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Thermodynamics of the single-channel Kondo impurity of spin S ( < %) in a magnetic field
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The thermodynamic Bethe-ansatz equations of the s-d exchange model of arbitrary spin S (de-
rived by Fateev and Wiegmann) are solved numerically. We present the magnetic field and temper-
ature dependence of the specific heat, the entropy, the magnetization, and the susceptibility for

<71
S=7.

I. INTRODUCTION

The diagonalization of the S =1 Kondo model by An-
drei! and Wiegmann? by means of Bethe’s ansatz was fol-
lowed by numerous extensions of these results. The ther-
modynamic equations of the s-d model were derived by
Andrei and Lowenstein® and Tsvelick and Wiegmann®
and then solved numerically by several groups.’~’ Gen-
eralizations of the model to spins larger® than 1 and to in-
clude orbital degrees of freedom (the Cogblin-Schrieffer
and the n-channel Kondo models) were also found to be
integrable® ~ '3 (for a review see Ref. 14).

The purpose of this paper is to present the numerical
solution of the thermodynamic Bethe-ansatz equations of
the s-d exchange model for spins S up to I in a magnetic
field. This model is the most straightforward generaliza-
tion of the spin-; Kondo problem, with the impurity
spin-1 operators being replaced by those of a spin §, i.e.,
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Here cla and ¢, are the usual creation and annihilation
operators and 2s, - is the vector of Pauli matrices. Con-
sidering only s-wave scattering and with a linearized
dispersion relation, this model was found integrable by
Fateev and Wiegmann® and Andrei, Furuya, and Lowen-
stein.!! The thermodynamic Bethe-ansatz equations were
derived by Fateev and Wiegmann'® (see also Ref. 11). In
the absence of a magnetic field the thermodynamic equa-
tions were numerically solved by Rajan et al.® and Des-
granges et al.” Rajan et al.’ also solved the S =4 case
in the presence of a magnetic field. Some results for the
case S =1 in a magnetic field have been published by Ali-
gia et al.'® This paper represents a more complete study
of the thermodynamics in H70 including spins up to
S=1I

The rest of the paper is organized as follows. In Sec. II
the nonlinear integral equations are restated and the nu-
merical method is briefly discussed. The results are
presented in Sec. III and are followed by concluding re-
marks (Sec. IV).
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II. THERMODYNAMIC BETHE-ANSATZ EQUATIONS
AND NUMERICAL PROCEDURE

The thermodynamic Bethe-ansatz equations'!!® for the
model (1) consist of an infinite set of nonlinearly coupled
integral equations for function 7,(A). The function
7,(A) characterizes a string excitation of order n with
real rapidity A. The A rapidities represent the spin de-
grees of freedom of the model, and a string excitation of
order n corresponds to a bound state of n spin-flipped
electrons. The functions 7,(A) are interrelated via in-
tegral equations, and the most convenient representation
for a numerical solution is the recursion sequence

lnnn =G*1n[(1+nn—l)(l+nn+l)]
—38,1exp(mA/2),

n=12,..., 1,=0, (2)
where the asterisk denotes convolution and
G(A)=[4cosh(rA/2)]"!. (3)

These equations are completed by the asymptotic condi-
tion ‘
lim =

n-—o

71[11'177"(1\) =X0 ’ (4)

N

and the free energy of the impurity is given by

F=—T[" dAG A——:’r—ln(TK/T) [ 1+7,5(A)] ,

(5)

where S is the impurity spin.

For A— — o the driving term of the integral equations
[the last term of Egs. (2)] vanishes, so that this situation
corresponds to a free spin decoupled from the electron
gas (high-temperature or weak-coupling limit). Since the
integration kernel falls off exponentially, the functions 7,
are constants in this limit and the integral equations
reduce to a set of algebraic equations, whose solution is

In(1+7,)=2In{sinh[1(n +1)X,]/sinh({X,)} ,
T>Tg, (6
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and the free energy is given by
F=—TIn[2cosh(H /2T)] .

