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Superconductivity and antiferromagnetism in heavy-electron systems are investigated from a gen-

eral point of view. First we classify superconducting states in a simple cubic lattice, a body-centered
tetragonal lattice, and a hexagonal close-packed lattice, having URu, Si2 and UPt3 in mind. For that
purpose we take an approach to treat the e6'ective couplings in real space. The approach is con-
venient to discuss the relation between the nature of Auctuations in the system and the supercon-
ducting states. When we assume that the antiferromagnetic fluctuations reported by neutron experi-
ments are dominant, the most promising are some of the anisotropic singlet states and there remains

the possibility for some triplet states too. Then we discuss the coupling between the two order pa-
rameters based on a Ginzburg-Landau theory. We derive a general expression of the coupling term.
It is pointed out that the coupling constant can be large in heavy-electron systems. The general
trend of the coexistence of the superconductivity and antiferromagnetism is discussed, and it is

shown that the anisotropic states are generally more favorable to the coexistence than the conven-
tional isotropic singlet. Experimental data of URu2Si2 and UPt3 are analyzed by the Ginzburg-
Landau theory. According to the analysis URu2Si2 has a small coupling constant and a large con-
densation energy of the antiferromagnetism. Qn the other hand, UPt3 has a large coupling constant
and a small condensation energy. It means that the specific-heat anomaly at T& should be small in

UPt3 and its superconductivity is easily destroyed when a large moment is formed.

I. INTRODUCTION

In recent years intensive studies have been made on a
new class of intermetallic compounds. ' In this class of
materials, the effective mass determined by the T-linear
term of the electronic specific heat ranges from several
hundreds to a thousand times bigger than the bare elec-
tron mass, hence the name of heavy-electron (fermion)
systems. The heavy mass originates from strong interac-
tion among electrons. Therefore the first central question
is why the heavy electron states are stabilized instead of
some magnetic ordering. It was a real surprise when the
superconductivity was discovered in some cerium and
uranium compounds which had very large y values,
CeCuzSiz, UBe», " and UPt3. Concerning the super-
conductivity, a central issue is whether the superconduct-
ing state is an ordinary one or an unconventional one.
Although there are many experimental indications to
support the unconventional one, decisive experiments
have not appeared yet.

The discovery of two transitions in URu2Si2 (Refs.
6—8) was the beginning of a more subtle question of inter-
play between magnetism and the heavy-electron state, al-
though the effective mass of URuzSiz is not so heavy.
The neutron scattering experiments by Broholm et al.
demonstrated that the upper transition, where specific
heat shows a typical A, -type anomaly, is really to an anti-
ferromagnetic state, T&=17.5 K, and that below the
second transition, T, =1.5 K, superconductivity coexists
with the antiferromagnetism. They reported unusually

small ordered moment (0.03+0.01)pit.
The first suggestion of the presence of magnetic order-

ing in UPt3 came from muon-spin rotation (@SR) experi-
ments. ' Neutron scattering experiments by Aeppli
et al. "reported the coexistence of superconductivity and
antiferromagnetism. According to their results, the Neel
temperature is T&=5 K and the magnitude of the or-
dered moment is small, (0.02+0.01)pn, and it stops to
grow and stays constant below T, =0.5 K. A mystery of
UPt3 is that no anomaly at T& is observed by other ex-
perimental methods, especially in specific heat.

An indication of magnetic anomaly in CeCuzSiz also
came from pSR experiments. Uemura et al. ' reported
that CeCuz, Siz with T, =0.7 K undergoes a spin-glass
transition or a spin-density-wave (SDW) transition
around 0.8 K. Very recently nuclear-magnetic-resonance
(NMR) studies by Nakamura et al. ' found that a super-
conducting sample of CeCuz ozSiz with T, =0.72 K shows
an SI3W transition below 0.6 K in external magnetic
field.

These examples show that the coexistence of supercon-
ductivity and antiferromagnetism in heavy-electron sys-
tems is not an exceptional case but rather a common
phenomenon. A well-known example of the coexistence
of magnetism and superconductivity is that of the mag-
netic superconductors. One of the new features here is
that the same f electrons are responsible for both the an-
tiferromagnetism and the superconductivity. Another in-
teresting point is the smallness of the ordered moment.
In the present paper we will not address the question of
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microscopic origin of the small moment but use it as a
fact to treat the problem of the coexistence. The small-
ness of the moment allows us to use Giniburg-Landau ex-
pansion not only for the superconducting order parame-
ter but also for the order parameter of the antifer-
romagnetism.

The organization of the present paper is the following.
In Sec. II we discuss irreducible representations of the su-
perconducting order parameter. We use an approach in
real space. One of the advantages of the approach is that
it is quite easy to have an idea about the relation between
the nature of Auctuations which mediate the supercon-
ducting couplings and possible superconducting states.
In Sec. III we develop a general theory of coupling be-
tween the superconductivity and the antiferromagnetism.
There we will discuss the general trend of the coexistence
phenomena among various possible super conducting
states and estimate the magnitude of the coupling con-
stant. In Sec. IV we will make an analysis of experirnen-
tal data of URu2Siz and UPt3 based on the Ginzburg-
Landau free energy. We will conclude the paper by sum-
mary and discussions in the Sec. V. A part of the present
work has been reported elsewhere. '

II. ANISOTRQPIC SUPERCONDUCTIVITY

In the heavy-fermion sup ere onductors, it is well
known' that various physical quantities such as specific
heat, the NMR relaxation rate, and the coeScient of ul-
trasonic attenuation show power-law behavior instead of
the exponential temperature dependence predicted by the
BCS theory. Such power-law behavior come from low-
energy excitations existirig in the superconducting state,
suggesting some ariisotropic state. .A p-wave state was
proposed for UBe&3 based on the T behavior of specific
heat' and also by the analogy with He. ' Ohkawa and
Fukuyama proposed an anisotropic s-wave state. ' It was
also pointed out that the antiferromagnetic fluctuations
are favorable to a d-wave state. ' ' Classification of the
anisotropic states were done by Volovik and Gor'kov,
Ueda and Rice, ' and Blount. In these classifications
basis functions of spherical harmonics in k space are
used. In the present paper we will use an approach in
real space. One of the advantages of the present ap-
proach is that it is easy to see the relation between the su-
perconducting states and the nature of charge or spin
Quctuations which mediate the pairing interactions.
Another advantage is that the basis functions are compa-
tible with the translation of the lattice. As specific ex-
amples, we take a simple cubic (sc) lattice, a body-
centered tetragonal (bct) lattice, and a hexagonal close-
packed (hcp) lattice. The bct lattice is appropriate for
URuzSi2 and CeCu2Si2 and for UPt3 the hcp lattice is ap-
propriate.

