construct the invariants of
the motion of the system. '"' Using the invariance of
the scalar product we obtain

6 e'= —e'G (2.24)

or in vector notation,

&O), =&O&, F(r, r, ) . (2.12)
which are easier to handle. Then, through the use of the
metric matrices (which are not uniquely defined) we can
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express the invariants [Eqs. (2.16)—(2.18)] as S~S=& ~& a 8
T (3.4)

and

0,0 '=O, eO,

A, A, '=X'e'A, '

(2.25)

(2.26)

is the pair number operator and a (a ) is the creation
(annihilation) operator of quasiparticles of spin cr.

The last term of Eq. (3.1) H„given by

In the next section we shall apply this formalism to a
tunneling Hamiltonian in order to calculate the Joseph-
son current. We shall compare our results to some of the
existing pseudo-angular-momentum theories.

III. JOSEPHSON TUNNELING

In the early sixties Anderson put forward a pseudospin
model to discuss tunneling between two superconduc-
tors. ' Recently, several authors pointed out some incon-
sistencies of the model. ' The most serious difhculty
arises when the expectation value of the operator
representing charge imbalance is found to be zero, even
when a constant voltage between both superconductors is
maintained, as found by Ferrell. Di Rienzo and Young
refer to the source of the problem as being the insistence
in using only the BCS ground state to represent the su-
perconductors and the unnecessary restriction of the
range of momentum sums in the definition of the opera-
tors. To solve the problem they lifted these restrictions
and proposed a new state vector to represent the charge
imbalance. They still assume that this new state vector is
a direct product of the state vector of the left and right
superconductor. Here, we present a calculation where
the dynamical evolution of the system is properly taken
into account. The charge-imbalance operator will be ob-
tained from the invariants of the transformation which
governs the dynamics and show that those inconsistencies
disappear.

In this section we use a simplified model Hamiltonian
for tunneling across the junctions introduced earlier by
Eckmann and Guenin. It is a one-momentum Hamil-
tonian which can be solved defining a closed-operator
algebra as presented in Sec. II. This method does not in-
troduce any constraint on the time evolution of the wave
function. We show that the main aspects of the problem
come out in a natural way already in this simple model.
model.

A. The model

Consider two coupled superconductors, described by
the Hamiltonian

H, =p(S iS„+S„Si), (3.5)

is the pair tunneling Hamiltonian, which represents a
two-step tunneling of single electrons across the barrier. '

Notice that this Harniltonian is generally accepted as
describing the dc as well as the ac tunneling. A compar-
ison with Ferrell and Di Rienzo and Young shows that
when the zeroth-order Harniltonian 8 I+H „ is explicitly
written, we are including an ideal battery maintaining a
constant voltage V between the left and right supercon-
ductors, if we define

s~=sl —eV/2, s„=s„+eV/2 . (3.6)

Di Rienzo and Young considered only the case when
el=a.„, while Ferrell, even considering different super-
conductors, does not take into account the zeroth-order
Hamiltonian in the definition of the operator algebra, in
this way missing the proper definition of the pseudo-
angular-momentum subalgebra. We show in Sec. III C
that this Hamiltonian reproduces the ac Josephson tun-
neling when the appropriate limits are taken. Instead,
the dc tunneling cannot be obtained using this particular
Hamiltonian as we shall see below.

Here we study the dynamics of some key physical
quantities whose expectation values are known. These
relevant quantities for this problem are the number of
particles on each side of the junction, the number of
pairs, and the tunneling term. The corresponding opera-
tors are

O, =N

02 =N„,
03=S (Sl,
04 =S ~S„,

Oq=S IS„+S„SI .

