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Spin-polarized Fermi liquids: Applications to liquid He
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In this article, we discuss the thermodynamics and Landau theory of spin-polarized Fermi sys-
tems. Then, we review the "nearly metamagnetic" model of Bedell and Sanchez-Castro for the
magnetic equation of state for polarized liquid He. The predictions of this model, as well as the
comparison to other existing models, are presented.

I. INTRODUCTION

With the introduction of the rapid melting technique
for producing highly polarized He proposed by Castaing
and Nozieres, ' there has been a renewed interest in the
theory of polarized Fermi liquids. One of the more in-
teresting quantities of a polarized Fermi liquid is the
magnetic equation of state (MEOS). From this a number
of magnetic-field-dependent properties, e.g., depression of
the melting curve, magnetostriction, sound velocity, etc.,
can be obtained. In this paper, we will be concerned with
the "nearly metamagnetic" model of Bedell and Sanchez-
Castro and an extension of this MEOS to finite tempera-
tures, T &100 mK. A similar MEOS was obtained by
Stringari and it has been used extensively by him to
study the liquid-gas equilibrium of spin-polarized He.
Before we go on to describe this model and the steps lead-
ing to it, we will first give a brief qualitative description
of the various models for the MEOS of He.

In addition to the "nearly metamagnetic" model, there
are at least three other models for the MEOS of liquid
He. The earliest of these models is the paramagnon or

"nearly ferromagnetic" model which has been extended
by Beal-Monod and Daniel to finite polarization.
Another model in this class of "nearly. . ."models is the
"nearly localized" model of Anderson and Brinkman
which was extended by Vollhardt to finite polarization.
While the physics of these models is quite different, they
all assume the normal state of He is a Fermi liquid with
a well-defined Fermi surface. However, the most recent
model for liquid He, the quantum glass of Bouchaud and
Lhuillier, does not even retain this feature of a normal
Fermi liquid.

The MEOS of these models can be summarized by the
magnetic field or polarization dependence of the suscepti-
bility, X„. In the "nearly ferromagnetic" model, the
low-field susceptibility is large due to the nearness of a
ferromagnetic instability. As a function of the polariza-
tion, 6=m /n, where m is the magnetization density and
n is the density, the susceptibility decreases as 6 in-
creases. Thus, in this model, a magnetic field drives one
further away from the magnetic instability.

In the "nearly localized" model, the large zero-field
susceptibility is due to the nearly localized quasiparticles
that give rise to a large density of states. In the presence
of a magnetic field, X„ increases with increasing 5 and
diverges at a critical value 6, &1, e.g. , 5, =0.4 at the
melting pressure. This divergence can be viewed as a
field-induced localization.

The next in this list of models is the "nearly metamag-
netic" model. For this model, the large zero-field sus-
ceptibility is an input; thus, the model does not offer any
microscopic explanation for the large value of the suscep-
tibility. In this model, we find that X„ initially increases
with increasing 6, reaching a maximum at 6 „(1, after
which it steadily drops to zero as 6 goes to one. Here the
initial increase in X„comes about as the system moves
closer to a magnetic instability with increasing magnetic
field. At the same time, the total density of states is de-
creasing and it eventually wins out, thus causing X„ to
decrease. Here we can see the physical difference in the
increase in X„ in the "nearly localized" and "nearly
metamagnetic" model. Mainly, in the former there is a
field-induced localization and in the latter we have the
system approaching a field-induced magnetic transition,
i.e., a metamagnetic phase.

The last of the models we discuss is the quantum glass
picture of Bouchaud and Lhuillier. In this model, the
normal state of He consists of atoms strongly coupled in
pairs with parallel spin. Since these coupled spin pairs
are bosonlike excitations, there is no Fermi surface. In
this theory, the ground-state energy has only been calcu-
lated for 5=0 and 1; however, X„at 6=0 has not been
calculated. An extrapolation for the energy density,
e(n, m ), was made by keeping terms up to fourth order in
the magnetization and using the values e(n, O) and E(n, l )

to fix the coe%cients. This gives rise to a X„ that de-
creases with increasing h. Unfortunately, since X„at
zero field was not calculated and higher-order terms in m,
in particular terms of the order of m, were ignored, little
can be said about the MEOS that follows from this quan-
tum glass model.

The models described above, with the exception of the
"nearly metamagnetic" one, are microscopic models.
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II. THERMODYNAMICS

The thermodynamics of a paramagnetic Fermi
liquid' ' follows from the expression for the internal en-
ergy change

dE =T dS —P d V+p dX+H dM, (2.1)

The model of Bedell and Sanchez-Castro is phenomeno-
logical in origin. Here, they made an ansatz for the po-
larization dependence of the Landau parameters and used
a number of general results from thermodynamics and
Fermi-liquid theory to extract these parameters.

This paper is organized as follows: In Sec. II, we de-
velop a self-contained treatment of the thermodynamics
of a spin-polarized Fermi system. In Sec. III, we review
the Landau theory of a spin-polarized Fermi liquid
and calculate various thermodynamical properties. Sec-
tion IV discusses the kinetic equation and shows how to
treat longitudinal and transverse excitations. Section V
deals with collective modes in the polarized Fermi liquid.
Section VI contains a calculation of the scattering ampli-
tudes and a discussion of the different sum rules valid
here. Section VII presents the "nearly metamagnetic"
model and Section VIII deals with the predictions of that
model.

dE=Tds+pdn+H dm . (2.4)

F =E —TS,

G =E+PV —TS,
FM=E —TS —MH .

(2.5a)

(2.5b)

(2.5c)

Their differentials, calculated using Eqs. (2.5) and (2.1),
are

dF = —S d T—P d V+p de +H dM,

dG = —S dT+ V dP +p dN+H dM,

dFM = —S dT —P d V+p dX —M dH .