V,n, ,n, (2.1)

For the nearest-neighbor pairs, there are couplings be-
tween charge densities and also between spin densities,

V&n, +&n;,

Jl Si+5'Si

(2.2)

(2.3)

3
y(o)i'q(o) + y y y y(j)fq(j)r, ~r ~r ~ ri re rr

yr
S t

(2.4)

where the first term is for singlet pairings and the second
term for triplet pairings. I denote irreducible representa-
tions and yr stand for their basis functions. Vr is the
coupling constant for the irreducible representation I .
It should be noted that once the couplings are given the
irreducible representations are determined. g' ' is a field

operator for singlet Cooper pairs f'rJ' are field operators

(j =1,2, 3) for triplet Cooper pairs. The field operators
are defined by annihilation operators ak as

(k)a I, (o2aoi) pakp,
P S

(k)a k (o2o i) pakp,~r,

(2.5)

(2.6)

where o . (j =1,2, 3) are Pauli matrices and o o=o,o zo &.

Internal wave function or the form factor of the Cooper
pairs is represented by a basis function P~ (k).

For the gap matrix h(k), we use the standard four-
vector notation

A(k) =i g (cr, o 2)d;(k)
I' =0

d, (k)+id—z(k) ido(k)+di(k)
ido(k)+—d&(k) d, (k)+id&(k) (2.7)

The order parameter d;(k) is given by the average of the
6eld operators

Note that Vo is difFerent from the bare on-site Coulomb
interaction but related to the Landau param. eter I o. We
expect repulsive Vo for heavy-electron materials even if
we include electron-phonon couplings. We can proceed
to the next-nearest-neighbor pairs and so on. But the
nearest-neighbor couplings are su%cient to understand
qualitative natures.

In general, from given couplings, pairing interactions
for Cooper pairs are obtained in the form of

A. Simple cubic lattice

As a guide to more complicated systems of the bct and
the hcp, we use a simple cubic lattice and consider orbit-
ally nondegenerate case. We take into account residual
interactions between quasiparticles in real space. The
first term is the on-site interaction

In the present case of the simple cubic lattice with up
to the nearest-neighbor couplings, Eqs. (2.1)—(2.3), we
have two one-dimensional representations, I &+, one two-
dimensional representation, I"3+, and one three-
dimensional representation, I 4 . The parity of the first
three irreducible representations is even (singlet pairings)
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TABLE I. Irreducible representations of Cooper pairs in the
simple cubic lattice with the nearest-neighbor couplings.

Vo

Vl —
q Jl

Vl+ —'Jl

z

1

(23 ) i/2(cosk1+cosk2+cosk3)
1—(cosk

&
+cosk2 —2 cosk3 )v'3

cosk l
—cosk2

+2 Sink l

&2sink2
&2 sink3

and the last spin-orbit coupling). The coupling constants
and the basis functions are tabulated in Table I. We use
the lattice constant as the unit of length, a =1, and
k=(k, , k~, k3).

The first of the two I &+ representations is the conven-
tional singlet s-wave state. The second I",+ is the extend-
ed s wave, arid the I 3+ representation corresponds to the
d wave (dy) one, and the I 4 representation to the p
wave one. In general, when we include higher-order cou-
plings, the two representations of I,+ mix. When antifer-
romagnetic fluctuations are dominant, J& is positive and
we expect either the extended s-wave or d-wave state as
the most stable state. If the spin-orbit coupling is strong
we have to include it to discuss the I 4 representation,
and this has been done in Refs. 20-22. The present form
of the basis functions is compatible with the translation
of the lattice. We would like to point out that Pz (k) for

the second 1,+, I 3+, and 14 change their sign when
k is shifted by the antiferromagnetic wave vector
Q=(n, ~,~).

We can proceed further if it is necessary.
From the given couplings, Eqs. (2.9)—(2.13), basis func-

tions of the irreducible representations are obtained in
the form of Eq. (2.4). This differs from the simple cubic
case in that we need two kinds of operators, a, k and
a2k, since there are two atomic orbitals in the unit cell.
a, k is the annihilation operator for electronic state
which has its amplitude on the corner positions and a2k
on the body-center positions. Accordingly, expressions
for the fields operators for the Cooper pairs are modified
as

fy 2 gg g4y (k)~n —ka(o 20 01 )a/Pmkp
s k aP&m

k a, Pn, m

(2.14)

(2.15)

The di8'erence between the singlet and the triplet is the
transformation property under the parity operation:

Pr Xr ' rr rr
S S S S

y12 (k) y21 ( k)
Vr

S S

$11 (k) $11 ( k) $22 (I ) $22 ( / )~r ~r ' &r ~r
t t

y12 ( k )
— y21

t

(2.16)

(2.17)

Irreducible representations of singlet pairings are tabu-
lated in Table II and those of triplet pairings are in Table
III. The bct lattice is also a bipartite one. Therefore the
basis functions originating from pairings connecting the
two sublattices, the last six irreducible representations in

B. Body-centered tetragonal lattice

URu2Si2 and CeCu2Si2 have tetragonal ThCr2Si2 struc-
tures and there are two uranium or cerium atoms in a
unit cell, forming a body-centered tetragonal lattice (Fig.
1). The effective couplings start from the on-site interac-
tion

Vc Jc

Van;&n;& . (2.9)

For the nearest-neighbor pairs in the basal plane, there
are couplings between charge densities

Vp ni +5ni

as well as between spin densities

Jp si +5'si

(2.10)

(2.1 1)

For the next-nearest-neighbor pairs between the body
corners and the body centers, we also consider couplings
between charge densities

V, n, + n,.

and between spin densities

Jc i+r i

(2.12)

(2.13)

FIG. 1. Crystal structure of U atoms in URu2Si2. Vo is the
on-site coupling constant, V~ and V, are the coupling constants
between the nba-. est-neighbor charge densities, and J~ and J, are
the coupling constants between the nearest-neighbor spin densi-
ties.
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TABLE II. Irreducible representations of singlet Cooper pairs in the body-centered tetragonal lattice with the nearest-neighbor
couplings.

r+

r+

r+

r+

r+

r,+
r,+
r5+

Vr

Vp

Vp

4J~

4J.

4J.

4J.
V, —4J,
V, —4J,

V, —4J,

ZX

ZP

1

1

1—(cosk1a +cosk2a)
1

(cosk1a+cosk&a )v'2
1—(cosk1a —cosk&a )v'2
1

(cosk la —cosk&a )

P' (k)=P"( —k)

2co 2k1 c 2k2a cos2k31 1 1

2 sin —'k1a sin —'k2a cos —'k3c
2 2 2
1—sin —,k, a cos —,k2a sin

2 k3c1 ' 1

cos —'k, a sin —'k2a sin —'k3c
2 2 2

see Table III

$22(I )

1

V'2
1

v'2
1—(cosk1a+ cosk2a)~2

1—(cosk1a+ cosk2a )V'2
1

(cosk1a —cosk&a )v'2
1—(cosk 1 a —cosk2a )

Table II or Table III, change their sign by the shift of k
to k+Q. On the other hand, basis functions due to pair-
ings within a sublattice do not change their sign by the
shift. Now we diagonalize the single-particle Hamiltoni-
an, which generally has the following form:

eo(k) e,(k) a, z

e*(k) e (k)
k a

(2.18)

In the bct lattice, each atomic position has the symmetry
of the point group, D4h (the space group is symmorphic).
Therefore e, (k) is real, and the single-particle Hamiltoni-
an is diagonalized simply by the unitary transformation

Cheka sgn(e, ) a,„.1

—sgn(e, )
(2.19)a2«C2ka

where c, l, (c2& ) is the annihilation operator for the
upper (lower) hybridized band, whose dispersion is

eo(k)+~@&(k)~. When we take into account pairings
within the same bands, which is a reasonable approxima-

tion, irreducible representations marked by e in the last
column of the tables vanish and the same basis functions
remain valid in the new representation for the other irre-
ducible representations without 4 . Then the singlet (even
parity) and triplet (odd parity) can be distinguished by
the parity.