(3.7a)

(3.7b)

(3.7c)

(3.7d)

(3.7e)

Following the formalism presented in Sec. II, we can
define a closed algebra, formed by linear combinations of
operators. These operators are found through initial
commutation of one of the operators, let us say 0&, with
the Hamiltonian. ' The equation of motion for the
complete set is

II=a p, +a p„+II, . (3.1)

p pHere H I and H „describe the superconductors to the left
and right to the junction and have the form:

H =cN+OS +S . (3.2)

s is the energy of a quasiparticle measured from the Fer-
mi surface, 0 is the BCS coupling constant,

8=a ',e, +e ',a,
is the density operator, and

[H, O, ]=2ip06,

[H, Oz ]= 2i p06, —

[H, O3] =ip06,
[H, O4] = i p06, —

[H, O~] =ia06,
[H, 06]= i a05 2i p07——

[H, O7]=2ip06,

(3.8a)

(3.8b)

(3.8c)

(3.8d)

(3.8e)

(3.8f)

(3.8g)
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where

06 = i (S IS„—S „S(),
07 =S tIS((1 X—„)—S tS„(1—g(),

(3.9)

(3.10)

The matrix elements for the operators as well as those of
lnp are given in Appendix A. Diagonalizing lnp, we
evaluate e, resulting in the formula:

—2( A, I +k~ ) —( A.3 A,4) —A.
1

—2A, 2
—A,4

a= —[2(e& —e, )+9&—8„] . (3.11)

Here, it appears clearly that a can be interpreted as the
voltage across the junction when VWO, even if the super-
conductors are the same. The operators 06 and 07 had
been generated to close the algebra necessary to the
knowledge of the time evolution of the expectation
values of the observables 0, —05. Therefore we de6ne
the set of M + 1 relevant operators as
IO() =1,0„0~,03 04 05 06 07 I. The matrix 6 is
de6ned by

g36 = g46 =lp (3.12)

(0, ) =(0, )o—f(a,p) —w(a, p, t),
(02 ) = (02 )o+f(a,p)+ w (a,p, t),
(03)= (0, )o—

—,
' f (a,p) —

—,'w(a, p, t),
(0„)=(04)o+ —,'f (a,p)+ —,'w(a, p, t),

(3.13a)

(3.13b)

(3.13c)

(3.13d)

(05)=(05)0— f(a,p) — w(a, p, t), (3.13e)
2p 2p

(06) =(06)ocos(cot)+ f (a,p)sin(cot),
2p

(0, ) = (0, )o f (a,p) w(a, p, t)— —
(3.13f)

(3.13g)

g56 g65

all other elements being zero. Using Eqs. (2.8) and (3.12)
we obtain for the expectation values

[( A 3 + A 4 ) /2 ]+2e '+2e ' 'e ' ' ' ' cosha .

(3.16a)

Here

a =
I [A, , —A~+(A3 —

A,„)/2+A7] +A5+A6I '~ (3.16b)

C. Dynamical invariants of the Josephson junction:
The pseudoangular momentum approach

As shown in Sec. II, in order to obtain the dynamical
invariants it is necessary to know the metric tensors e and
e' of the dual space of operators and Lagranger multi-
pliers [see Eqs. (2.23) and (2.24)]. Solving Eqs.
(2.23)—(2.26), those invariants are given by

2p (3.17a)

and the A, , 's are the Lagrange multipliers. From Eqs.
(3.16) and (2.10) we can calculate the expectation value of
the operators we want to study as a function of the
Lagrange multipliers (see Appendix B). The time depen-
dence of the latter is evaluated in Appendix C. Having
these elements we go on to calculate the second-order in-
variants of the system as described in Sec. II, Eqs. (2.25)
and (2.26). We shall show that some of them are associat-
ed with the conservation of electrons, pairs, and energy.
We shall obtain two extra invariants, whose meaning we
shall explain in the next section. This will allow us to ob-
tain a geometrical interpretation for the Josephson tun-
neling.

with 0 + 0 (3.17b)

f(a,p)= ', (a&o, &,+2p(O, &,),
(%co)

(3.14a) o, —~o, , (3.17c)