(2.6a)

(2.6b)

(2.6c)

A class of thermodynamic identities, called Maxwell rela-
tions, is obtained from these differentials by requiring
that the mixed second derivatives of a potential be in-
dependent of the order in whigh the differentiation is car-
ried out. Three Maxwell relations we will subsequently
use, obtained from Eqs. (2.6a), (2.6b), and (2.6c), respec-
tively, are

It also proves extremely useful to define other thermo-
dynamical potentials that have different sets of natural
variables. In particular, we will subsequently use the fol-
lowing:

where E, T, S, P, V, p, X, H, and M are the internal
energy, the temperature, the entropy, the pressure, the
volume, the chemical potential, the number of particles,
the magnetic field, and the total magnetization, respec-
tively. In many applications, it is more convenient to
work with an intensive function, the internal energy den-
sity E, , defined by

as

as

aH

V, N, M

av
P, N, M

(2.7a)

(2.7b)

E = Ve(s, n, m ), (2.2)
as
BH TV V, H, N

(2.7c)

aS vNM n, m

where s =S/V, n =N/V, m =M/V are the entropy
density, the particle density and the magnetization densi-
ty, respectively. To obtain the internal energy density
differential de, we use Eqs. (2.1) and (2.2) as follows:

In practice, one is interested in different thermodynam-
ical differential coeScients, as the compressibility, the
magnetic susceptibility, and the heat capacity. Different
compressibilities can be measured by. fixing any three of
the variables (M, H, N, p, T,S). Two of the most com-
monly used are

BE

S, V, N

Bn

BE

m

(2.3)

1 av
MNT V ap M, N, T

av
HNT V BP H, N, T

(2.8a)

(2.8b)

BE = —
E,
—V

BV ,„
BE, Bs

nm SNM

BE an
Bn av sN

BE, Bm

am av

Similarly, different heat capacities per unit volume can be
defined by fixing any three of the variables
(P, V, M, H, N, p). In this work, we will use

T BS
CV, H, N (2.9)

V, H, N

The magnetic susceptibility can be measured at fixed
values of any three of the variables (P, V, N, p, T,S).
Here, we will consider

Thus, we find that

= —E+Ts+pn+Hm . 1 BMX =X (T, n, m)=—
V

N, V, T
(2.10)
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We will adopt the following notation:

X„=X„(n,m )=X&.„(T=O K, n, m )

and

e(s=O, n, m)=s(s =O, n, m =0)+ m
1

2X„P

+b(n)m + (2.11)

X„=X„(n,m =0) .

In this work, we are concerned with two different ap-
plications of thermodynamics to the study of polarized

He. One involves being able to predict how various
properties, e.g., the compressibility and the heat capacity,
will change for small magnetizations from their zero-field
~ alues. The field dependence of these quantities can be
expressed in terms of density or temperature derivatives
of the zero-field magnetic susceptibility. Another appli-
cation deals with the extension to low temperatures of a
model for the magnetic behavior of the Fermi liquid at
T=O K. This will require a detailed knowledge of the
entropy of the system at low temperatures.

To obtain the field dependence of the compressibility,
we need to obtain first the pressure change due to magne-
tization. At T=O K and small magnetizations, the ener-
gy density can be expanded as'

where X„=3n /(2TsF ) [Ts„ is known as the spin-
fiuctuation temperature Ts„=(1+Pp)TF, TF =kg I
2m '] is the zero field and T=O K magnetic susceptibili-
ty and b(n ) is a function of the density. Using Eqs. (2.3)
and (2.11), we obtain that the pressure change at T=0 K
and fixed density due to magnetizations is'

P(T=O, m, n)=P(T=O, m =O, n)

1 dTsF
3 dn

m 2+ o ~ ~ (2.12)

The spin fiuctuation derivative, dTs„ldn, is found experi-
mentally to be negative for all pressures in He (see Table
I), e.g., the predicted pressure drop is 1.5 mbar at inelting
pressure in a 10-T field. We can now obtain the change
in the compressibility KM ~ r—p K from Eqs. (2.8) and
(2.12) by using '

+M, N, T=P K

dP= —V
M N T=OK.

=n P(T=O K, m, n)~M~=n (T=O, m, n)~ +m (T=O, m, n)~„.
a dP 'dP

"dn M, N
Bm

(2.13)

We obtain,

+M, N; T=OK +M =O, N, T=P K

m+ n
d TsF dTsF+2

dn dn

the field dependence of the specific heat is given by

QT 2
Cv, H, N Cv, H=0, N +p m

n

(2.17)

(2.14)

Now, we will show how the field dependence of the
heat capacity can be characterized using the tempera-
ture dependence of the zero-field susceptibility,
Xr „(T, n, m =0), which is known to be of the form '

Another important application of the Maxwell rela-
tions is the calculation of the leading temperature correc-
tion to a model for the T=O K magnetic susceptibility at
arbitrary magnetizations X„. To obtain this correction,
we use a Maxwell relation, Eq. (2.7a) and the low-
temperature expression for the entropy density

Xz-„(T,n, m =0)=X„[1—a(n)T ] .

To analyze this effect, we use the Maxwell relation

9m(Cvax )r, v x= T
BT V, H, N

(2.15)

(2.16)

s(n, m, T)=y(n, m)T .

The coefficient y, for He, is given by

y= [Nt(0)+Ni(0)],
3

(2.18)

which is obtained from Eqs. (2.7c) and (2.9) by
difFerentiation with respect to T. Froin Eqs. (2.15) and
(2.16), we obtain, after integration with respect to H, that

where N&(0)[N&(0)] is the density of states of the up
(down) spins at their Fermi surface. Integration of Eq.
(2.7a) with respect to T gives

TABLE I. Experimental inputs as well as the results for the coefBcients at four different pressures.

d&sF/'d& d &sF /dn
P (bars) n (1/A ) (KA ) (KA ) a(1/K ) b bl do d& d2 d3 gl

0.00
21.00
30.00
34.36

0.016
0.022
0.023
0.024

—60.7
—27.6
—23.5
—21.8

8745.0
3907.0
3313.0
3068.0

3.20
8.60
9.16
9.49

0.21
0.03
0.024
0.02

0.06
—0.01
—0.01
—0.01

0.17
0.05
0.04
0.04

—0.38
—0.44
—0.47
—0.49

0.32 0.64
1.49 0.73
1.58 0.76
1.58 0.78

—1.58
—2.78
—2.86
—2.87

—0.95
—2.03
—2.06
—2.04

.—0.05
1.03
1.06
1.04
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a T2
H(T, V N, M) H—(T=O, V N, M)= — y(n, m)~„

(2.19)

This expression is now differentiated with respect to M at
constant V, X, T and gives

[np]=np(r, t)1+mp(r, t) r,
where

2g np(r, t)=n(r, t)
P

is the quasiparticle density at (r, t ),

(3.1)

XT„
1

X„
a2 T

y(n, m )~„
BUl

(2.20) 2+m (r, t)=m(r, t)
p

where we have used Eq. (2.10). Up to quadratic order in
the temperature, the magnetic susceptibility XT „ is given
by

82 T2
X T„=X„1+X„y(n, m)~„

Bm
(2.21)

