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Magnetic phases in Ising square lattices with mixed bonds
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CuO& planes are modeled by means of a square lattice with antiferromagnetic coupling provided

by the oxygen between two copper ions and ferromagnetic coupling when the oxygen is absent. The
magnetic interaction is described using an Ising Hamiltonian with interacting first-nearest neigh-
bors. The ferromagnetic exchange interaction is supposed to be larger than the antiferromagnetic
one. A Monte Carlo routine is then defined in order to minimize the energy and to calculate physi-
cal parameters such as correlation to nearest neighbors, time correlation to the same site, and a
schematic of a phase diagram.

I. INTRODUCTION
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FIG. 1. Schematic of a 4X4 square lattice with mixed bonds
for an arbitrary state. Periodic boundary conditions on the ex-
change constants are clearly shown.

The recent progress on the superconductivity of lay-
ered perovskite-structure compounds has led to the study
of other related properties, such as the magnetic phases
that can arise in these materials. It has been proposed'
that compounds such as La2 (Ba,Sr) CuO„may have
mixed ferromagnetic and antiferromagnetic bonds which
can be responsible for a spin-glass phase which appears as
the oxygen content diminishes.

As a first attempt to model this behavior, we studied
the Cu02 planes under the assumption that the oxygen
between the two magnetic Cu ions provides an antiferro-
magnetic bond, while its absence provides a ferromagnet-
ic bond'. We then modeled the CuOz planes in the
manner shown in Fig. 1, where only spin-up and spin-
down states are pictured in accordance with the Ising
Hamiltonian to be introduced later on. If we neglect the
small differences between the orthorhombic and tetrago-
nal phases, we can think of this system as a square lat-
tice with magnetic ions at the corners and mixed bonds
along the sides in a proportion which is related to the ox-

ygen content.
Systems similar to the one just described have been

considered. Special attention has been given to the
system for which the number of ferromagnetic bonds
equals the number of antiferromagnetic ones, and the
magnitude of the coupling is the same for both of them.
A result of these studies is that no stable magnetic phase
(such as spin glass) is obtained at finite temperatures
where only metastable states are possible. However, as
the temperature approaches 0.0, the relaxation times re-
quired to change to other metastable states grow beyond
any practical importance (100 yr or more). If we consid-
er the critical temperature for superconductivity in these
compounds (40 K) and the estimated magnitude of the
antiferromagnetic exchange constant A (1300 K), ' the
relative temperature T/A of interest to us is restricted to
the interval [0,0.03], where Monte Carlo simulations are
reliable in the sense that finite observational times are ac-
ceptable for practical purposes.

II. MODEL AND CALCULATIONS

We restrict ourselves to the possible magnetic phases
present in one single Cu02 layer. The Ising Hamiltonian
up to the nearest-neighbor interaction can be written as

H= —'QS' g J,)S~'

where we sum over the four nearest neighbors to the ith
spin, which runs over the N =L spins of the square lat-
tice with L spins per side. The exchange constants J;.
can be either A or —E depending on whether the spins
are coupled antiferromagnetically or ferromagnetically.
The real physical system loses the antiferromagnetic
phase at low concentrations of ferromagnetic bonds
which suggests ferromagnetic coupling stronger than the
antiferromagnetic one. As an example of this unequal
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coupling the case I' =32 will be studied particularly.
For the sake of comparison, the well-known case F = A
will be also included.

Periodic boundary conditions are imposed on the
bonds at the edges, so that each spin is always surround-
ed by four nearest neighbors. One important variable is
the concentration of ferromagnetic bonds (c) and the
complementary concentration of antiferromagnetic bonds
(1—c). Moreover, for each given concentration there are
many distributions of bonds in the lattice. In order to
avoid giving excessive weight to some very unlikely dis-
tribution of bonds (such as clusters of the same kind of
bonds) we performed some basic statistical analysis on
several distributions consistent with a given concentra-
tion. The number of distributions varied from 50 when
the method was being tested to 5 for calculations where
the dispersion of the whole data is also a good test for the
stability of the solution.

The distribution of bonds is randomly assigned at the
beginning of each calculation and is kept fixed for the rest
of it. Namely, no migration of the bonds is allowed.
However, the several initiations already described will al-
low us to obtain a kind of average description for a given
concentration of bonds.

