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Behavior of the thermal conductivity of dilute He- He mixtures in the superfluid phase
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We present a new solution to the Khalatnikov two-fluid hydrodynamic equations which suggests
that thermal conduction experiments in superfluid He- He mixtures measure the diffusive conduc-
tivity. This implies that for small He concentrations the measured conductivity approaches a con-
stant. The singular behavior predicted by Khalatnikov's original solution can be eliminated using a
constraint imposed by the tight coupling of concentration and temperature gradients. Microscopi-
cally, we find that diffusive mass transport in bulk superfluid is 1imited by the ability of the diffusing

atoms to get rid of the thermodynamic diffusion energy they carry, leading to an apparent diffusivity

which can be much smaller that the isothermal mass diffusivity. We also describe a preliminary ex-

periment to observe two effects predicted by our analysis. In agreement with our predictions, we

find that (1) the thermal relaxation time in dilute mixtures is very long and (2) the temperature gra-
dient in a superfluid mixture is caused by He mass diffusion. The latter observation gives rise to a
new technique for measuring the effective thermal conductivity which avoids the main difhculties
encountered by the previous method.

I. INTRODUCTION

The effective thermal conductivity K,& of very dilute
superQuid He- He mixtures is predicted' to have a 1/c
divergence when c, the concentration of the He, ap-
proaches zero. However the measurements of Dingus,
Zhong, Tuttle, and Meyer. (DZTM), show a major devia-
tion from this behavior. Some indications of this
discrepancy were first reported by Tanaka et al. , al-
though Ptukha's original work showed no anomaly in
this region. Recently, using a new method of measuring
E ff not involving heat Qow, we have verified the results
of DZTM, at least near c =10 where the discrepancy
with theory is large. The difhculty appears to be of subtle
nature, since Khalatnikov's two-Quid hydrodynamics
(KTFH), used in the analysis, is very general and based
on well-established conservation laws. Also, above the
lambda transition the theory reduces to that of normal
dissipative Quid mixtures, as is to be expected. Ther-
mohydrodynamic analysis can be applied at various levels
of approximation. Here we are concerned with hydro-
dynamic and diffusive Qows of heat and mass which can
be slowly varying in time, and neglect the effects of ac-
celeration, viscosity, and boundary layers. In this ap-
proximation Khalatnikov has shown that the effective
conductivity is given by the expression

K,tt=K+pDR(kr —kz. ) IcM3,

k& are finite while kz. —+0 as c —+0, leading to the predic-
tion lim, (oK, t)r-1/c. In Sec. II we rederive the results
of KTFH in the limit that Vc and VT are coupled and
show that kz- is not an independent parameter but is ac-
tually determined by a constraint which has two solu-
tions. It is immediately obvious that one solution ex-
plains the DZTM result, while the other leads to the pre-
diction in conQict with it. The former solution predicts
several new results, which we compare with existing data.
Two of the predictions require new experimental tests.
In Sec. III we describe an experiment that was performed
to obtain the necessary data. The experiment also gives
values of K,& in reasonable agreement with those of
DZTM near c =10 . Our conclusions are summarized
in Sec. IV. A preliminary report of some of this work has
been published elsewhere.

II. THEORY

This section is divided into three parts. In Sec. A, we
solve KTFH for mixtures of any concentration and show
that the theory is incomplete. As a result, the variable c
and the normal Quid velocity U„cannot satisfy all the
conditions imposed. We propose a way to complete the
theory. In Sec. 8, we apply our analysis to the case of the
dilute mixtures and show how the 1/c divergence of K,ff
can be eliminated. In Sec. C, we discuss the case of pure
'He.

where D is the isothermal mass diffusivity, K is the
diffusive thermal conductivity, p is the density, R is the
gas constant, k~ is the thermal diffusion ratio, k~ its
effective value in the superQuid phase, and M3 is the mo-
lar mass of He. Khalatnikov has argued that K, D, and

A. Mixtures of any concentration

We begin by writing down the relevant equations from
KTFH,
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i = pD—(Vc+kz VT/T)

q =[k (Bp/dc ) —T(dp/BT), +p]i K—V T,
Q =q +pSTU„+ppcu„

VJ=—PBc/Bt,

J=i+pcu„,
e)v, /8 t +V( U, /2+ p~) =0,
~IIik/~"k 0~ Hrk Ps "si Usk+Pn Un~ Unk .