Similarly, we can obtain the leading temperature correc-
tion to the compressibility. Integration of Eq. (2.7b) with
respect to T gives

is the local spin-polarization density, and 1,~; are the unit
matrix and the ith Pauli matrix in 2X2 spin space, re-
spectively. The quasiparticle distribution function for the
ground state with a given polarization

b, =(nt n()l(—nt+ n))

due to a constant magnetic field He, is

T
V( T,P, N, M) V( T=—O, P&N, M) = — (y V)

~ T ~I 0 0[n ] =n 5 (3.2)

(2.22)

Differentiating this expression with respect to P at fixed
T,N, M gives the desired correction,

where a = 1 ( —1) corresponds to spin up (down) quasi-
particles, n =e(kF —p) are step functions and the Fer-
mi radii kz are given by

1 5'(yv)
M, N, T M, N, T=O

T2

T, N, M
(2.23) (I a)3

6m

III. LANDAU THEORY OF A SPIN-POLARIZED
FERMI LIQUID

A spin-polarized Fermi liquid is described by a quasi-
particle distribution function (density matrix) given by'

To describe the interaction between these quasiparti-
cles, we must consider the change in the energy density
functional due to a change in the distribution function
[5n ]=[n ]—[np]. This change is given by' '

5e=E'—so= X [eo,].p[5n, ]p.+ —,
'

p, a, P

where

0 0[e]p=s 5p

p, p', a, P, a', P'
[fp, p ].p,.p [5np]p. [5np ]p. (3.3)

is the equilibrium quasiparticle energy matrix and [f ~ ] is the quasiparticle interaction function. The quasiparticle in-

teraction function for finite polarizations has the form '
[fpp].p,.p=Pi(p p )+A(p p')~..p5. p+42(p p )5 p p'+03(p p )~ p p

+~4»p ~ p p+~~ p ~ p (3.4)

where pz(p, p')=pz(p', p) and the functions p„p3, p4 are
symmetric under interchange of p and p'. In the limit of
zero polarization, $3=$4,pz=pz=O, thus restoring the
spin isotropy of the interaction.

The energy density change, Eq. (3.3), simplifies consid-
erably for a longitudinal fluctuation in the distribution
function

[5e ] p= [fpp ].p,.p[5np ]p.

jf pp 5np a'5ap (3.6)

I

from Eq. (3.4) it follows that the corresponding change in
the quasiparticle energy matrix is also diagonal and is
given by

[5np] =5np5 +5mpr, =5n 5 (3.5) p', a'

where 6n =5n +o.6m . To see this we first note that where



SPIN-POLARIZED FERMI LIQUIDS: APPLICATIONS TO. . .

5m= pe 5n + —,
'

I I
p~~, p, ~

f .5n 5n . . . (3.7}

f p'p =[—fpp ]», t t =4i+4z+0z+43

f p =[fpp ]&&,i&=ki 6 6'+6

f pp'=[fpp']t t, ii [fp'p]th, t t

=f pp=0i+0z —4z

are the longitudinal components of the quasiparticle in-
teraction. Now using Eqs. (3.3), (3.5), and (3.6), we get
that the change in the energy density is

It is evident from this analysis that the transverse com-
ponent of the quasiparticle interaction

g pp' [fpp']t$, $t (3.8)

is not needed in the description of longitudinal Auctua-
tions.

In order to make contact with experiment we need to
compute the static response functions of the system: the
compressibility and the magnetic susceptibility. To do
this, we must obtain the change in the energy density due
to a longitudinal, uniform distortion of the Fermi sur-
faces. The change in the distribution function due to this
distortion is

82
5np =5e„6(ek —

ep )+—,'(5e ) e(e„—so )

5
=5ek 5(s —E )+—,'(5s„)z 5(e„—eo ) .

F

The corresponding 5n is obtained by integrating Eq. (3.9) and gives

(3.9)

5n =5m N (0)+ ,'(5e„—)z N (0},
F

where

k m '
N (0)=

27r2

(3.10)

is the density of states of spin o at the Fermi surface. Substituting Eq. (3.9) into Eq. (3.7) and making use of Eq. (3.10),
we obtain 5e up to quadratic order in 5ek . For the kinetic energy term we have that

F

g ep 5np = g e„N (0)5e„+,'5e'„—[eoN (0)] = g [eo 5n +—,'5ez N (0)], (3.1 1a)

and for the interaction term we get

f pp. 5np 5np. =
—,
' g f 0 N (0)5ek N (0)5ek

p, cr, p', a' O, 0'

(3.11b)

+f (~) ~5n t 5n ) (3.11c)

The energy density change, Eq. (3.11c) can be rewritten
using n =

—,'(n+crm ) as

5s =—,'(s„t+ E„i )5n + —,'(s„ i —c,„i)5m
F F F F

+—,'(Ct&+Ci&+2f ~&&)5nz

+ —,'(Ct t+C~i —2f (~)i)5m

Here, we have used the standard expansion of f pp, in
terms of Legende polynomials' and f 0 is just the l =0
term. For the change in the energy we get, upon combin-
ing Eqs. (3.11a) and (3.lib), that

5e= g E„5n +— +f 0 5n
1 1

"F 2 N 0

H =Ho+6H

where

(3.13)

is the equilibrium magnetic field and

m= ,'(C»+C"' 2f »-)5m+ ,'(C»—C")5n-—

where

C(T(7 — +f 0'cj1

N (0)

%e can now obtain the thermodynamical properties of
the system at T=0 K and the response functions by
difFerentiation of Eq. (3.12). The magnetic field, obtained
from Eqs. (2.4) and (3.12), equals'

+—'(Ct t —Cii)5n5m (3.12) is the change in the magnetic field. From this expression
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and Eq. (2.10), we get that the susceptibility is

X„=[—,'(Ct t+Cgg —2f Ot t)] (3.14)

P =P, +M',
where

Pp = Ko+ n I c t'+ n g E
0 0

F F

is the equilibrium pressure and

(3.15)

The pressure, evaluated using Eqs. (2.3) and (3.12), is
given by'

evaluated from Eq. (3.13), is given by

am

N, H

(Ctt CLL)

(Ctt+Ctt 27 tt) (3.18)

Using Eqs. (3.17), (3.18), and (3.15), we obtain after some
algebra

2f tL

KH, N, T=O
n

(3.19)

For completeness, we note that the chemical potential,
obtained using Eqs. (2.4) and (3.12), is

5P= ,'[ n(Ctt—+C~~+2f t~)+m(Ctt —Ct~}]5n

+ ,'[n—(Ctt—Ct~)+m(Ctt+C~~ 2f" )]5—m

is the pressure change. From this expression and Eq.
(2.13), we obtain that the compressibility K~ z T
equals'

p=po+6P

where

» ~ (sI t +'I ~ )
F F

is the equilibrium chemical potential and

(3.20)

KM~T 0=(ntC" +ntC +2n tn fto )

To calculate KH N T 0, we note that

(3.16) dp= —,'(Ct t+C "~+2f ot )5n+ —,'(Ct" —C~ )5m

is the change in the chemical potential.