Next, the initial state is randomly chosen by simply as-
signing values to the third component of spin (+ 1 or —1)
to each of the Cu sites of the lattice. The energy is then
minimized by means of a Monte Carlo algorithm based
on the Aip of a single spin.

There are at least two possibilities for choosing the
next site for Aipping its spin: sequential order through
the lattice or random choice. Both possibilities are ap-
propriate when just one kind of bond is present. Howev-
er, the random choice could be advantageous in the case
of mixed bonds, since the sequential order would always
run through the same circuit of bonds. Most of the re-
sults presented here were based on the random generation
of next site. As a consequence of this, "time" will be
measured in units of "spin Hips" (SF's).

Temperature T enters by means of the Metropolis algo-
rithm, which essentially compares the probability factor
exp( —b, /kT) with a random number between 0.0 and
1.0. 6 represents here the energy difference of the new
state with respect to the state prior to the spin Aip. If 5
is negative, the probability factor is taken to be 1.0. It is
convenient to measure T in units of the smallest between
the two exchange constants (in terms of A for the pur-
poses of this paper).

One major concern in any thermalization process is the
role of the randomly picked initial states in the rest of the
calculations. In order to minimize this effect, we allow
the system to fluctuate in a wider band of states before
beginning the actual minimization of energy. This is sim-
ply achieved by increasing the temperature of the system
to T' & ( T + A ) from which a slow cooling to the actual
temperature T is performed. In all the results reported
here T' = T+ 1.5 A, and the system was gradually
brought back to temperature T after 10000 spin Aips
(SF's). In any case this mechanism does not lead always
to the same "valley" in the Hilbert space and it is only in-
tended to avoid casual shallow "valleys" due to a trapped

initial state.
The concern now is with respect to the number of SF's

required in order to reach thermalization. Some basic
analysis of this point is performed for the delicate case
c=0.5, F = A at low temperatures. In most of the results
reported below 50000 SF's were used to reach thermali-
zation, otherwise available data for 60000 SF's were also
included.

The number of spins in the lattice was also investigated
within ranges of interest for the computing facilities
available (several personal computers). No noticeable
differences were found between lattices 20 X 20 and
32X32 when periodic boundary conditions as already
defined are used. This is the reason why we restrict our-
selves from now on to lattices with 1.=20, namely, 400
spins and 800 bonds.

Once the thermal equilibrium is reached, parameters of
physical interest can be calculated. One of them is the
correlation to the vth nearest neighbor C(v) which can
be defined as

n
V

C ( v) = S,*g S, ln), *,
I

L =20,
1.0

0.9

C =05, F=A,
I

o 1x 10 SF
3x 10 SF

10x I SF

T= 0.5A

x 30 x10 SF
50x10 SF

08 o
o 0 0

&~~
o o

0 0
o o

o o o o o o o
~ (( & o (( (( (( (( 8 (( (( )

0.5
10 20

time (103 SF)
40

FIG. 2. Time correlation q for different thermalization times,
for equal amount of both kind of bonds at a temperature half
the strength of the magnitude of the exchange constants.

where n indicates the number of neighbors of order v to
a given site i, the sum over j runs over all those neighbors
and the angular brackets represent an average with
respect to all sites i in the lattice. We will be particularly
interested in the correlation to next-nearest neighbors
that in our case can be calculated by means of the
simplified relationship

C(1)=(S;gS, /4) .
J

If the spins are normalized to unity, C(1) is restricted to
the range [—1,+1].

The other parameter of physical importance is the time
correlation at a given site in accordance with the q pa-
rameter defined by Edward and Anderson in the follow-
ing way:
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among the correlations, it is enough to consider C(1) in
the way already given by Eq. (4). We are interested in in-
vestigating the possibility of a spin-glass phase, so most
of the results presented here are related to the q parame-
ter. We vary the concentration c of ferromagnetic bonds,
the relative magnitudes of the exchange constants F/3
and the temperature T of the system aiming to a phase di-
agram. We fix the parameters of thermalization, and the
size L of the lattice in the way already described. The
particular case c=0.5 was also studied as a reference for
other less sensitive cases provided by unequal coupling.