For A— «, on the other hand, the driving term be-
comes dominant, so that 7,—0. This situation corre-
sponds to the strong-coupling limit at low temperatures.
The solution of the integral equations for this case yields

In(1+m,)=2In[sinh($nX,)/sinh(1X,)],
T<<Tg . (7

Hence, as a function of A the functions 7,(A) interpo-
late monotonically and smoothly between the asymptotic
values given by (6) and (7). The variation between these
asymptotic values relative to the value of the function de-
creases as n — . Hence, to a certain degree of approxi-
mation we may truncate the recursion relation by replac-
ing the function 7, for n =n, by an adequate interpolat-
ing expression. We have chosen n, =30 and the integra-
tion interval for A to be 32, i.e., for |A| > 16 the functions
71, reached their asymptotic expressions, Eq. (6) and Eq.
(7), respectively. By varying n, and the A cutoff we esti-
mate our errors to be smaller than 1% in the second
derivatives of the free energy, i.e., the specific heat and
the susceptibility. In this way the solution of the infinite
set of Egs. (2) reduces to the simultaneous solution of
n.—1 nonlinearly coupled integral equations with ap-
propriate boundary conditions for large A and at n =n,.
This method is standard and similar to that employed in
other papers.>~ 716

Note that the integral equations only depend on
Xo=H/T via the boundary conditions, but neither on
the spin S nor on the temperature explicitly. Hence, by
solving the equations for one value of X, we obtain the
free energy for all S and all temperatures. The entropy,
the specific heat, the magnetization, and the susceptibility
are then obtained by numerical differentiation.

III. RESULTS

Using the procedure described in the preceding sec-
tion, we obtained the magnetization, the entropy, the
specific heat, and the susceptibility as a function of the
magnetic field and temperature for spin values S up to I.
The characteristic energy scale of the system is the Kon-
do temperature T, and all energies are measured in units
of Tx. At high temperatures, i.e., T >> Tk, the impurity
behaves essentially as a free spin S. At low temperatures
and in zero field, the conduction electron spin density at
the impurity site screens one impurity degree of freedom,
reducing the impurity spin to an effective S —1. The
case S=1 (singlet ground state) is then qualitatively
different from other spin values, since at low T even a
small magnetic field removes the spin degeneracy if S > 1.
In addition, common to all spin values is the suppression
of the Kondo effect by a magnetic field of the order of Ty
or larger.

Our results are displayed in the figures. Figures
1(a)-1(c) show the magnetization as a function of H /T in
constant field for spins up to 7. As expected, the magne-

tization increases monotonically with the field. It is also
seen that the magnetization for a given field increases as
T is reduced. Note that the saturation values of M as
T —0 depend on the magnetic field, as a consequence of
the Kondo effect. The magnetic field quenches the Kon-
do screening only partially, so that M does not reach the
value S, but the saturation value is always larger than
S —1. At high temperatures, i.e., H <<T, on the other
hand, M ~ H /T and the susceptibility follows the expect-
ed Curie law.

The entropy is a measure of the effective degrees of
freedom of the impurity at a given temperature and field.
Figures 2(a)-2(d) show the entropy as a function of T in
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FIG. 1. Magnetization in constant field as a function of H /T
for spins up to % The values of the magnetic field are (a)

H =0.1Tg, (b) H=Tg, and (c) H =10T%.
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FIG. 2. Entropy as a function of T /T in constant magnetic field for the half-integer spins: (a) S = %, (b) S = %, (c)S= %, and (d)

=1. The field intensity H is given in units of T.

constant field for the half-integer spins § =1, 2, 3, and 7,

respectively. The entropy for S =1 agrees with the re-
sults by Rajan et al.’> and is included for comparison,
since the cases S =1 and S > behave differently. As
seen, all cases with S71 are qualitatively similar. In
zero field the entropy varies monotonically between
In(2S) at low T and In(2S +1) for T>>Ty. For § =1
the crossover between the two asymptotical values is
shifted towards higher temperatures, because the magnet-
ic field suppresses the degrees of freedom of the impurity.
If S > 1 the degeneracy of the impurity at low T is lifted
by the magnetic field and the entropy at T =0 (H+0) is
zero. Hence, in addition to the Kondo crossover, there is
a second crossover related to the Zeeman splitting, which
occurs approximately at T~ H.