+H, N, T=O

ap=n (T=O, m, n)~~H
an

=n (T=Om, n)~ +ap am
an Dz n

IV. THE KINETIC EQUATION

We are interested in studying nonequilibrium and inho-
mogeneous processes characterized by a distribution
function

The derivative

(3.17)
[n (r, t)]=[nz]+[5n~(r, t)] (4.1)

am

N, H

that differs slightly from the homogeneous equilibrium
distribution [Eq. (3.2)]. This distribution function obeys
the quasiparticle kinetic equation' '

[n&]+—,'(V&[E&] V,[n&]+V,[n&] Vz[E&])——,(V,[E ] V&[n&]+V [n ].V,[e j)=I([n ])—i[[a ], [n ]], (4.2)

where I([n~]) is the collision integral and the conmutator —i[[e~],[n~]] takes into account the spin precession in a
magnetic field. Dropping the collision integral ( T=O K) and linearizing with respect to [5n ], we obtain

at
[5n ]+—,'(Van[et] V,[5n ]+V,[5n~] Vz[s ])——,'(V, [5e ] V [n ]+V [n~] V,[5E ])

= —t[[5e,] [n', ]l —tl[e', ] l5n, ]1, (4»

where

an',
,' sc„=O,

asap~

5np~ +vp~ Vr 5np~
a
at (4 4)

where

0
Vp~

=
VpEp~

and

[sp(r, t)]=[e j+[5E (r, t)],
and [e ] is given by Eq. (3.3). As expected, Eq. (4.3) simplifies for a longitudinal fiuctuation [5n ] .=5n~ 5 . In
that case, all matrices are diagonal in spin space [see Eq. (3.6)] and the kinetic equation reduces to

T
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5e =U (r, t)+ g f 5~ np . (r, t) .
p (7

Here U (r, t ) is the longitudinal external potential driving the system. The Fourier transform of this equation is given
13

0 0Bn p~ Bn p~
(t0 —v q)5np (q, co)+q.v g f 5n ~ (q, co)= — q v U (q, co) . (4.5)

Bey p Be@

The form of the kinetic equation for a transversal disturbance' ' is of considerable in the study of spin waves. Here,
we consider that the magnetic 6eld acting on the system is made up of a static longitudinal component 80=H0e, and a
small (compared to Ho ), time dependent transversal part 5H)(x, t ) =5H„e„+5a~e~. The effect of the longitudinal field
has been analyzed before [see Eq. (3.2)]. The transverse field produces a fiuctuation in the quasiparticle distribution
given by

0
[5np]=[n ]—[n ]=5m ()xt) r= (+) ()P

where [n p] is the quasiparticle distribution in the presence of only Ho,

5m ) =(5m )„e +(5m ) e

and

5m ' —'=(5m )„+i(5m )

—5a'-'+ y g t'.5m'-, )

PP P

This fluctuation induces a change in the quasiparticle energy operator given by

(4.6)

[5e,]=[e,]—[e',]=

where

5a' '=5H„+i.5-H, .

—5a'+'+ y g ",5m'+, '
PP P

P

P
(4.7)

[[5ep],[np]]+ [[ep],[5np]] =
2m' '5e'+' —(e —e )5m'+'P7l

P
E,

P EP) GPg Vl
P

where

5"-'=—5a'+-'+ ~ g»5m('. )
P ~ g PP' ~p'

P

and

m'"=-'(n' n' ) . —
P 2 PT Pl

In this case, the linearized spin precession term in the kinetic equation becomes

0 —2m'"5e' '+(e' —e' )5m'
P~

(4.8)

Substituting Eqs. (4.6), (4.7), and (4.8) into Eq. (4.3) and taking the Fourier transform of the resultant equation, we ob-
tain the kinetic equation for a transverse disturbance at T=0 K,

5m'+'+ .— v + v 5e'+'=2m' '5e'+' —(e —e )5m'+'(v&+v&) l Bn
&

Bn

2 P 2 ao "Pt Bo "Pi 'P P 'P 'Pt 'P™P
EPy EPg

(4.9a)

and

n' an0
(4.9b)

where

Po' P P4
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V. COLLECTIVE MODES

The eigenvectors of the longitudinal kinetic equation, Eq. (4.5), correspond to the collective modes, e.g., zero sound
in the polarized liquid. Thus, we now turn to the task of finding the dispersion relation of these modes. ' It is con-
venient to write the fluctuation 5n as

5n
an0,

BCp
0 I~' (5.1)

where the v are the normal displacements of the Fermi surfaces due to the collective mode. In terms of the v, , the
longitudinal kinetic equation is

, an',
(5.2)

where we have set the external potential U in Eq. (4.5) equal to zero since we are interested in the free modes of oscil-

lation.
In the most general case, v is a function of the spherical angles (6,$) specifying the direction of p with respect to q.

For the azimuthally symmetric solution, v will only depend on the angle 8 between p and q, and we can expand it in

a Legendre series as

v = g vl Pi(cosB) .
1=0

Substituting Eq. (5.3) and the expansion

(5.3)

f pp
= g f i Pi(p p')

1=0

into Eq. (5.2), and then using the addition theorem for the spherical harmonics, we get

I
(s —cosB) g vi Pi(cosB) —cosB g N, (0) vi .Pi(cosB) =0,

1
2l + 1

where

(5.4)

s~=
gUF~

If we now project out the moments of this equation, we find the following set of coupled equations

N. ,(0), '

I N. , (0)
s v 6 + ~" + 6 + ~ =0

cr 1 ~ 2( +3 1+1,c7' . 2$ +3 1+1 2$ 1
cr 2$ 1

1 —1 1 —1

0

(5.5)

In order to solve this set of coupled equations, we assume
that

Now, we proceed as follows: from Eqs. (5.7a) and (5.7c),
we get

f( =0 1~2 vp~ —2v0~ (5.8)

and (5.6)

v1 =0 I)2.
We will come back to these assumptions at the end of this
section. Making use of Eq. (5.6), Eq. (5.5) reduces to

Solving Eq. (5.7b) for v& and substituting it in Eq. (5.7a),
we obtain

N (0)
I II 3

N, (0)
s vo

—
—,'g 6 .+ f, v, =0,

3
(5.7a) X[—', 6 +N -(0)f o ]

S I

=0. (5.9)