FIG. 3. Using 50 000 SF's for thermalization time the
minimum time required for evaluating q ( ~ ) is shown for three
different temperatures 0.5A, A, and 1.5A. For the low tempera-
tures used in most of the remaining discussions 30000 SF's leads
to acceptable stability for the parameter q.

I

q(t)=(S, (t)S,(0)) . (4)

The condition t=0 is defined at any time once the
thermal equilibrium is reached; t is the number of spin
Aips after t=0 for which the calculation is performed.
The angular brackets represent average over the lattice.
The real interest is over q ( ao ), defined in the limit of SF's
going to infinity (after t=0). For practical reasons we
must restrict ourselves to finite times but large enough fo
give stable values for q. For the L=20 lattice we use an
average of a few values taken around 30000 SF's after the
initial time. The stability of these results will be dis-
cussed below.

One of the importances of the parameter q is that it al-
lows us to define the spin-glass phase under the condi-
tions C(v)=0 and q(ao)%0. Since ~C(1)~ is the largest

III. RESULTS AND DISCUSSION

Let us first discuss the details of the numerical calcula-
tion employed. We have chosen the very sensitive case
c=0.5 and F = A in order to select the appropriate times.
Actually it is believed that no true phase transition
occurs except in the limit of very low temperatures
(essentially in the limit of T going to 0). As already
pointed out, the temperatures of interest in our case are
actually very low. On the other hand we have already
mentioned the need to consider F ) 3 which stabilizes
the magnetic lattice. This can be seen by simply realizing
that less frustration is likely to occur when there are
dominant links. Therefore, any reasonable thermaliza-
tion process acceptable at -low temperatures for equal
coupling in the c=0.5 case will be more advantageous for
unequal coupling.

In Fig. 2 we report the variation of the q value at low
temperature (T=0.5 A) for five different thermalization
times: 1000, 3000, 10000, 30000, and 50000 SF's. The
statistics are based on 30 experiments. It is quite clear
that the diA'erence between the last two cases is quite
small.

The finite observational time required in order to get
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FIG. 4. Evaluation of q ( ac ) as a function of temperature for equal strength of ferromagnetic and antiferromagnetic bonds and five
different concentrations of ferromagnetic bonds.
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stable values of q (t) which can be taken as q ( ~ ) is inves-
tigated in Fig. 3. We adopt here the criterion that q can
be evaluated 30000 SF's after thermalization. As we do
not attempt here a very precise calculation at intermedi-
ate temperatures or around T, we shall restrict ourselves
to evaluate q 30000 SF's after thermalization.

In Fig. 4 we present the variation of the q value as a
function of temperature for five different concentrations
of ferromagnetic bonds, for the case of equal coupling
F = A. It is clear that the value of q is more stable when
any of the exchange mechanisms dominates. The critical
temperature (if any) increases when c departs from the
value 0.5 in any sense.

Another way of looking at these systems is presented in
Fig. 5, where the variation of both correlation to nearest
neighbors C(l) and correlation to the same site q are cal-
culated at very low temperature for the condition F = A.
The spin-glass condition is confined to c =0.5 which is a
fairly large concentration of ferromagnetic bonds (ab-
sence of oxygen in the real system). Our results for this
two-dimensional Ising lattice agree with several other
works with respect to the q values and energy of the final
state.

This kind of calculation allows us to schematically
draw a phase diagram like the one shown in Fig. 6. The
main purpose of this scheme is to show that the condi-
tions for the onset of a spin-glass phase are not present at
low values of the concentration c. At least one other con-
dition must be met in order to realize such a system. It is
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FIG. 6. Schematic magnetic phase diagram for temperature
T/A and concentration of ferromagnetic bonds c as free param-
eters. Equal coupling F = A is assumed here.

obvious that we must allow F & A. There is no physical
reason for the magnitude of the exchange constant being
the same after the sign has been reversed due to the lack
of oxygen. On the other hand, it is natural to assume
c &0.5 since the system is antiferromagnetic when all the
oxygen bonds are saturated. Fewer ferromagnetic bonds
will require stronger coupling in order to produce condi-
tions for spin-glass phase. Most of the rest of the present
work will consider the case F =3 3 as an illustrative ex-
ample.