To see nature of the couplings, Eqs. (2.9)—(2.13), we
make use of the Fourier transform. Since there are two
atoms in the unit cell, there are two components, p, and

p2q 7 for the charge densities

S'q XXa ~+& a ~ (2.20)
k tx

p& has its amplitude on the corner positions, while p2
has its amplitude on the center positions. Similarly, the
spin densities also have two components

j
nq T nk+qa Oj o, nka '

k a, P

(2.21)

The couplings between the charge densities are of the
form

TABLE III. Irreducible representations of triplet Cooper pairs in the body-centered tetragonal lat-
tice with the nearest-neighbor couplings.

r5

12
I3
r;

Vr

V, + 4J,
V, + 4J,
V, + 4J,

Vc 4 Jc

yll(k)

sinkla
sink p a
sink, a
sink~a

y12( k )
— F21(

2 cos 2
k la cos 2 k2 ' Yk3

2 sin —'k1a sin —'k&a sin —'k3c
2 2 2

2sin —'k, a cos2k~a cos2k3c
2 cos —,

' k 1 a sin —,
' k&a cos

2 k3c
see Table II

f22(/ )

sin k1a
sink2a

—
sink la

—sink&a
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r(o, o,o)
M( —', —',0)
X{—',0,0)
z(o, o, —,

'
)

—V0+ 2Jp—V —2J0 p—V0
—V0+ 2Jp
—V —2J0 p—V0

4J,
0
0
0
0
0

TABLE IV. Values of J& (q) and J2(q) at points of high sym-
metries in the body-centered tetragonal lattice.

J, (q)

Values of J&(q) and J2(q) at points of high symmetries
are listed in Table IV. The spin structure in URuz Si2 is
that spins in each plane are ordered ferromagnetically
and their directions alternate along the c axis; the antifer-
romagnetic wave vector is (0,0,1). From Table IV, it is
seen that if J (0 (ferromagnetic) and J, )0 (antiferro-
magnetic), then the fluctuations at I point with antiphase
between planes, s&

—s2, are dominant. Therefore a pos-
sible superconducting state in URuzSi2 is either a singlet
one, I &+, I z+, or I 5+, with the coupling constant of
V, —

—,
' J„or a triplet one, I 5, with the coupling constant

1
Vl(q) V2(q) pl-,

Plq~p2q V (q) V (q) p

where

V&(q) = —,
' Vo+ V~(cosq&a+cosq2a ),

Vz(q) =4 V, cos —,'q, a cos—,'q2a cos —,'q3c,

and the couplings between the spin densities are

J, (q) Jz(q) s—~~(sj,sj )N~~ 1q~ 2q J (q) J (q) j

with

J, (q) = —Vo+ J~(cosq, a+cosq2a ),
J2(q) =4J,cosl ,'q, a cos —,'q2—a cos ,'q3c . —

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

C. Hexagonal close-packed lattice

UPt3 has a hexagonal Ni3Sn structure (Fig 2).. The
uranium sites form a hexagonal close-packed lattice,
slightly modified from an ideal one along the c axis.
Since there are two uranium atoms in the unit cell, we
can use the same form as Eqs. (2.9)—(2.13) for the
effective couplings. Of course the number of the nearest-
neighbor sites and their directions (Fig. 2) are different
from the bct lattice. For the ideal hcp lattice all nearest-
neighbor sites in the plane and off the plane are
equivalent. Therefore V =—V, and J =-J, for the ideal
hcp lattice. On the other hand, J~ (V„) can be quite
different from J, ( V, ) in the bct lattice as we mentioned in
Sec. II B.

Irreducible representations of the superconducting or-
der parameter are listed in Table V for singlet pairings

TABLE V. Irreducible representations of singlet Cooper pairs in the hexagonal close-packed lattice
with the nearest-neighbor couplings.

r+

r,+
I4
r+

VI-

V0

V0

4Jp

4Jp

4J.

4J.

V, —4J,
V, —4J,

V, ——J,

P"(k)

1

v'2
1

v'2
y0(k)
y0(k)
y„(k)
y, (k)

y„{k)

(pl2(k) $21( k)

y,0(k)

yso(k)

y,„(k)

y,„(k)

f22( k )

1

v'2
1

v'2
y0(k)

—y (k)
y„(k)
y, (k)

—y„(k)
—y, (k)

1

v'2

yo(k)

y„(k)
y, (k)

)fC

1 ikd.
—cos —2'kc g,. ev'3

OfC

cos2k c
y„(k)

,.e

COS 2
k.C

y, (k)

V, —4J, y,„(k)

y„(k)

&3 sin —,'k c
y, (k)

g,. e
V 3 Sin

2
k.C

y„{k)
g,. e
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and in Table VI for triplet pairings. An important
difference from the bct lattice is that P' (k) is in general
complex in the hcp lattice while it is real in the bct lat-
tice. The reason is that the space group of the hcp lattice
is not symmorphic. The point group of the hcp lattice is
D6I„but each atomic site does not have this symmetry,
especially if it is not a center of inversion, hence complex
(()' (k). Another difference of the hcp lattice from the sc
or the bct one is that it is not a bipartite lattice. There-

fore there is no simple rule for the transformation proper-
ty of the basis functions under the shift of k~k+Q ex-
cept for the trivial case of the conventional s-wave super-
conductivity due to the on-site pairings.