(5.7b)

ao'

s v2
—

—,
' g 6,+N, (0)

3
v) .=0 . (5.7c)

s v, —g I[5 +N (0)f o ]vo +25 v, . I =0,
This equation can be rewritten, by making the substitu-
tion

VO(r Scr'/Ocr (COm IVFa) 70a
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where

c2
Om

UF~
Qo» 0 (5.10)

UFf + ~ f$UF$
2 2

corn 2
2 2 2

A
y t UF) + A gg UFg

2
1/2

CO
C Orn

2 2'Ft"Fi("tt~i~ ~»~») (5.11)

is the velocity of propagation of the collective mode and

N (0)

0'

X [—', 5 ~ ~ +N -(0)1 o ] .
UF

2
corn

det 5 —A
UF~

=0

and is given by

The collective mode velocity is obtained by requiring that

The two solutions given in Eq. (5.11) correspond to the
two possible zero-temperature oscillations; zero sound
co+ (the solution corresponding to the positive square
root) and spin-zero sound co . In liquid He, only zero
sound propagates; spin-zero sound, i.e., the paramagnon,
is not a propagating mode. The spin-zero sound appears
as a propagating mode due to the approximation of Eq.
(5.6), where vl =0 for l )2. At T=O, this approxima-
tion is good only when the collective mode velocity is
much larger than the Fermi velocity. ' In liquid He, we
have for small polarizations that CO+ &)UF and co ~ UF,
thus, only the zero sound solution is consistent with Eq.
(5.6).

VI. SCATTERING AMPLITUDES AND SUM RUI.ES
There are four distinct scattering amplitudes in polar-

ized He. These are defined as follows: the three longitu-
dinal scattering amplitudes

a ~~ (q, ~)= (p —q/2, o",p'+q/2, o'ltlp+q/2, o;p' —q/2, cr')

and the spin-Rip scattering amplitude

G,",(q, ~)=(p —q/2, l;p'+q/2, T ltlp+q/2, ~;p' —q/2, l &,

(6.la)

(6.1b)

5E (q, co)
a (q, to)= =f»

„6n --
X

P ~0 ~p&p P 0'
(6.2)

The 5np- -, obtained form the longitudinal kinetic equa-
tion [Eq. (4.5)], is given by

where t is the transition operator, q is the momentum
transfer, and co is the energy transfer. The similarity of
this situation and that for the quasiparticle interaction is
not coincidental; both functions correspond to diff'erent
limits of the renormalized four-point vertex function.
In the limit of small energy transfers and small q (for-
ward scattering), the kinetic equation can be used to con-
struct the Landau version of the Bethe-Salpeter equation
obeyed by these scattering amplitudes. To calculate the
longitudinal scattering amplitudes in this limit, we must
compute the change in the quasiparticle energy 5ez (q, co )

induced by putting a quasiparticle in the empty state
p', o' allowing for rearrangements in the quasiparticle
distribution. Thus, we have'

5n~ -(q, co)

0
lPpn et &t

0 q vp
f I0 f IQ Qp

I I I I

p u
(co —v - "q) . (6.3)

Substituting this result into Eq. (6.2), we get that, in the
limit of small (q, co),a ., satisfies the equation,

a ~z (q, co)

—f CTCF

PP

„ano--f CTCT P

p ~~ BEp ~

—0"0-'
a ~ (q, co) .

cu —v- »q

(6.4)
The derivation of the Bethe-Salpeter equation obeyed

by G ~~. is more complicated. If we require that the
quasiparticles be near their respective Fermi surfaces,
this will need a finite four momentum transfer for the
spin-fiip process at arbitrary polarizations. In order to
obtain the equation obeyed by Gpp from the transverseTl

kinetic equation, we are forced to relax this requirement.
To proceed, we define G p by

5E' '(q, co) Sm'-„'

The 5m p- ', obtained form the transverse kinetic equation
[Eq. (4.9b)], is given by
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5m-( —)—
P

010n -&
n -&

—n -& +— q.v -& +
rl fP

] 871prr g ( Vp t +Vp i )
co —q —

Ep t+ep-i 5Ep ~ . (6.6)
2

Substituting this equation into Eq. (6.5) gives 6 pp. in the limit of small four momentum transfer

—TlG pp'=g pp' ~ g pp"
P

1 an0, -,
n prr t n prr $ + 0

q.Vprr ) +
2

1 Bn

0 q "P"~

I r f +Vp
I I

rrf + P rrg ''Q rr r ~

(6.7)

a (q~o, co=0)= g a i Pi(p P ')
1=0

(6.8)

into Eq. (6.4) and using the addition theorem of the
spherical harmonics, we get

rl

&
aa'' ~aa' ~ paa" + (0)

&
a a"

(6.9)

This set of coupled algebraic equations is solved for the
c7cT We get12 23

f i X (0)&aa — 1 f ao
I D I

f 1' i2~ —o'(0)

2l + 1

This equation has been generalized to arbitrary four
momentum transfer by Quader and Bedell, however,
this is beyond the scope of the current paper. The spin-
Aip scattering amplitude goes beyond the standard Lan-
dau quasiparticle picture since it involves states that are
far from their respective Fermi surface when the momen-
tum transfer is less than a minimum value given by

~ q;„~ =kFt —kF. A detailed discussion of this situation
involving quasiparticles far from their Fermi surface can
be found in the papers by Stamp" and Quader and
Bedell.

There are two important sum rules in polarized He.
To obtain them, we need first to solve for a p (q, co=0)
in the limit of small q. Substituting the expansion

VII. A MODEL FOR THE LONGITUDINAL
LANDAU PARAMETERS

The results derived in the previous sections can now be
used to determine the parameters of a model for the po-
larization dependence of the Landau parameters. We will
follow the steps of Bedell and Sanchez-Castro whereby a
power series expansion in the polarization, 5, is proposed
for the f &

's. It was argued by Bedell and Sanchez-
Castro that a finite order expansion, up to b, in f 0
and to 6 for f i, would provide a reasonable model for
the polarization dependence of these parameters over the
whole polarization range. While no rigorous arguments
exist for truncating this expansion, the physical argu-
ments for keeping only terms to order b, in f o are
plausible. Given the ansatz for the 6 dependence of the
Landau parameters, the derived quantities, X„, c, etc. ,
can be obtained to all orders in A. In the next section,
the results for these quantities will be given. For now we
will assume the truncated form for the expansion in 6
and refer the reader to Ref. 2 for the physical motivation.