(3.14b)w(a, p, t)= (06)osin(cot) f (a,p)cos(cot), —2p
0 +~0 (3.17d)

and

g2 2 2+4 2 (3.14c)

We now calculate the partition function, which enters in
the density matrix. and

0,— PO, ,

0 +0 +0
(3.17e)

(3.17f)

B. The partition function (3.18a)

Since this subsection is very technical we summarize
here the results, and refer to Appendix A for details. We
consider the Hilbert space spanned by the 16 eigenvectors

and

a =[A, , —A2+(A3 A4)/2+F7] +A5+A6 . (3.18b)

I lil2r)r2 &
= Il) &@ Ilq &e lr( &e lr2 &, (3.15)

where I, and r& take the values 0 or 1. In this basis all
operators are diagonal with the exception of 05 and 06.

It can be seen from equations of the operators and their
definition [see Eqs. (3.17)] that the first five invariants are
associated to the conservation of the number of electrons,
number of pairs, and energy. From the invariants given
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by Eqs. (3.17f) and (3.18b) and using the expectation
values calculated in Appendix 8, it is possible to define
two interrelated three-dimensional spaces, one of opera-
tors, one of Lagrange multipliers. The space of opera-
tors, composed of 05, 06, and 07 have the following
commutation relations:

[05,06 ]= 2—i07,
[06,07 ]= —2iO~,

[07,05]= 2—i06,
with the constraint

(3.19a)

(3.19b)

(3.19c)

05~J„,
O6~J

Q7~J, ,

(3.21a)

(3.21b)

(3.21c)

thus showing that the pseudo-momentum approach arises
naturally from the invariants of the space, and correctly
finding those operators. We shall see below that one of
these operators 06 is associated to the pair current across
the junction and that J, cannot be identified with the
charge-imbalance operator. The dual space of the
Lagrange multipliers can be defined from the invariance
of a as

A, 5
=xA, 5

A6=yk6,

%7=z[A, i
—A2+(A3 —A4)/2+A7],

(3.22a)

(3.22b)

(3.22c)

where (x, y, z) are the Cartesian orthogonal unit vectors.
It is equivalent to work with any of the spaces as shown
in Ref. 14. In both cases, the magnitude of the radial
vector is an invariant of the motion, as shown in Eqs.
(3.17f) and (3.18b). From Eqs. (3.21) and the calculation
of the Initial expectation values, we can define the new
operators 0 and P through

[0 ~+06+07,0;]=0, i =1,2, 3 .

This operator space is isomorphic with that of the angu-
lar momentum, where the Casimir operator is given by
Eq. (3.17f}. In this way we can make, without any exter-
nal imposition (i.e., not necessarily forcing its definition),
the following association between a closed-compact sem-
isimple Lie algebra, defined by Eqs. (3.19), and the SO(3)
group [see Eqs. (85)—(87)]:

Using the fact that A,p, A, i, A, 2, k3, and A,4 are constants in
time, as shown in Appendix C, and Eq. (3.18b) we see
that Rp is also an invariant, thus reinforcing the result of
Eq. (3.20), i.e., that the Casimir operator is an invariant.
The pair current operator ' '

d(S,S, )I= (3.27a)
dt

can be obtained from Eqs. (3.14) and found to be

I= ' = —+(0) .
d(O, &

dt

Substituting Eq. (3.24) and (3.27a) we find that

I=—+R (sinOsing) .0

(3.27b)

(3.27c)

Thus obtaining the Jose]ihson relation' between the pair
current and the phase, p is associated to the Josephson's
phase.