Now we diagonalize the single-particle Hamiltonian,
which has the form of Eq. (2.19). Again due to the non-
symmorphic nature, E,(k) is not real in general. A typi-
cal example may be a single-particle Hamiltonian of the
nearest-neighbor hoppings. In this case

TABLE VI. Irreducible representations of triplet Cooper pairs in the hexagonal close-packed lattice
with the nearest-neighbor couplings.

r;
r;
r,

Vr

V, + —'J,
V, + —'J,

yll(k)

yp(k)
yp(k)
y„(k)
y, (k)
y„(k)
y, (k)

y12(k) y21( k)

y,p(k)

y,p(k)

$22
( k )

yp(k)
—yp. (k)
y„(k)
y, (k)—y„(k)

—y, (k)

yp(k)

y„(k)
y, (k)

1 ik d.
—sin2k. c g.e2

V, + —'J,

V, +4J,

y,„(k)

y„(k)

y,„(k)

v'3cos —,'k c
y, (k)

l

v'3cos —,'k c
y„( )

g,.e

sin —'k c
y„(k)

t

sin —k c
y, (k)

,.e

1yp(k)= —(cosk 5]+cosk 52+cosk 53)v'3
]/2

2y„(k)= — [cosk 5, —2(cosk 52+cosk 5, )]

1
y. (k) = ~- (cosk.5 —cosk-5 )

1 —ik d] —ik.d2 —ik d3
y p(k)= —cos'k c(e '+e '+e ')

v'3
—ik d] —ik.d2

—ik.d3
y,p(k) = —sin

~
k.c(e '+ e +e )

' l)2

[sink 51 ——'(sink 52+sink 5, )]

2 &k d] ] tk d2 tk d3
y,„(k)= — cos —,

' k c[e ' —
—,'(e +e ')]

1 —ik-d2 —ik d3y„(k)= cos
~
k.c(e —e ')

1/2 2
2 —ik.d& ]

—ik.d2
—ik d3

y,„(k)= — sin2k c[e ——(e +e )]

1 —ik d2 —ik d3
y (k) = —sin —'k c(e —e )2

1
yp'( k ) —( sink 5]+ sink. 5&+sink 53 )

l)2
2y„(k)=
3

1
y, (k) = ($1nk 52 $1nk'53)
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eo(k) =2t gcosk 5;, (2.28) TABLE VII. Values of J&(q) and J2(q) at points of high sym-
metries in the hexagonal close-packed lattice.

ik 5,.e1(k)=2t, cos —,'k.cue (2.29) Ji {q) J2(q)

where t, and t, are the hopping matrix elements and 5;
(i =1,2, 3) are the vectors connecting nearest-neighbor
pairs in the plane,

5, =a(1,0,0), 52=a ——, ,0

r(0, 0,0)
A(0, 0, 2)
M( 2,0,0)

Vo+ 3Jp—Vo+ 3Jp
—V —J0 p—V —J0 p—Vo —

2 Jp
—V ——J

2 p

3Jo
0

J (m/3)i
C

15 =a
3

3
~0 l q'd

V2(q) = V, cos—,'k.cue (2.33)

and +—,'c+d; (i =1,2, 3) are the vectors connecting
nearest-neighbor pairs between planes, The couplings between the spin densities have also the

same form as Eq. (2.25) with
d, =-,'(5, —53), d, =

—,'(53 —5, ),
d3= —,'(5, —52) .

The unitary transformation to diagonalize the single-
particle Hamiltonian is

J,(q)= —Vo+J gcosq 5

( q'd ~

J2(q) =J,cos —,'q cue

(2.34)

(2.35)

C lka

C2ka

i Ok
e a&k

a2ka
(2.30)

where 8k is the phase of e, (k):

c &k and c2k are the annihilation operators for the
upper, Eo(k)+ i@1(k)i, and lower, eo(k) —~E1(k)i, hybri-
dized bands. In the last columns of the Tables V and VI
we marked by e those irreducible representations which
vanish when we take into account only pairings within
the same hybridized bands, which is again a reasonable
approximation.

Special care must be taken for those irreducible repre-
sentations (the last six in Tables V and VI) which have
their amplitudes between the planes. The basis functions
of these irreducible representations in the new one parti-
cle basis set,

cheka

and C2ka& are

Values of J, (q) and J2(q) at points of high symmetries
are listed in Table VII.

According to Aeppli et al. " the antiferromagnetic
wave vector Q is ( —,', 0, 1) at the M point. It is seen from
Table VII that eigenvalue of Eq. (2.25) is the largest at
the M point, —Vo —J —J, for s, —s2 e ' if the cou-
pling constants J and J, are antiferromagnetic and near-
ly the same, J -=J, )0. As we have discussed we expect
J —=J, in Upt3 since the structure is close to the ideal hcp
lattice. The spin structure of s, —s2 e ™/3at the M
point is nothing but the spin structure reported by the
neutron scattering. " Therefore the antiferromagnetic
fluctuations around the M point are expected to be dom-
inant fluctuations responsible for the superconductivity

+1[y12(k) ' —k+y21(k) '
k) (2.31)

V, (q)= —,'Vo+ V gcosq 5;, (2.32)

(+ for the upper band and —for the lower band ). In the
last columns shown are the basis functions for the upper
band with the use of the phase given by the nearest-
neighbor hoppings, Eq. (2.29). The phase has the trans-
formation property 0 k

= —
Ok under the inversion. By

combining this transformation property with Eqs. (2.16)
or Eq. (2.17), eventually the singlets have even parity and
the triplets have odd parity. This is an important
difference compared with a lattice of a symmorphic space
group, of which the bct lattice is an example.

Now we transform the effective couplings into expres-
sion in reciprocal space. The couplings between charge
densities have the same form as Eq. (2.22), with

'Iic Jc

/

/
0/'
0

FIG. 2. Crystal structure of U atoms in UPt3. Vo is the on-
site coupling constant, Vp and V, are the coupling constants be-
tween the nearest-neighbor charge densities, and Jp and J, are
the coupling constants between the nearest-neighbor spin densi-
ties.
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in UPt3. In that case the most probable superconduct-
ing state may be a singlet one, I,+ or I 5+ with the cou-
pling constant V —

—,'J, or I ]+, I &+, or I;6+ with V, —
—,'J, .

Since V —= V, and J =—J„if I,+ (or I ~+) is realized, the
order parameter may be a linear combination of the two
I"&+ (or I 5+ ) representations.

A. Green's function

As a preliminary step to calculate the susceptibility we
study the Green's functions in the presence of the super-
conducting order parameter.

1. Hexagonal close-packed lattice

III. COUPLING BKTWKKN SUPERCONDUCTIVITY
AND ANTIFKRROMAGNKTISM

In this section we derive the expression of the coupling
term between superconductivity and antiferromagnetism.
Heavy-electron materials which show the coexistence
phenomena between superconductivity and antifer-
romagnetism have a characteristic feature; the magnitude
of ordered moment is small, as we mentioned in Sec. I.
For example, the ordered moment in URu2Si2 (Ref. 9) is
(0.03+0.01)p~ and that in UPt3 is (0.02+0.01)jj~." Be-
cause of that fact we may use Ginzburg-Landau expan-
sion of the free energy not only by the superconducting
order parameter but also by the antiferromagnetic order
parameter.

An advantage of the Ginzburg-Landau —type theory is
that the group theoretical argument can be used. Firstly,
the general form of the coupling term between the super-
conducting order parameter and the antiferromagnetic
one is obtained. Secondly, based on the general form the
compatibility of each state classified in Sec. II is dis-
cussed. In the present scheme we need not assume a uni-
tary state for the superconductivity, as usually done; a
nonunitary state may be discussed on the same footing.