We begin by noting that if one requires symmetry un-
der a reversal of the external magnetic field, it is then evi-
dent that the expansion of f &t

t differs only in the sign of
the odd terms from the expansion of f &it and that f &

has only even powers in its expansion. The l=0 mo-
ments are assumed to be weakly dependent on the polar-
ization, namely,

f tia"=-a (

(6.10a)

(6.10b)

f 0 (6)=fott (1 crbob+b, b —),
f "(a)=f"'( I+c,a')

(7.1a)

(7.1b)

where

fi Ni(0)
1+

2I +1
f 11+1(0)

DI = 1+ 2l+1
ti

2l +1 x

"(our�

"(o) .

The sum rules are obtained by noting that the antisym-
metry of the wave function under exchange of identical
particles requires that' '

a pp(q=o, co=0)= g a i =0,
)t =0

(6.1 1)

where the a
&

are given by Eq. (6.10a). These sum rules
serve as important constraints on the Landau parameters
of the polarized liquid.

For the l =1 moments, the situation is more complicated.
They must satisfy '

f it "(b,= 1)=0,
f,"(a=1)=o

(7.2a)

(7.2b)

f I~(b, )=f it" (1+g b, +g b, ) (7.3b)

In addition, the l ~ 2 moments are assumed to be zero.
To determine these parameters, one makes use of sum

rules and thermodynamics. The m* that appear through
various formulas are related by Galilean invariance to the

as a consequence of the fact that only s wave scattering is
possible for the down spins when kF =0. To account for
the more detailed structure anticipated, the l=1 mo-
ments are expanded up to fourth order in 6, namely,

f a (b, )=ftt(1 doob+d, b, d2ob. +d3—b, ), (7.3a)—
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f, as follows: '
m (b)

1 —
—,'N (0) f, +

g 2

fthm

kF

(7.4)

dynamics. Expanding EM ~ T 0~, Eq. (3.16), up to b,
and comparing it with the corresponding thermodynami-
cal relation, Eq. (2.14), gives

TT

ao+ —ao a&+ b] Fo bo+ ci+Fo+3 2 2 9

where

kFm
N'. (0)=

2%.2

and m is the He bare mass. It is convenient, for small 5,
to expand this relation up to order b, as

N(0) d TSF dTSF

3 d 2 dn

Similarly, expanding the microscopic expression for

BP

n

(7.10)

m*
=1—aoo.6+a&A +

m
(7.5) Eq. (3.15), up to b, , and comparing it with Eq. (2.12)

gives '

where

—i(Fttd &Ftt+Fti )ao 6 1 0
a ——FTTb +—+F'=1 n dTsp

2 3 c, dnC,F
(7.11)

and

a, =ao ,'[Ftt(—
—,'+——,'do —d, ) Fti(g, —+ —,')] .

Similarly, comparing Eq. (2.17) and the low-temperature
expansion for the heat capacity,

f (~)
i [ I+N t (0 )f Ot

t ] N t (0)f Ot
~ —=0 .

Using this result, we can express m
T

for 6= 1 as

m~t 22m f (~)~

N(0) f ti2 f 1'tf Tl
(b, =l)=

where

kFm*
N(0) =

m2

(7.6)

(7.7)

is the total density of states of the unpolarized liquid.
Solving simultaneously Eq. (7.7), the expression for m t in
terms of the f, , Eq. (7.4),

m* FTT
=1+

m 3

and the sum rule for a T T

(7.8)

F TT

+1+FoTT F TT

1+
=0 (7.9)

where

F tt —Nt(0)f tt(Q —1)

gives the two desired relations.
The last three relations were obtained using thermo-

The microscopic theory gives us six of the nine relations
needed to solve for the parameters: four corning from the
sum rules and two from Eqs. (7.2). The sum rules were
enforced in the following approximate way: For small 6,
Eq. (6.11) was expanded up to 6 and each coefficient re-
quired to vanish. The two additional sum rule relations
came from a consideration of fully polarized He. For
fully polarized He, the sum rule for a ~~ terminates be-
cause of Eq. (7.2). This sum rule gives '

CV~H= [Nt(0)+Ni(0)]T,

expanded up to 4, gives

ao 1 —4 aa — ——= (1+F')E
3 9 3

(7.12)

Thus, we have all the relations needed to determine the
coefficients. Table I shows the set of experimental inputs
as well as the calculated coefficients for four di6'erent
pressures. A discussion of the results and implications of
the model will be done in Sec. VIII.

VIII. PREDICTIONS OF THE MODEL

Given the Landau parameters, f0, and the efFective
masses, m *, one of the quantities we can calculate is the
susceptibility at constant density, X„. The most striking
feature of the susceptibility, shown in Fig. 1, is that X„
initially increases with increasing A. At some finite po-
larization, 5,„(1,X„reaches a maximum and then
drops to zero as 6~1. This rise in X„ is at first surpris-
ing given that the total density of states [Nt(0)+N&(0)]
decreases with increasing b, (see Fig. 2). The rise comes
about since the parameter combination, f Ot

t

+f Oii 2f Ot~, that appears —in X„, Eq. (3.14), becomes
more attractive with increasing h. The fact that this pa-
rameter combination becomes more attractive in the
model of Bedell and Sanchez-Castro indicates a tendency
of liquid He to come closer to a magnetic instability
when a field is applied. At finite field, a magnetic transi-
tion for itinerant electrons was called a metamagnetic
transition by Wohlfarth and Rhodes. Since, in the mod-
el of Bedell and Sanchez-Castro, He becomes more mag-
netic with increasing field, without a real metamagnetic
transition occurring, they introduced the notion of the
"nearly metamagnetic" picture for the MEOS of He.

From the susceptibility, it is possible to derive a num-
ber of important thermodynamic quantities. For exam-
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FIG. 1. The ratio of the magnetic susceptibility to the unpo-
larized magnetic susceptibility for three different pressures.

pie, the magnetic field, H at T=O K, needed to produce
a magnetization m is given by

H ( m ) = f dm 'X„'=n j d b, 'X„' . (8.1)
0 0

In Fig. 3, we plot the magnetic field versus polarization
A. There are features of these curves that should be not-
ed. The first point is that roughly 50%%uo polarization is
achieved at high pressure (P ~21 bars) for a field of ap-
proximately 100 T=0.1H „,where H „ is the field

needed for 6= 1. Another feature of Fig. 3 worth noting
is the size of H,„which is of the order of 10 T. This is
about six times larger than the spin-fluctuation field, Hs„,
defined by the zero-field susceptibility

FIG. 3. The magnetic field necessary to produce a given po-
larization. The upper curve at 5=0.5 is at P=O. O bars, the
middle curve is at P=21.0 bars, and the lower curve is at
P =34.36 bars.

where Hs„= —,'(1+Fo)T~. Clearly, any simple estimates
based on the assumption of constant X„will underesti-
mate H „and, as we will see, the energy density.