Summarizing, we have calculated, with the use of in-
formation theory"' ' a basis of operators forming a
closed Lie algebra, whose associated groups have an
SO(3) symmetry. One of the components (06 ) is associ-
ated to the pair current across the junction. The corre-
sponding phase, or Josephson phase, is a consequence of
an invariant relationship between the Lagrange multi-
plires, this in turn being a result of maximizing the entro-
py. Therefore we find a dynamical definition of the
Josephson current which does not depend on particular
approximations of the problem, and the form of I (the
pair current) is always proportional to sing, independent
of the voltage bias. To make contact with Ferrell's argu-
ment, we notice that Eq. (3.8f} (which now we know to
represent the commutator of the pair current operator
with the Hamiltonian) is not the number of pairs, defined
by (Oi )+(O~). Even so it is a strictly to zero-for-zero
bias function, in this way agreeing with Ferrell.

In the next section we show how the equation of
motion for the phase is obtained from the theory.

D. dc and ac tunneling

1. Time dependence of the phase of the Josephson current:
ac tunneling

Having calculated the current as a function of the
phase, we need to evaluate the behavior of its derivative,
one of the main points discussed by Ferrell. From Eq.
(3.8f) we obtain

05 =Rosin8 cosP,

06=Rosin8sing s

07 =R pcosO

(3.23)

(3.24)

d(06) Q
&

r
&

2p
dt n

which can be written as

(3.28)

where Rp relates the magnitude of the radial vectors of
the dual spaces (Ro and a) and is given by [see Eqs.
(3.18b) and (85)—(87)],

d&O, & 2pRc —sioe cosP+ cos8
)

.
dt n

(3.29)

The angles P, the Josephson's phase, and 8 are defined by

Ro = —2 exp[ —
Ao

—(A, , +A&) —(A3 A4)/2]sinha .

(3.26)

&0, &

P =arctan
05

(3.30)
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or

and

A,6(t)
P=arctan (3.31)

(3.10) shows that 07 does not describe the imbalance of
charge. Using our results from Appendix B, we obtain
for (S, )

(S )
—20( 1 2 3 1 2 42A, k k A 2A, A,

Z

cos8=[A )
—k2+(A, ,—A4)/2+k, ]/a, (3.32)

—A. )
—

A, 2
—(A,3+A4)/2—e ' ' ' ' sinha cosH) . (3.38)

where a is defined in Eq. (3.18b). Equations (3.30)—(3.32)
had been found from (3.21)—(3.25). To study the time
dependence of the phase of the Josephson current, we see
that

d(o, ) „d(os)
dt (0, ) +(0 ) dt dt

(3.33)

gP A
I A2 (k3+ A4)/2(07) = —2e e ' ' ' ' sinha cos9 . (3.39)

When both superconductors are the same, the first two
terms of Eq. (3.38) cancel and (S, ) =(07). It is then
clear that this may lead to the confusion of thinking that
the imbalance of charge is the third operator of the alge-
bra. Notice also that

Also using the results from Appendix B we may notice
that the mean value of 07 is

which can be written as

dP a 2p cos8 (3.34)

A A
07 03 04 030i +0402

A A
03 04 2 [03,0, ]++—,

' [04,02 ]+ (3.40)

If we consider a weakly coupled biased junction, i.e.,
o, &&p, we obtain, after averaging over time

dP a
dt

which agrees with Josephson's equation.

(3.35)

2. Nonbiased junction Iimit

As it was said above, several references suggest that the
Hamiltonian given by Eq. (3.1) reproduces the Josephson
dc current. However, the information-theoretical ap-
proach gives a difFerent result. Let us take into con-
sideration the following. If o, is zero, which means no ap-
plied voltage across the junction, there is no time evolu-
tion provided there is no interaction at all between the
junctions (i.e. p=O) [see Eqs. (3.8)]. If instead we sup-
pose that only a is zero, which means that we make the
ansatz that the dc current is induced by some portion of
the interaction, we obtain [p&0, but a=O using Eqs.
(3.13)],

( 06 )0cos(tot)+ ( 07 )0sin(03t) (3.36)

and as it can be seen the current is time dependent. Thus
we can conclude that this Hamiltonian cannot reproduce
the dc Josephson tunneling.