It is obvious that the lowest-order coupling between
the superconductivity and the antiferromagnetism in the
Ginzburg-Landau free energy is quadratic with respect to
both order parameters. It is a consequence of the gauge
invariance and the time-reversal symmetry. Therefore
the coupling term is derived either by expanding the stag-
gered susceptibility by the superconducting order param-
eter or by expanding the gap function by the staggered
moment. We use the former method in this paper be-
cause it is more transparent and convenient to use the
Green's-function method. Of course, the two methods
given the same result.

In the calculation of the coupling term, we use a
weak-coupling approximation. By the weak-coupling ap-
proximation, we mean that under the assumption the an-
tiferromagnetic coupling constant does not depend on the
superconducting order parameter. Equivalently in the
second approach the weak-coupling approximation
means that the superconducting coupling constant does
not depend on the staggered moment. Strong coupling
corrections are neglected in this section. However, it is
easy to see the general form of the Ginzburg-Landau free
energy including the strong-coupling corrections since
the necessary symmetries have been taken into account
already in the weak-coupling limit.

In the following we use the hcp case to illustrate de-
tailed procedure of derivation. For the bct and the sc
cases, we will show only final results.

We begin with the Hamiltonian for the hcp lattice. In
the unit cell of the hcp lattice there are two atomic orbit-
als. We use two operators c,k, and c2k defined by Eq.
(2.30) which diagonalize the noninteracting Hamiltonian,
Eq. (2.18). We assume that Cooper pairs are formed by
electrons, ka and —kg, in the same band, because the
energy of the ka state in one band is generally difterent
from that of k13 state in the other band. On the other
hand, if they are in the same band they have the same en-
ergy because of t'he inversion symmetry. The mean-field
Hamiltonian is. of the form

H= g co (k)c k, c k,
k, m, s

+ —,
' g g g d, (k)c „, (iujo2), , c. —k

k, m sl, s2

z g g g dj (k)cm —ks (l &2&j )s s cmks
k, m sl '~2

with

(3.1)

co, (k) =eo(k)+ i e, (k) i,
coz(k) = so(k) —

i@,(k) i,
(3.2)

where the suffix m denotes the upper hybridized band
co,(k)=@0(k)+~a,(k)~ for m =1, and the lower hybri-
dized band co&(k)=co(k) —~e&(k)~ for m =2. An example
of the explicit forms of eo(k) and e,(k) is given by the
nearest-neighbor hopping model, Eqs. (2.28) and (2.29).
For the gap matrix we use the same four-vector notation
as Eq. (2.7). The superconducting order parameters
do (k), dj (k) (j = 1,2, 3) are defined as follows:

(3.3)

d, (k)= —g Vr (f'~' )Pr (k),
~, rr

(3.4)

where the coupling constants Vz and the basis functions

Pz (k) =fr (k) are obtained in Sec. II.
The Green's functions are defined as usual:

~p(k~ ) ( s.[Cm«(r) mkp])

F p(k, r)= —(T,[c k (r)c —kp])

F p (k, r)= —(T,[c k (r)c kp]),

(3.5)

where G &( k, r ) is the normal Green's function and
F &(k, r), F & (k, r) are the anomalous Green's functions.
Since we have taken into account only pairings within the
same band, all Green's functions are diagonal in the band
indices. The Dyson equations of the Green's functions
are
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[ico„—co~(k)]G p(k, ico„)
—ggdj (k)(io~o2.), F, p(k, ico„)=5 p,

J Sl

(3.6a)

ing the band indices in Eqs. (3.8). In numerical calcula-
tions in the Sec. III E we will use co(k) of the tight bind-
ing model

[ico„+co (k)]F p (k, ico„) co(k) = —tgcos(lc a, ), (3.9)

+gg d (k)(icr2o- ), G, p(k, ico„)=0,
J Sl

(3.6b) where t is the hopping matrix element and a; (i =1,2, 3)
are the vectors connecting nearest-neighbor pairs.

[ico„co —(k)]F p(k, ico„)

+ggd. (k)(iotcr2), Gp, ( —k, i—co„)=0 .
J Si

(3.6c)

5 pG p(k, ico„)=
l co„co~ k

(3.7)

in Eqs. (3.6b) and (3.6c). The solution for the normal
Green's function G p(k, ico„) is obtained by substituting
F p (k, i co„) obtained in this manner. The results are

F p(k, i co„)= — gd~ (k)(i o J o 2)~p,
1

co (k)+co„

We need to calculate the susceptibility up to the second
order of the superconducting order parameter. Since
the anomalous Green's functions F p(k, ico„) and
F p (k, i co„) always appear in pairs in the susceptibility, it
is sufficient to replace G p(k, ico„) by the free Careen's
function

1. Kexagonal close-packed lattice

As we discussed in the Sec. II C, the spin density fluc-
tuations around s&q

—szqe
'" at the M point are the

most enhanced. The corresponding staggered susceptibil-
ity yg ( l, l' =x,y, z) is defined as

xg = f dr(sg(T)S g(0)), (3.10)

where SQ is the I component of the staggered magnetiza-
tion. We rewrite the staggered magnetization SQ with
the operators c,k, c2k defined in Eq. (2.30}which diago-
nalize the noninteracting Hamiltonian,

B. Susceptibility

Now we proceed to susceptibility. We illustrate pro-
cedure of calculations of the staggered susceptibility us-
ing the hcp lattice as an example, as we did in Sec. III A.

F p (k,ico„)=

G p(k, ico„)=

gd '(k)(io2o, ) p,
co (k)+co„

5 p

i co„co (k)—
(3.8)

with

I I mm'g=&& g ( )~P k, k+g ~k+gu m'kP
k a, Pm, m'

(3.11)

g,,,d, (k)d, *(k)(o J~cTJ ) p

[ico„—co (k)][co (k)+co„]

2. Body-centered tetragonal lattice

k +q k —(~/3)&'y
k, k+Q e

12 i
'

k( 1+ k+g k —(m/3)i )
+k, k+Q e e

Pl i e
' ke —(n./3)i

k, k+Q

(3.12)

In the unit cell of the bct lattice, there are two atomic
orbitals like the hcp lattice. We calculate the Green's
functions under the same assumption as we used for the
hcp lattice. The Green's functions for the bct lattice are
of the same form as those for the hcp lattice, Eq. (3.8).