The specific heat is given by the temperature derivative
of the entropy at constant field. The specific heat as a
function of T is shown in Figs. 3(a)-3(d) for the same set
of spin and magnetic field values as in Figs. 2. For spin-}
the specific heat has a peak which shifts towards higher
temperatures as the field is increased (see also Ref. 5).
The height of the peak also grows with field and asymp-
totically (on a logarithmic scale) approaches the value of
a free-spin Schottky anomaly. For S >1 again the zero
field and H50 cases are qualitatively different, because
the Zeeman splitting lifts the degeneracy of the ground
state. The zero-field Kondo specific heat is displayed in

Fig. 4(a) as a function of T for several spins. The height
of the peak dramatically decreases with the spin (see also
Ref. 5) and disappears in the classical spin limit, i.e., as
S — . These curves are shown also in Figs. 3(b)-3(d).
The large resonance at about T'~H in Figs. 3(b)-3(d)
refers to the Schottky anomaly due to the Zeeman split-
ting. For H << Ty the Schottky peak is the one of a spin
S —3, while if H>>Tg it corresponds to a spin S. A
smooth crossover between these two regimes is observed.
Hence, if H << Ty the specific heat has two independent
peaks, one corresponding to the Zeeman splitting of the
ground multiplet and one to the Kondo screening.

In Figs. 4(a)-4(d) the specific heat for various spins is
drawn as a function of T in constant field. While for
H =0 the spin-1 resonance is considerably higher than
for other spins, this situation is inverted already for a rel-
atively small field, i.e., H =0.1T. As already discussed,
this peak for S>1 is the consequence of the Zeeman
splitting. In Fig. 4(b) the shoulder around T'= Tk in the
S =1 curve corresponds to the Kondo resonance. For
larger fields [Figs. 4(c) and 4(d)] the expected free-spin
hierarchy of the resonances (monotonically increasing
with S) is already established.

The magnetic susceptibility as a function of T for the
half-integer spins and various magnetic fields is plotted in
Figs. 5(a)-5(d). Again S=1 behaves differently as a
consequence of the singlet ground state. For S=1 the
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FIG. 3. Specific heat as a function of T/Tx in constant magnetic field for the half-integer spins (a) S = %, (b) S= %, (c) S= %, and
(d) § =7I. The field intensity H is given in units of T.
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FIG. 4. Specific heat as a function of T /Ty for various spins in a constant magnetic field. The field intensities are (a) H =0, (b)
H =0.1Tk, (c) H =Tk, and (d) H =10T%.
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FIG. 5. Susceptibility as a function of T/Tx in constant magnetic field for the half-integer spins: (a) S=1, (b) =3, (c) =3,

and (d) § =17.

susceptibility is maximum at low T if H is small, as a
consequence of the Kondo resonance. For large fields, on
the other hand, y has its maximum around T ~ H, remin-
iscent of the free-spin behavior. At high temperatures y
follows a Curie law. For S#1, x is more conveniently
presented on a double-log plot. The H =0 Curie law ap-
pears then as a straight line. There is, however, a smooth
change in the Curie constant, since the effective spin is S
at high T'and S — 1 at low T. The magnetic field lifts the
degeneracy at low T and significantly reduces y, which
nevertheless remains finite due to the Kondo-spin-
compensated degree of freedom. The maximum of y at
T /H has the same origin as the Schottky anomaly of the
specific heat.

IV. SUMMARY AND BRIEF DISCUSSION

Exact results for the magnetization, the entropy, the
specific heat, and the susceptibility of an impurity of spin
S interacting via an s-d exchange with an electron gas
have been obtained by solving numerically the thermo-
dynamic Bethe-ansatz equations in a magnetic field. The
results extend previous ones by Rajan et al.,> Desgranges
et al.,” and Aligia et al.'®

At high temperatures the impurity behaves like a free
spin S, with some corrections, which vanish asymptoti-
cally (on a logarithmic scale) as T— «. At low tempera-
tures, one degree of freedom of the impurity is compen-

sated by the conduction electrons, so that the impurity
has an effective spin S —1, i.e., the degeneracy of the
ground state is 2S. A magnetic field lifts the degeneracy
of the ground state, giving rise to a Schottky anomaly in
the specific heat and a peak in the susceptibility at T ~ H.
Hence, if H << Ty the specific heat shows a two-peak
structure, one peak associated with the Zeeman splitting
of the ground multiplet and the other peak with a broad
Kondo resonance. For intermediate or large fields (com-
pared to Ty ) they merge into one peak.

The magnetization increases monotonically with field,
as well as if T is lowered in a constant field. In the latter
case the saturation value of M as T—0 lies between S
and S — 1. In a finite field the value S is not reached as a
consequence of the Kondo effect, which is only partially
quenched by the field. The susceptibility (S > 1) in zero
field follows a Curie law, with a Curie constant that is
slightly temperature dependent. In a magnetic field, on
the other hand, the susceptibility shows a structure (asso-
ciated with the Schottky anomaly) and reaches a finite
value as T—0.
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