3. Proper deftnition of the charge imbalance

As we mentioned earlier the point that gave rise to
controversies in the existing literature is the incorrect re-
sult for the imbalance charge. This is given by the mean
value of the operator

S,= —,'(S iSi —S tS„)=—,'(03 —04) .

To analyze the physical meaning of the results obtained
in the previous section, it is necessary to emphasize that
the subset of relevant operators related to SO(3) are O~,
06, and 07. A quick comparison of Eq. (3.37) with Eq.

where the last two terms represent the statistical correla-
tions between those operators. For this reason, it is not
possible to factorize these products when mean values are
taken. Although they have the same result when both su-
perconductors are equal, since the knowledge of 07 has
not been used by previous authors, it led to inconsisten-
cies in the theories and had to appeal to a difFerent
ansatze to solve the problem. Notice from Eq. (3.38) that
when the two superconductors are the same, the imbal-
ance of charge vanishes with a, therefore giving no excess
of charge on one side of the junction unless the system
has been voltage biased.

IV. SUMMARY AND CONCLUSIONS

The application of the pseudo-angular-momentum
model' to the problem of pair tunneling between super-
conductors gave rise to some inconsistencies in the
description of charge excess, as well as in the deriva-
tion of the equation of motion of the Josephson's phase
and in the time derivative of the Josephson's current.
Ferrell noticed some of these inconsistencies and pointed
out the importance of a proper definition of the operators
necessary to solve the problem. He showed that the
operators 05, 06 and the imbalance of charge
03 —04—=S, [Eqs. (3.37)—(3.38)] play important roles in
the dynamics of a Josephson junction and that they
should be taken into account to avoid the appearance of
spurious efFects. Here we show that the operators which
are important to study the dynamical evolution of the
system are 0&, 06, and 07 [see Eq. (3.10)] and not 05, 06
and the imbalance of charge as it was previously pro-
posed. To solve the problem we use a simplified model
Hamiltonian of pair tunneling between weakly coupled
superconductors and solve it with the help of information
theory. As a consequence of the closure relation, given
by Eq. (2.6), we obtain a closed algebra consisting of
seven operators and define an angular-momentum
subalgebra (0~,06,07), which arises naturally from the
dynamical invariants of the theory. We show that, in the
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case of voltage bias and equal superconductors both
operators (Oz and the charge imbalance) have the same
expectation values. Ferrell, in spite of pointing out the
importance of the three operators, did not use the com-
plete Hamiltonian, in this way failing to see the impor-
tance of 07 in the consistency of the solution. When this
is used we obtain a description for the ac tunneling, and
the imbalance of charge is properly accounted for. The
relation of thy current with the phase, as well as a geome-
trical interpretation of the latter, foHows from finding the
dynamical invariants of the theory. The Josephson's
equation appears for the weak-coupling limit as time-
averaged relationships. Finally, we conclude that this
Hamiltonian is inadequate to describe the dc tunneling,
as was demonstrated in Sec. III D 2.
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APPENDIX A: CALCULATION OF THE
MATRIX ELEMENTS

& ll»pll &
= —&,—2(&, +&, )

—(~, +& ),
& 2llnpl2 &

=
& 3llnp I3 &

=

&41»PI4& = —~.—2~, —&,—&, ,

& 5llnpl5 &
=

& 9linpl9 &
= —g —g

& 61»pl6& =
& 7I»pl7&

= &101»pl 10&

(A12)

(A13)

(A14)

(A15)

all other matrix elements being zero. For the density ma-
trix operator we find

To calculate the partition function it is necessary to
calculate the matrix elements of all the operators 0 in a
base. To do that we consider the Hilbert space spanned
by the 16 eigenvectors

ll, l „r,r, &
= Il, &(8 ll, &(-) Ir„ & g

I r„ & ,

=
& 1 1 llnp 1 1 &

= —k, —A, ,
—X, ,

&8llnpl8&=&12 lnp 12&= —X,—X, ,

&13llnpll3&= A, 2A, A +~, ,

& 14llnp 114 &
=

& 151»p I
i 5 &

= —X,—X, ,

(A16)