3. Simple cubic lattice

In the unit cell of the sc lattice there is one atomic or-
bital unlike the hcp lattice and the bct one. The Green's
functions in the sc lattice are easily obtained by suppress-

X(1+ ' k+Q k (n/3)i)

P2 i e
—(n/3)i(e' k+0 k e(m/3)i 1)k, k+Q

where ~k k+Q denotes the matrix element of transition
(m, k)~(m', k +g). Since we want to calculate the free
energy up to second order of the superconducting order
parameter, we can use Eq. (3.7) for the Green's function.
We substitute Eqs. (3.11) into Eq. (3.10) and the stag-
gered susceptibility is expressed by the Green's functions:

Xg=T&g g g g Irkk+gl [—(~') p(~') @GAL'(k+g, i~. )Gp'(k, i~. )
ice„aP a', P' k m &, m2

+(o() p(o() pF .' (k+Q, ico„}Fpp'(k ico„)] . (3.13)

After the frequency summation Eq. (3.13) is rewritten as follows:

+Q +OQ + 5XQ (3.14a)
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~ll' — Tr( I I')y
k m, , m2

f[co (k +Q)] f—[co (k)]
co (k+Q) —co (k) (3.14b)

~XQ '5l, l g g[y( ' '(k}+yp ' '(k)] P Tr[d~ '(k)d, ' ' (k)o, o,']
ml, m2 k

+ g gy, ' '(k)QTr[d, ' (k+Q)d, '(k) cTcro,'cT,.]
PIT 1,Pl ~ k

with

(3.14c)

m, m2 1 l&k, k+'g I a Pco (k)
y, ' '(k)=—

2 co (k+Q) —co (k) c)co (k) co (k) 2
tanh

t
(3.15)

m, mz(k) k, k+g
[co (k +Q) —co (k)]

@co (k)
X

(k)
tanh

2

Pco (k)

co (k)+co (k +Q) 2
tanh

Pco (k +Q)
+tanh

where yo' is the staggered susceptibility without the su-
perconducting order parameter and 6y& is the deviation
from it. In the above expression f (x) is the Fermi distri-
bution function and the fact that le+@ is equivalent to
lc —Q has been used.

2. Body-centered tetragonal lattice

The staggered susceptibility for the bct lattice has the
same expression for the hcp lattice, Eq. (3.14). The only
diA'erence is the expressions of ~k k+&,

rk, k+g [1 sgnel(k +Q)sgnei(k)]

3. Simp/e-cubic lattice

As we mentioned in Sec. III A3, the results for the sc
lattice are again obtained by suppressing the band indices
in Eqs. (3.14) and (3.15). For later use, we write them ex-
plicitly:

&Xg =&11 g[y&(k)+yz(k)] g Tr[d~(k)d, *, (k)cT, cT,']

+gy~(k)g Tr[d~*(k +Q)d (k)cT~cr(cT '0 ( ],
~k k+g = —

—,'[sgne&(k)+sgn, (k +Q)],
12 ~1 M2 11

+k, k+Q ' k, k+Q &g k+g &k k+g-

(3.16) k jj'

(3.17)

1 1 c) 1 Pco(k)
2 co(k+Q) —co(k) c}co(k) co(k) 2

1 1 @co(k) 1
h

pco(k) h
pco(k +Q)

y~k = tanh tanh +tanh
[co(k +Q) —co(k)]~ co(k) 2 co(k)+co(k +Q) 2 2

(3.18)

C. Free energy

Now we are at the position where we can calculate the
coupling term between the superconductivity and antifer-
romagnetism in the free energy. The magnetic part of the
free energy I'~' is

FM'2'= ,'y. Mg'[(qg ' }"' -Is„,psg, — (3.19)
1, 1'

where M& is the staggered magnetization, y&' is the stag-
gered susceptibility, and I is the interaction constant re-
sponsible for the antiferromagnetism. The coupling term
is obtained by expanding the susceptibility as

11, ~X@'
[~(xg ')]"= —

g (3.20)

~1 ~11g1 (3.21}

the coupling term is of the form

I'c,~ = —
—,'g &g&Xg&g

I, 1'

1. Hexagonal close-packed lattice

(3.22)

By substituting Eq. (3.14c} into Eq. (3.22), we obtain
the expression of the coupling term

I

where 5g&' is the change of the susceptibility due to the
superconducting order parameter which we have calcu-
lated in Sec. IIIB. By definirig the staggered magnetic
field through
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F~~= g (y, ' '+y2 ' ')(do'(k)do' (k)+d '(k)d ' (k))Bg.Bg
ml, m2

+ g y2
' '(do '(k}do ' (k+Q))Bti Bg

m 1,m2

+ g y2' '([d '(k).Bg][d ' (k+Q) Bg]
m1, m2

—[d '(k)XBg][d ' (k+Q)XBg]) (3.23)

where ( ) denotes the average on the Fermi surface. In
Eq. (3.23) the coefficients are defined as

y;
' '=sky; ' '(k) with energy cutoff for co (k).

ml, m2
y,. ' ' is also given by the same k summation with addi-
tional energy cutoff for co (k+Q). From Eq (3.23) we
see that the coupling term is rotationally invariant in the
spin space for the present model without the spin-orbit
interaction.

2. Body-centered tetragonal lattice

D. Discussion of the coupling term

In this section we evaluate the total coupling constant
for each representation obtained in Sec. II. The results
will show relative trend for each representation to have
the coexistence between the antiferromagnetism and the
superconductivity. In this section we will begin discus-
sions from the simplest case, i.e., the sc lattice.

1. Simple cubic lattice

The first line of the coupling term, Eq. (3.23) does not
depend on specific irreducible representations. The
second line, for singlet pairing, or the third one, for trip-
let pairing, depends on them. The difference comes from
the behavior of d. (k) when k is shifted by the antiferro-
magnetic wave vector Q = (m, m., ir }.

For the second I,+ and ri+, since do(k +Q) = —do(k),
the coupling term is proportional to yi+y2 y2 while
for the conventional singlet pairing, the first I, , it is pro-

TABLE VIII. The coupling constants between the supercon-
ductivity and the antiferromagnetism in the simple cubic lattice.

p+
I +

r,+
r,

Vr

Vo

V1 —
4 ~1

V1 ——J11 4 1

V1 + —'J1

Coupling constants

7 1+Y2+ V2

71+3'2

71+72 V2

VI+ 72 V2

The coupling term in the free energy for the bct lattice
is given by precisely the same form as that for the hcp
one.

3. Simple-cubic lattice

The coupling term in the free energy for the sc lattice
is obtained by suppressing the band indices in Eq. (3.23)
as we already mentioned.

I

portional to yi+yz+y2. Therefore, for anisotropic sing-

let pairing, the coexistence is easier to occur than for the
conventional one.

For the triplet pairing, I ~, the basis functions also
change their sign, d(k+Q)= —d(k). Therefore the cou-
pling term has the lowest energy when d(k) is parallel to
B independent of k. This is possible when there is no
spin-orbit coupling, and the coupling term is proportion-
al to y&+y2 —

y2 just the same as the anisotropic singlet
pairings. %'e summarize the results in Table VIII. For
the triplet one, the spin-orbit coupling which is neglected
in the table is important. %'ith the spin-orbit coupling, it
is impossible to make d(k) parallel to B& independent of
k, since at least two basis functions of the orbital part
enter in the basis functions of the product representa-
tions, see Eq. (16) of Ref. 21. Therefore we expect the
triplet state lies in the middle of the conventional singlet
and the anisotropic singlets from the point of view of the
coexistence.