(2)

(3)

(4)

(5)

(7)

(8)
ac/at =D„V'e, (12)

%"e now apply the above analysis to the special case of
one-dimensional Aow in the absence of any applied heat
flux (Q =0). If Eqs. (2)—(9) are internally consistent, they
should be applicable to any relevant situations, which
certainly cover the case discussed here. Therefore if a
logical solution for this special case does not exist, then
an 1ncons1stency exits.

We solve for J in terms of Vc, substitute J into Eq. (5),
and find that in the limit of small Vc, Eq. (5) reduces to
the diffusion equation

Here i and q are the diffusive mass and heat current den-
sities, p=p3 —

p4 is the chemical potential difference be-
tween He and He, Q is the applied heat current density,
J is the total He mass current density, p„ is the normal
fluid density. including both He and He components, p,
is the superfluid density, u, is the superfluid velocity, and
II,.k is the momentum tensor. In addition, Khalatnikov
showed that in steady state, V@4=0, leading to a cou-
pling of the concentration gradient and the temperature
gradient. This leads to the result '

where D,s=D(l krlk—z. ) eE/G. —For a particular ex-
perimental setup, the quantity c(r, t) can be obtained by
solving Eq. (12) with the appropriate boundary condi-
tions. Then U„(r, t) can be calculated simply by substitut-
ing c(r, t) into Eq. (10). However, U„obtained this way
must also satisfy the equation of motion and the conser-
vation of momentum [Eqs. (7) and (8)]. When Vp4=0,
Eqs. (7) and (8) can be used to show that for one-
dimensional flow along the z axis (see the Appendix),

kr =——TVc/VT= T[(Bp/dT) +S/c]/(Bp/Be )z. , (9)
BU„/Bz =0 . (13)

where S is the entropy per gram. This relation can be in-
terpreted as a balance between the osmotic pressure and
the fountain pressure. The normal Quid therefore does
not experience any net force, and does not accelerate. In
general, for a time-dependent state, the coupling need
not be maintained. If it is broken, then Vp4= —e(Bp/Bc)r[kz. VT/T+Vc], in which we have
neglected the pressure effect. The evolution of u, is then
determined by Eq. (7). For small Vpz, Eq. (7) reduces to
a wave equation, which describes second sound modes.
This oscillatory state decays to a state of uniform p4 on
the time scale of second sound damping v.2. If ~2 is short
compared to the time scale associated with the relaxation
of He concentration ~, then the coupling approximation
is valid for the relaxation process. Otherwise, the oscilla-
tory state would persist and decay slowly to the final state
of a uniform mixture. DZTM get ~-10 sec which is
many orders of magnitude greater than ~z for a sample of
similar geometry. Therefore coupling is an extremely
good approximation for the time scale of interest here.

To establish the central point of our argument, we now
consider the fully coupled limit and explore some of the
hydrodynamic implications. Coupling can be used to
eliminate the variable V T from the above equations and
to express all the unknowns, such as i, q, J, and u„, in
terms of Vc. From Eq. (4), we obtain

D(1 kr/kr*)= TK—!pkrP . (14)

Clearly this new relation is a direct result of coupling,
since it reduces the number of degrees of freedom of the
system. Formerly, the value of k~ could only be deduced
from microscopic arguments. Now, with the help of Eq.
(14) and measurements of D and K, it is possible to deter-
mine kz- from experiment even in a superfluid.

The constraint imposed by Eq. (14) changes the picture
of KTFH significantly. To explore the changes we list
the results of KTFH after we have eliminated the vari-
able VT. We obtain

i = —pD, Vc, (15)

Substituting Eq. (10) into Eq. (13), we obtain
(E/G)B c/Bz =0. It can be seen from Eq. (11a) that in
KTFH the quantity E has a value controlled by the three
free parameters D, kz, and K which are determined by
microscopic arguments. Since from Eq. (11c), G is, in
general, finite, KTFH would force 8 c/Bz to be zero, in
contradiction with the requirements of Eq. (12). Thus it
is clear that we cannot simultaneously accept a true cou-
pling of Vc and V T and maintain the independence of D,
k~, and E. Our proposal to escape from this dilemma is
to suggest that, at least for superfluid mixtures, we must
have E=O. We then obtain the following relationship
between the three formerly independent parameters:

U„=E/GVc+Q/pSTG,

where

(10) where

D. =D(1—kr/km), (16)

E =PD(1 kr/kz )/ST K/—PSkr*, —

P =k,(ap/ac), T(@/~T), +p, , —
(1») and

(1 lb) q = —pSTEVc,

J=p( cE /G D, )Vc +cQ /S TG —.
(17)

(18)

6=1+pc/ST . (1 lc) yhe quantity D, can be interpreted as the apparent
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diffusivity of a coupled mixture. Using the constraint
E =0, we obtain

q=0,
u„=Q /pSTG,

J= pD,—Vc+cQ/STG,

D,tt=D, =D(1—kz Ikz*. ) .