The large value of H, , in the "nearly metamagnetic"
model is due largely to the fact that X„must vanish when
6~1, thus, requiring larger fields to turn over the last
few spins. For example, the last }0%of polarization re-
quires roughly a doubling of the field that produced the
first 90% of the polarization. Another feature we should
note is that the density dependence of H „is the oppo-
site of that found for Hs„. We can understand the densi-

X.=—'0
2 (1+F0)TF HsF

(8.2)
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0.4 0.6 0.8

0
0 0.2 0.4 0.6 0.8

FIG. 2. The ratio of the specific heat to the unpolarized value
for three different pressures.

FIG. 4. The magnetic energy per atom as a function of polar-
ization. The upper solid curve at 6=0.5 is at P =0.0 bars, the
middle curve is at P=21 ~ 0 bars and the lower curve is at
P =34.36 bars. The dashed curve is at P=34.36 bars and was
calculated assuming a constant susceptibility.
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ty dependence of H „as follows: In the fully polarized
limit of the "nearly metamagnetic" model, He is a weak-
ly interacting Fermi gas. For this gas we might expect
that

2H =Tt =kt /2m*max F F

thus, since m
&

decreases with increasing density, we
would expect H,„ to increase.

From the function H(m ) obtained using Eq. (8.1), we
can determine the energy per particle, e( n, m ) /n.
By fixing the density, we can calculate the change in ener-

gy from the experimentally determined value co
=E(n, m =0) as follows:

(E—so)/n = I dh'H(m') . (8.3)

10
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O
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In Fig. 4, we have plotted (e E—o)/n as a function of b,

for three pressures. We have also plotted (dashed line)
the (c,—Eo)/n for n =0.0236 A, the density at the
melting pressure in zero field, assuming a constant sus-
ceptibility, Eq. (8.2).

One of the more important lessons we can learn from
Fig. 4 has to do with the comparison between the
(E —Eo)/n curves obtained from the "nearly metamagnet-
ic" model and the constant susceptibility results. The
feature in (e Eo)—/n curve that gives rise to the initial in-
crease in X„with increasing m is the fact that the energy
calculated in the "nearly metamagnetic" model initially
drops below the constant susceptibility result. To be able
to distinguish between a X„ that initially increases or one
that decreases with increasing m from a microscopic cal-
culation of the energy density would require an accuracy
of a few percent in this quantity. Clearly, this is beyond
the ability of the currently available microscopic ap-
proaches to He.

10

10

10 6
10 6

1O'
10

I

1O'
10

FIG. 6. The relative change in the zero sound velocity and
the relative change in the first sound velocity vs 6 in a log-log
scale. The density is fixed at n =0.023 A

In our discussion of the thermodynamics of polarized
Fermi liquids, we noted that there are several compressi-
bilities or equivalently several first sound velocities. The
particular sound speed that propagates depends on which
thermodynamic variables we keep fixed. For example,
Eq. (2.8a) defines the isothermal sound speed at fixed
magnetization and Eq. (2.8b) the isothermal sound speed
at fixed magnetic field (or equivalently at a fixed value for
the difFerence E„i—E„i). The conditions that are needed

F F
to control which of these two modes of sound propaga-
tion will result have been discussed by Greywall and
Paalanen.

Here we are interested in a feature that is common to

10
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C3 1P
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E
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29.2
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FIG. 5. A log-log plot of the relative change in the first
sound velocity at constant magnetization (with constant pres-
sure P =30.0 bars and with constant density n =0.023 A ) vs
Q2

FIG. 7. A plot of the density vs 6 at constant pressure
P =30 bars and a plot of the pressure vs 6 at constant density
n =0.02303 A
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2 2
corn c lm 4 1

c 5 1+Fo~~
(8.4b)

both of these sound velocities in our model. This is the
result that the change in the sound velocity up to approx-
imately 50/o polarization is determined to a good ap-
proximation by the term quadratic in A. For example, in
Fig. 5, we plot on a log-log scale the relative change in
the first sound velocity at constant m, (c, —c, ) /c „
where c& =c& o, versus 6 with the additional con-
straint that the density is fixed. There is a small devia-
tion downward from the 6 term around 30% polariza-
tion, reAecting of course the peak in X„. This is also the
case for the fixed field. This fact that the 6 feature holds
over a wide range of polarization is consistent with the
experiments of Bonfait et al. That they did not observe
the deviation downward could be due to the fact that
they performed their experiments at constant pressure (or
analyzed their data back to constant pressure) rather
than at constant density (or as a function of density). A
direct comparison between this experiment and the re-
sults given in Fig. 5 cannot be made since the experiment
was carried out at a high temperature, T =200 mK. As
we will see later on, such high temperatures will have a
pronounced effect on the susceptibility.

At very low temperatures we know that first sound
cannot propagate; however, zero sound does propagate.
In Fig. 6, we have plotted on a log-log scale
(co —co)/co, where co =co~ o, and (c, —ci )/ci,
versus A. As we increase 6, we see that the difference be-
tween co and c& increases. To understand this trend,
it is instructive to study the two end points of Eq. (5.11).
We have that for 6=0,

co ci 4 1
(8.4a)

c 5 1+F'
and for 6=1, i.e., m =n, we have
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FIG. 9. A log-log plot of the relative change in the iso-
thermal first sound velocity at constant magnetization vs 6 at
two different temperatures. The density is fixed at
n =0.023 A

From our calculated results for F z~ ~, we have that at high
pressure

Fo ))F (~)
~ .

The fact that the sound velocity difference increases sim-

ply rejects the decrease in the dimensionless quasiparti-
cle interaction strength. This decrease arising largely due
to the decrease in the density of states, or equivalently the
effective mass m &.

In calculating some of the sound velocities shown in
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FIG. 8. The ratio of the magnetic susceptibility at P=25

bars and three different temperatures to the T=O K unpolar-
ized magnetic susceptibility. The upper curve at 6=0.3 is at
T=O K, the middle curve at T=50 mK and the lower curve at
T= 100 mK.

FIG. 10. A log-log plot of the relative change in the adiabatic
first sound velocity at constant magnetization vs 5 at two

0
different temperatures. The density is fixed at n =0.023 A
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Figs. 5 and 6, we have assumed that the density or
equivalently the volume is fixed as a function of A. This
is important to take into account due to the magneto-
striction effects in He for finite polarization. As can be
seen from Fig. 5, where the upper curve is the constant
pressure plot, there are two key differences: First, the
magnitude of the shift never drops below the 6 term in
the velocity. Second, the value of the shift is largest for
the fixed I' plot. At full polarization (n ~

=0), the two ve-
locities are very close with the value at fixed P just slight-
ly higher. That the two sound velocities are close when
n t =0 follows from Eqs. (3.16) and (3.19), where the two
compressibilities become equal with the one at fixed P
evaluated at a higher density.