+ ' '(d ' (k)d '(k )]B (3.25)

Therefore, the coexistence is easier to occur in the
case for those singlet pairings between planes,
I i+( Vr = V, ——„'J, ), I 4+ ( Vr = V, ——'J, ); and I z ( Vr = V,
—

—,
' J, }, than the pairings in the case within planes,

ri+(Vr=VO) rl+(Vr=VP —
—,'Jp), and r3+(Vr=VP

3J )

For the I 2 (Vr = V, + —,'J, ),triplet pairings,

2. Body-centered tetragonal lattice

In URu2Siz the antiferromagnetic wave vector Q is
(0,0, 1). We assume Q=(0, 0, 1) in the following
analysis.

For singlet pairings which are based on the pairing be-
tween planes, I i+(Vr= V, ——', J, ), I z (Vr= V, ——,'J, ),
and I ~+( Vr = V, —

—,
' J, ), do(k) changes its sign under the

shift of k —+k+Q; do(k+Q)= —do(k). The coupling
term is

[( 1 2+ 1 2)( ~d 2(k)~2)
m l, m2

—y 2
' '(do ' (k)do '(k))]B(i . (324)

On the other hand, for pairings which are based on the
pairings within planes, I, ( Vr = Vo), I,+( Vr = V
—

—,'J ), and I i (Vr= V —
—,'J ), do(k+Q)=do(k) and

the coupling term is

[( ' 2+ ' )( ~d (k)~2)
m1, m2
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—y2
' '(d ' (k)d '(k) ) ]Bg . (3.26)

With the spin-orbit coupling we expect the triplet state
lies in the middle of the conventional singlet and the an-
isotropic singlets. The Q vector of (0,0, 1) is expected for
J &0, and J, )0. Therefore either a singlet pairing be-
tween planes or a triplet pairing within planes is plausible
from the point of view of the coupling constant Vz. The
present results show that those singlet states are also
favorable to the coexistence.

3. Hexagonal close-packed lattice

In UPt3 the antiferromagnetic wave vector g is report-
ed as ( —,', 0, 1) as we mentioned in Sec. II C." In the fol-

lowing, Q=( —,', 0, 1) is assumed in necessary cases.
There is an important difference between the hcp case

and the sc or the bct case. In the latter cases the cou-
pling term gives different contribution of the free energy
depending on irreducible representations as we discussed
in Secs. IIID 1 and IIID2, but it does not lift the de-
generacy of each multidimensional irreducible represen-
tation. It is easily seen from the fact that
(P~(k)P (k + Q) ) =0 for diff'erent basis functions in the
same irreducible representation I because P~(k+Q)
=+/ (k). On the other hand in the hcp case the trans-
formation property of P (k+Q) is not so simple. Here
we use I ~+(Vr = V —

—,'J ) as an example. It is a two-

dimensional representation and the basis functions y„(k)
and y, (k) behave under the shift by Q

I 3 (V„=V,+ —,'J, ), and I 5 (V„=V,+ —,'J, ), the basis
functions also change their sign, d (k+Q)= —d (k).
Therefore, the coupling term has the lowest energy when

d '(k) and d '(k) are parallel to B& independent of k.
This is possible when there is no spin-orbit coupling, as
we discussed in the previous Sec. III D 1. For the triplet
pairings, I 5 ( Vr = V~+ —,

' J ), the basis function does not
change its sign, d (k+Q)=d (k). Therefore, the cou-

pling term has the lowest energy when d '(k) and d '(k)
are perpendicular to B& and parallel each other indepen-
dent of k. In the both cases the coupling term is

[( ' ~+ ' ~)( ~d 2(k)~2)
m~, m2

(d (k)d'(k+Q)) = ———+cos —+282 1 7T

0 0 3 2 3

E. Magnitude of coupling constants

We investigate the magnitude of coupling constants be-
tween the superconductivity and the antiferromagnetism
in this section. We consider the simple cubic lattice (a bi-
partite lattice) with nearest-neighbor hoppings as an ex-
ample. In that case since co(k +Q) = —co(k) the coupling
constants are given by

CO 1 8 1 /3c~
y, =

—,
' I drop(co+p) —tanh

CO co+p Bco co 2

~c 1y2= —,
' I de p(co+p)

C (co+p)

(3.30)

/3c CO

X —tanh
M 2

1 /3c Q7

tanh +P,p
2p 2

CO—tanh
2

(3.31)
from Eq. (3.18). In the above expression /3, equals
1/k~ T„p is chemical potential, p is the density of states,
and co, is a cutoff energy.

The coupling constants can be calculated analytically
in the half-filled case

(3.29)

(do(k)do (k+Q)) is maximum and equal to —,
' when

8=m. /3. It is minimum and equal to —1 when
8= —~/6. We have shown that the degeneracy in
I ~+(Vr= V~

——„'J~) is removed by the coupling term.
The degeneracies in the other multidimensional represen-
tations for the coupling term are removed in the same
way. A general discussion that all the irreducible repre-
sentations in the hcp lattice with the antiferromagnetic
ordering are one dimensional is given by Ozaki and Ma-
chida based on group theoretical arguments. The
present theory has made it clear how it occurs.

y„(k + Q) = — yo(k) —
—,'y„(k) — —y, (k),&2, 1

1

B c
(3.32)

y, (k+Q)= 2
1/2

yo(k) — —y„(k) .
1

3

(3.27a)

(3.27b)

do(k) =cos(8)y„(k)+sin(8)y, (k) . (3.28)

Therefore the coupling term depends on a specific form
of the linear combination of the two basis functions

where b is the coeKcient of the ~b,
~

term in the weak-
coupling limit. This is very large. For the case of the
half-filled band in a bipartite lattice, the Fermi surface
nests perfectly, resulting in an insulating state below T&.
Therefore it is almost always impossible to have a super-
conducting state once the antiferromagnetism sets in.

Now we consider more general cases away from the
half-filled band. Since the coupling term is obtained by
expanding the staggered susceptibility, we expect that the
order of magnitude of y is in the range

The angle 0 is determined so that the free energy be-
comes the lowest. From Eqs. (3.23), (3.27a), and (3.27b)
we obtain

1 1)y)T~ ( T*)2 (3.33)
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In the above expression y is the resultant coupling con-
stant between the superconductivity and the antifer-
romagnetism, for example, y =y, +y2+y2 for the con-
ventional superconductivity. We use the standard nota-.
tion for the part of the free energy due to the supercon-
ductivity. T, is the superconducting transition tempera-
ture when y=0, p is the density of states, and b is the
coe%cient of the fourth-order term of h. In the weak-
coupling theory b =7((3)/16(n.k~T, ) . As for the part
of the antiferromagnetism, Tz is the Neel temperature,
B0 is the staggered exchange field at T =0 when y =0,
and 5 is a small constant of the order of unity.