Let us first look at the correlations at low temperatures
for the system F =32, as shown in Fig. 7. The condi-
tions for a spin-glass phase are present for c =0.33, name-
ly, when one third of the bonds are ferromagnetic while
the remaining two thirds are antiferromagnetic. A com-
parison with Fig. 5 indicates that the value of g is higher
for unequal coupling which is an indication for more sta-
bility of a spin-glass phase.

Next we want to examine brieQy the general behavior
of q as a function of temperature for this particular sys-
tem. We would like to emphasize that we do not attempt
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FIG. 5. Dependence of both correlation to first-nearest
neighbor C(1) and time correlation to the site q with respect to
the concentration of ferromagnetic bonds c. Equal strength of
the bonds is assumed here while temperature is zero. (Actually
T=0.01 A.)

FIG. 7. Dependence of both correlation to first-nearest
neighbor C(1) and time correlation q with respect to the concen-
tration of ferromagnetic bonds c. Ferromagnetic bonds are tak-
en three times stronger than antiferromagnetic ones (F =3A).
Temperature is zero.
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FIG. 8. Correlation to the site q as a function of temperature
for two different Ising lattices with mixed exchange interactions.
(Thermalization times used in the Monte Carlo processes are
not enough to draw conclusions about freezing temperatures. )

The parameter q is higher and more stable for the case of un-

equal coupling, particularly at the low temperatures discussed
in the text.

here a final description of optimal Monte Carlo routines
to describe a possible freezing transition, due mainly to
limitations on the computer facilities available. Howev-
er, Fig. 8 shows clearly that q ( T) remains high and stable
over a wide range of temperatures. For the purposes of
comparison we have also included in Fig. 8 the case of
equal coupling using the same thermalization process.

Finally, let us mention a few words about the minimum
energy found after the Monte Carlo process. For the case
F = 3 2 under consideration we found energies as low as
—1.28 A per bond for the ground or metastable state
after thermalization at low temperatures. A theoretical
expression based on a straightforward way of considering
the frustrations of this system would lead to'
Eo = —1.422 as the average lower bound for ground en-

ergy per bond. This result compares well with the case of
equal coupling where Monte Carlo simulations give—0.70A for the ground energy per bond, ' ' while the
lower bound expression gives —0.75 A.

IV. CONCLUSIONS

The admixture of ferromagnetic and antiferromagnetic
bonds, with unequal strength and different complementa-

ry concentrations in an Ising square lattice defines a very
interesting system which can be associated to some real
systems such as the Cu02 planes which are present in
La2Cu04 and its related compounds.

Unequal strength of exchange constants moves the
spin-glass condition to different concentrations of fer-
romagnetic bonds. Thus if F) A, then C(1)=0.0 for
c (0.5 and vice versa.

The particular case of F =33 leads to c =0.33 in order
to eliminate correlations to nearest neighbors while the
correlation to the same site q in nonzero. There is a clear
indication that the value of q is higher and more stable
with respect to temperature as compared with the well-
known case of equal coupling. A spin-glass phase could
eventually be stabilized by the presence of interplanar in-
teraction (three-dimensional Ising lattice) as well as by
unequal coupling to ferromagnetic and antiferromagnetic
states.

In an Ising square lattice the spin-glass phase is re-
stricted to an interphase between antiferromagnetism and
ferromagnetism. However, the present work is the basis
for considering interplanar interactions which can lead to
a three-dimensional Ising lattice where an actual spin-
glass phase could be possible. This is beyond the aim of
the present article and will be considered later on.

Other extensions of the present work are the possibility
of pairing of ferromagnetic bonds in accordance with
some existing proposals of pairing of holes at the Cu sites
which would be responsible for the superconductivity in
these kinds of compounds. ' This is to say that the locali-
zation of the holes due to the oxygen vacancies will pro-
vide the ferromagnetic exchange interaction. The action
of external fields would be also interesting. It would be
worthwhile to study the thermalization of system of
mixed bonds with unequal both exchange constants and
concentrations since most of the work done so far deals
with the equal coupling and equal concentrations of the
two kinds of bonds.
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