(19)

(20)

(21)

(22)

These results imply that all the heat generated by a
heater in a superfluid mixture is carried away by
counterAow, just as in the case of a pure superAuid, in
contrast to the previous result in Eq. (4). One interesting
question is whether there is a finite counterAow in a mix-
ture when the heater in a thermal conductivity cell is off.
From Eq. (20) it can be seen that after coupling is estab-
lished, there is no counterflow even when the mixture is
not totally uniform. This is contrary to the previous re-
sult of KTFH in which v„ is proportional to Vc. Equa-
tion (22) shows that the effective diffusivity and the ap-
parent diffusivity become the same quantity in the cou-
pled limit.

We can now easily obtain an expression for K,z valid
for any concentration from the steady-state condition,
J=0, and Eqs. (9), (14), (21), and (22),

K,tr = (STG lcP )K . (23)

This result shows that K,~ is proportional to K, which, in
general, difFers from Khalatnikov's prediction given by
Eq. (1).

We note that the results given by Eqs. (14)—(23) can be
obtained from energy considerations. Since no mecha-
nism exists in the bulk of the Auid to convert diff'usive
Aow energy into hydrodynamic flow energy, these must
be conserved independently. Conservation of hydro-
dynamic flow energy implies that for one-dimensional
Aow v„ is not a function of position, as indicated by Eq.
(13). In addition, the independent conservation of
diffusive Aow energies implies that V T in the bulk is the
result of a balance of diffusive Aow energies alone. The
diffusive energy carried by the He difFusion current can-
not be converted into hydrodynamic energy. In order for
the He to diff'use, energy conservation forces the creation
of a V T in a superfluid. A heat current density given by
KV T is then carried by elementary excitations (rotons,
photons, etc.), which balances the diffusive energy carried
by He mass diffusion given by I'i. We obtain the general
relation i =KVT/P which explicitly shows that V T in a
superAuid is caused by He diffusion. Substituting this
into Eq. (3), we obtain q =0, in agreement with Eq. (19).
We have already shown that V T must be coupled to Vc;
otherwise the normal Auid would accelerate. Eliminating
V T in favor of Vc, we obtain i = —pD, Vc, where
D, =TK/pPkr*, in agreement with Eqs. (14), (15), and
(16). Thus the apparent (or effective) mass diffusion in
superAuid mixtures is a process in which He atoms must
get rid of the energy they carry, through thermal
diffusion in the bulk, in order to diffuse. Since thermal
diffusion acts as an additional bottleneck which limits
He mass diffusion, we have a general result D, (D.

c(z, t) =co —3 sin(mz/2d )exp( —

tlat)

. (25)

Here z is the distance from the top plate, d is the distance
between the end plates of the thermal conductivity cell,
co is the concentration in the top tank, A is a constant
determined by the initial conditions. The relaxation time
1s

~——4d 2/~2D (26)

Using Eqs. (14), (22), and (23) we obtain

r = (pSGkr' IcK,tr)(2d lrr) (27)

For a thermal conductivity cell with no top tank, similar
to the one used by DZTM, the appropriate boundary
conditions are J(0,t)=0 and J(d, t)=0 In thi.s case, the
slowest decay mode when Q =0 is

c(z, t)=co+ 3 c so(vrz/d)exp( —t/r'), (28)

where

r'=r/4 . (29)

When Q is not zero, Eq. (12) is replaced by
Bc/dt=D, trV c —(Q/pSTG)Vc, which is not purely
difFusive, but relaxes exponentially, and can certainly be
solved by interested readers.

Based on the above analysis, we obtain the following
picture of the relaxation phenomena studied by DZTM.
In a thermal conductivity measurement, when a heater is
on, a constant u„given by Eq. (20) flushes the He atoms,
which causes a depletion of He at one end of the cell and
a collection of He at the other, creating a Vc. A mass
diffusion current given by Eq. (15) is then generated as a
result of the Vc. This mass difFusion current carries ener-
gy, which cannot be converted to hydrodynamic energy
due to the absence of a microscopic conversion mecha-
nism. Thus a V T is formed in a superfluid, and the ener-
gy carried by the mass diffusion current is returned by
thermal diffusion. Counterflow transports away all the
heat generated by the heater. At any instant in time if Q
and v„are changed abruptly, Vc, VT, and i would not fol-
low the abrupt change, but relax slowly to their new
steady-state values.