The condition of the coexistence between the supercon-
ductivity and the antiferromagnetism is given by

yB0(1 . (4.2)

FIG. 3. Value of the coupling constant between the antifer-
romagnetism and the superconductivity {y&+y2)/2y&{p=O)
and y2/2y{p=O) as functions of chemical potential p. The
solid lines are for T, =D /10. The dashed lines are for

T, =D/100. D is the bandwidth. In both cases the cutoff ener-

gy co, =D/10.

1 —yBD
TD c

1 —yB

(4.3)

If this condition is satisfied the superconducting transi-
tion temperature is

We have discussed the coupling term between the su-
perconductivity and antiferromagnetism in Ginzburg-
Landau free energy from a microscopic point of view in
Sec. III. The coupling constant is determined from the
band structure by Eqs. (3.15) and (3.18). In this section
we take an alternative way. We analyze existing experi-
mental data of URuzSi2 and UPt3 and discuss the magni-
tude of the coupling constant.

A. Analysis of the Ginzburg-Landau free energy

Once we fix a particular superconducting state for a
particular material, conventional or anisotropic one, we
may write Ginzburg-Landau free energy as

Tc+=p — ',
I
&I'+ b

I
&I'+ y I

~ I'Bg
C

T —T 16B2+ 1~ B4.

2
(4.1)

by regarding 6 as the modulus of the order parameter.

where T~ is effective Fermi temperature. In heavy-
electron systems, TF' is small, typically 10 or 20 K.
Therefore we can expect sizable interference phenomena
between the superconductivity and the antiferromagne-
tism in heavy-electron systems.

We show examples of numerical calculations in Fig. 3.
We plot (y&+yz)/2y, (p=O) and yz/2y, (p=O) as func-
tions of p. In these examples we take co, =D/10 where D
is the bandwidth. The solid lines are for T, =D/10. The
dashed lines are for T, =D/100. From Fig. 3 we see that
the coupling constants are largest in the half-filled band
and remain fairly large when the ratio of T, to the band-
width is relatively large, which may be a characteristic
feature of the heavy-electron systems.

IV. ANALYSIS OF EXPERIMENTS

and the exchange field below T, is modified to

Bg(T)=
y TN T
5b T, T~

B2

1 —y yB
5b

(4.4)

In the Ginzburg-Landau theory there is a jump of specific
heat at T& which is given by
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B. Analysis of experimental data

l. URu 2Si

A big A,-type anomaly is observed in URu2Si2. Equa-
tion Eq. (4.5) gives an estimate 5B0 =—Tz. Then the coex-
istence condition, Eq. (4.2), can be expressed as
y (5/T&. Since T~—= TF", the coupling constant is rela-
tively small in the range of Eq. (3.33). Using the weak-
coupling expression for b we get y/b5 ((T, /Tz) from
the inequality. From Eq. (4.4) we see that the present
analysis predicts that there is no appreciable change in
the temperature dependence of the B&(T) or staggered
magnetization M&( T) at T, ; in other words, M&( T) con-
tinues to grow below T, .

McElfresh et al. measured pressure dependence of
T, and Tz. According to their results T, vanishes at
P = 16 Kbar, where T~ =20.5 K. When we attribute the
reduction of T, solely to the coupling we get the upper
limit of the coupling constant. It gives an estimation
of yB0 =—', . From the value, it follows that

T, /T&(P =0)=0.43. It shows that the value of the cou-
pling constant is consistent with the original assumption
that T& is higher than T, .
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2. UPt 3

The neutron experiments of UPt3 reported that the
staggered moment stopped to grow below T, . From Eq.
(4.4) the condition of this behavior is given by

Tc 5
(4.6)

V. CONCLUSION

In the present paper we have investigated coexistence
between the superconductivity and the antiferromagne-
tism from a general point of view. First we discuss
classification of superconducting states in the simple cu-
bic lattice as the simplest possible case, the body-centered
tetragonal lattice relevant to URu2Siz, and the hexagonal
close-packed lattice relevant to UPt3. For that purpose
we used the approach to describe the effective couplings
for the superconductivity in real space. The advantage of
the method is not only that the irreducible representa-
tions are determined unambiguously, but also that we can
easily see the relation between the nature of fluctuations
in the system and the superconducting states. In that
way we discussed which states are favorable when the an-

where the weak-coupling expression is used for b. It
means the coupling constant y is just at the middle of the
range of Eq. (3.33). Then the coexistence condition can
be expressed as 5B0 & T, T&. The first consequence of
this result is that the jump of specific heat should be
small, less than T, /T&=0. 1. The present analysis sug-
gests a possible explanation for the absence of the specific
heat anomaly at T& in UPt3, it is plausible that such a
small anomaly may be smeared out by impurities.

The second point is that the coupling constant of the
order of 5/T, T& is large. It is so large that in ordinary
cases it is diKcult to have the coexistence phenomena.
The reason is that in ordinary cases we expect that the
staggered exchange fie1d is of order of T&. Therefore it
seems that the smallness of the ordered moment is neces-
sary to have the coexistence in UPt3 and the supercon-
ductivity is easily destroyed if the ordered moment be-
comes larger. In that sense it is interesting to note that in
doped UPt3, U(Pt, „Pd )3, ', and U, „Th Pt3, the or-
dered moment is bigger and the superconductivity is
suppressed.

In summary, URu2Siz has a small coupling constant
and a large condensation energy due to the occurrence of
the antiferromagnetism. On the other hand UPt3 has a
large coupling constant and a small condensation energy.

tiferromagnetic fluctuations observed by the neutron
scattering experiments are dominant mechanism for the
superconductivity.

Secondly we obtained the coupling term between the
superconductivity and the antiferromagnetism in the
Ginzburg-Landau free energy. In this scheme we can ob-
tain the general expression of the coupling constant in
terms of the band structure. Here we would like to point
out that in UPt3 there is good agreement between band
calculations ' and de Haas —van Alphen experiments,
which is encouraging. ' The expression suggests that in
heavy-fermion systems, where the effective Fermi temper-
ature is small, we can expect considerable interference
phenomena. We have also shown that many anisotropic
superconducting states are more favorable to the coex-
istence than the conventional superconducting states. A
typical example is the simple cubic lattice. In the exam-
ple the extended s-wave states or the d wave state is the
most favorable, the conventional s-wave state is the most
unfavorable, and the p-wave states are in between.

The analysis of experimental data of UPt3 and URu2Si2
was also done based on the Ginzburg-Landau theory.
According to the analysis the coupling constant in UPt3
is large. It is so large that the coexistence is only possible
since the ordered moment or, more precisely, the stag-
gered exchange field is so small. However, it seems that
once the small ordered moment is accepted as fact the ex-
isting experimental data are mutually consistent includ-
ing the smallness of the specific anomaly at T&. On the
other hand the coupling constant in URu2Si2 is relatively
small and the coexistence here is an ordinary one. We
would like to point out that the existence of such small
ordered moment is a challenging problem to solid-state
physicists.
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