(A17)

(A18)

(A19)

&Elo "lq &=o,.".,
and find

(A2)

where I; and R; take the value 0 or 1. The basis is defined

by I
m &, where m takes the values 1 —16 such

that the state Il &—:Il, l, l, l &, I2&:—I1, 1, 1,0&, I3&
= I1, 1,0, 1&, . . . , I16&—:I0,0,0, 0&. In this basis we
define

& i6 InPI16&= —X, ,

&41»p 113 &
=

& 131»pl4&*= —(~~+~'~6) .

(A20)

(A21)

APPENDIX 8: EXPECTATION VALUE OF
THE RELEVANT OPERATORS

The expectation values of the operators 0; can be
found using Eqs. (3.16) and (2.10). We obtain

&o, &=&+,&=- ak, o

1

2(A'i+A'2) (A'~+A'~) ki 2k~ l4 2A'i k2 A'~

[( A 3 +A 4 ) /2 ] —
A, I

—A,2
—[(A,3+A,4) /2]+2e ' '+e '+e ' ' ' ' cosh(a) —e ' ' ' ' sinh(a)cos(8)],

2

[egp
—2(A, +A, ) —(A, +A, ) —A,

—2k —A,
—2A, —

A,
—A,

A2 [(A3+A4)/2] A I A2 [(A3 +A4)/2]+2e ' '+e '+e ' ' ' ' cosh(a) —e ' ' ' ' sinh(a)cos(8)],
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(o, &=(s',s, &=—
3

)„p
—2(l (+2,2)

—(k3+2.4) —2) (
—2.3

—k3

2
—[(2.3+2.4/2] —) (

—2.2
—[(l.3 2.4)/2]

(B3)

(o, & =(s ~s„&=—
4

2P 2(k(+k2) (X3+X4) k( 2k2 X4=e e +2e
[( 3+)I4/2]

h( )
—2( —

2
—[ 3 4)/2] .

h( ) ( g)] (B4)

(0& & =(5 lS„+S„Sl &
= — = —2e e ' ' ' sinh(a)sin(g)cos((t ),

5

(B5)

(06 & =(i (S lS„—S „Sl ) &
= — = —2e e ' ' ' ' sinh(a)sin(6))sin((])),

6
(B6)

(07 & =(S lSl(1 —8„)—S „S„(1 1V)) &
=—— = —2e e ' ' ' ' sinh(a)cos(8),

7
(B7)

where

cos9= [A, ,
—A2+ (A3 —A4)/2+ A7]/a

and

(B8)

dA, 6

dt

dA7

dt

(A, , —A2)+ +(A3 —k4)+ —A~+ A7,7

2p ~ (C5)

APPENDIX C: THK LAGRANGK MULTIPLIERS

(B9) the solution of these equations being

A,;(t)=X;, i =1,2, 3,4,

A~(t)=A5 — [d (A)[l —cos(cot)]+iP6sin(cot)],

(C6)

(C7)

A6(t) =iP6cos(p3t)+d(A, )sin(p3t),

A 7( t) = )(7—
[ d ( l[, )[1—cos( p3t) ]+iP6sin(cot) I,p 2p

dA, ; g Ril~ldt I=o
(C1)

where

As seen in Sec. II, the evolution of the Lagrange multi-
pliers can be determined through the knowledge of the
matrix G, since they follow the equation

(C8)

(C9)

Therefore, we obtain

dAP dA ) dA2 dA3 dA4

dt dt dt dt dt
(C2)

d (k) = [2P[A, ,
—A2+(i' —A4)/2+A~]+aA~]= 1

%co

(C10)

d X5

dt
(C3)

aIld

A co =a +4p (C11)
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