The larger value for the density at full polarization
(with P fixed) is just the result of the magnetostriction
effect in liquid He, i.e., a decreasing volume with in-
creasing polarization. We see from Fig. 7 that the densi-
ty increases to a maximum value at 6=0.9, for P =30
bars, and then it decreases for 6)0.9. This behavior is
in fact consistent with the earlier discussion concerning
the behavior of H „.The point is that in the highly po-
larized phase of the "nearly metamagnetic" model of He
behaves like a weakly interacting Fermi gas. In the
noninteracting limit, we have

P = ,' ( n
&

E—F~ + n ~
EF~ ),

thus, n must decrease to keep P fixed as we increase A.
This is also consistent with the feature seen in Fig. 7 in
the plot of P versus 5, for fixed n, for 6)0.9. Clearly, P
must increase for fixed n in the noninteracting limit.

Up to now our results have been concerned with the

50

zero-temperature properties of the model. To account
for the leading order finite temperature corrections to our
model, we make use of the various Maxwell relations
developed in Sec. II. For example, Eq. (2.20) gives the
leading temperature corrections to the susceptibility. For
T & 100 mK, this term will give a reasonable estimate of
the thermal effects on XT „ for several temperatures. In
Fig. 8, we have plotted XT„ for several temperatures.
The peak seen in Fig. 8 in XT „at T=O occurs for a mag-
netic field H „k—100 T (=80 mK), thus, it is not
surprising that for T—100 rnK the structure is
suppressed. Here we have a competition between the
magnetic field, which is initially driving the system to-
wards a magnetically ordered state, and the thermal Auc-
tuations, which tend to suppress the ordering. As we get
closer to the ordered state the thermal effects get larger,
however, once we pass through the maximum in X„, the
finite temperature corrections get smaller. The trend we
see with increasing temperature in Fig. 8 is as we would
expect, however, for T) 70 mK, we must go beyond the
leading order expansion in T given in Eq. (2.20) when the
polarization is close to 35%. Although the 100 mK plot
in Fig. 8 is pushing our results a bit too far, we believe it
has the correct qualitative behavior, i.e., a suppression of
the peak structure in XT „with increasing temperature.

At finite temperature, we can have the sound propa-
gate either at fixed temperature, i.e., isothermal first
sound, or at fixed entropy, i.e., adiabatic first sound. In
Fig. 9, we have plotted the relative change in the iso-
therrnal first sound velocity versus 6, on a log-log plot,
at constant magnetization with the volume fixed for
T=10 and 20 mK. Apart from the decrease in the shift
of the sound velocity, compared with the T=O value,
Fig. 5, there is very little difference in the qualitative be-
havior of the T=O and T finite curves. However, for the
adiabatic sound there is a rather pronounced difference
between the T=O and 25 mk results, see Fig. 10. This is
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FIG. 11. The solid line joins our calculated t, as a function
1

of pressure. The other curve is the experimental values of Is-
raelson et al. (Ref. 28).

FIG. 12. Calculated T, vs polarization for three diA'erentAl

pressures. Upper curve at 6=0.4 is at P =34.36 bars, middle
curve is at P =21.0 bars and lower curve is at P =0.0 bars.
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g ~1t= A "(e=~, /=0),Nt (0)
(8.6)

where 8 is the angle between the momentum vectors of
the incident quasiparticles and P is the angle between the
incident and outgoing planes. In the s-p approxima-
tion, ' A "t(e,p) is given by

A "(e,y)= y A,"P,(cose)cosy,
1=0

(8.7)

where the A tt
t are given by Eq. (6.10a). Thus, we have

1

A "t(8=m, /=0)= g (
—1)'A tt =22 (~)",

l=O
(8.8)

where we have kept the first two partial waves and used

under the conditions of constant m as well as constant V.
The local minimum in [c, (S ) —c, (S ) ]/c, (S ) at
6=0.35 is approximately at the point where the max-
imum in X„occurs. Clearly, the adiabatic first sound
would be a more sensitive probe of the behavior of X„
than the isothermal sound.

One of the more exciting predictions of the "nearly
metamagnetic" model has to do with the field dependence
of the superAuid transition temperature. To determine
this from theory, we need to use the generalization of the
Patton-Zaringhalam formula introduced by Bedell and

A]
Quader. Their formula for T, ' is given by

(1/g )~t)
T, ' = 1.13a cze (8.&)

where a, cF~, and g &~~ are a constant independent of the
density and the polarization, the Fermi energy, and the
pairing interaction for the up spin moments in the polar-
ized Fermi liquid. The pairing interaction is approximat-
ed by the normal state, forward scattering amplitude in
the limit of zero total momentum, that is

the forward scattering sum rule, Eq. (6.11).
To make contact with experiment, we have expanded

T, to linear order in the polarization, i.e.,

(8.9)

The results of this calculation are shown in Fig. 11. The
agreement with experiment is quite impressive consider-
ing the fact that we are calculating a quantity of the or-
der of pK/T. In addition, we have included a calculation
of T, ' to all orders in the polarization for three pressures
in Fig. 12. The curves are qualitatively similar. It is seen
that at melting pressure, T, initially increases with field
and reaches a maximum of 23 mK at a polarization of
40%. Another striking feature of these curves is the
reentrant behavior of the superAuid for temperatures
larger than the zero field value of T, . For example, atA]

melting pressure and 5 mK, the superAuid phase reenters
when 6=0. 1. The superAuid then disappears for
6&0.52. We refer the reader to a paper by Frossati et
al. for a discussion of an experimental procedure for
reaching this region of the phase diagram and a discus-
sion of a number of experiments designed to explore this
reentrant behavior.

The maximum value of T,~ of 23 mK at the melting
pressure is achieved assuming that the melting pressure is
unchanged with polarization. However, in the paper of
Wiegers et al., the melting pressure is lowered when 6
is increased. Using the "nearly metamagnetic" model,
Wiegers et al. have approximately a 3-bar depression of
the melting curve for 6=0.35. Thus, the maximum T,~
will be lower than 23 mK, lying somewhere between 15
and 20 mK. This is clearly a large and possibly observ-
able increase in T, , and while T, 's are notoriously
di%cult to predict, it is certainly worth the effort to try to
observe this effect.
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