Returning to the difFiculties of treating D, E, and k~ as
independent parameters, we substitute Eq. (28) into Eq.
(10) and obtain

u„= —
( AEvrldG)sin(vrz ld) exp( —t lr) .

The relation between i and V T can also be obtained by
solving Eqs. (9), (14), (15), and (16). Then, using Eq. (23),
we rewrite it in terms of measurable quantities

i = (cK,ttISTG )V T .

This expression is not affected by variations of u„and Q.
We now consider relaxation phenomena in the coupled

limit. We solve the diffusion equation [Eq. (12)] for one-
dimensional flow and the boundary conditions c(0, t) =co
and J(d, t)=0, appropriate for a thermal conductivity
cell with a large isothermal top tank similar to that
shown in Fig. 4. The slowest decay mode when Q =0 is
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This unusual functional form for a hydrodynamic Aow
violates the conservation of momentum and the equation
of motion, which requires U„ to be constant throughout
the cell. Since 2 is determined by the initial conditions
of the decay of concentration gradient, it is nonzero in
general, and E =0 again appears to be the only way out
of the problem.

Above the lambda transition temperature T& Behr-
inger and Meyer' have observed a gradual onset of cou-
pling. As T& is approached, the concentration and the
thermal relaxation times become almost identical. They
have divided the transition region near T& into four re-
gions: the complete-uncoupling, the weak-coupling, the
intermediate-coupling, and the strong-coupling regions.
Our analysis can be extended to cover the strong-
coupling case above Tz by simply setting U„, v„and p, to
zero in Eqs. (4), (6), (7), and (8). The result in Eq. (14)
remains unchanged. Since K, D, and kT are all measur-
able quantities above T&, an opportunity exists to test the
validity of Eq. (14). To do so, we define a quantity
F= [TK/pPDkT*+ kr/kT*] ', where kT* for temperatures
above T& is defined as its value just below T&. We
rewrite Eq. (14) as F= l. Therefore F can be viewed as
an indicator of the degree of coupling. If F =1, the sys-
tem is perfectly coupled. This situation applies only to
the superQuid case, where U„ is finite and q=0. Equa-
tions (3) and (4) then imply that V T does not depend on q
or on Q. Above Ti, v„=0, and q is the applied heat fiux.
Thus there is always a component of V T given by —q/K
and, strictly speaking, the system is not truly coupled.
However when the applied heat Aux is small, many of the
characteristics of coupling are observed' near T~. Since
our analysis indicates that F= 1 corresponds to the per-
fectly coupled case, we expect values of F far from unity
to apply to the noncoupled case, and values F close to
unity to apply to the strong-coupling case. The physical
meaning of F will become more apparent if one considers
an experiment in which Vc is kept constant, the external
heat Aux is turned off, and V T is measured as a function
of T T&. Using Eqs. (2) —and (3), we find that above T&,
V T= (K!pPD+kT—/T) 'Vc Intuitiv. ely, V T should
have a small value far away from T& and rise to a value
given by the coupling relation as T& is approached. One
can easily show that F is just the fraction of the coupled
VT reached. In this context, it is obvious that F~1 as
coupling sets in.

To evaluate F, we first use the results of Sreedhar and
Daunt, Lounasmaa, and Weinstock et al. " to determine
p(c, T). Since the zero-point energies of both isotopes are
not well known, we have assumed that their difference is
zero. From p(c, T) we compute the values of P. Then we
calculate F with no adjustable parameters, using the data
for D, kT, and K, from Cxestrich et al. Figure 1 shows
the dependence of F on the reduced temperature
E=~1 —T/Ti„~ for a mixture of c=0.04. Our analysis
predicts that F =1 when the system is prefectly coupled.
A value of 0.7+0.2 is approached by this mixture near
the transition. Considering that the mixture may not be
strongly coupled until it is extremely close to T&, and the
large uncertainty in the measurements, we feel that ex-
periment and theory are in reasonable agreement.
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FIG. l. A plot of the quantity F= [TK/pPDkT*+ kr /kz*]
against the reduced temperature for a sample with c =0.04, us-
ing the data of Gestrich et al (Ref. 11).

We now turn our attention to the case of dilute mix-
tures where the discrepancies between KTFH and experi-
ment are observed.

B. Dilute mixtures

In the dilute limit, the following approximations are
valid:

D (1 kT/kT') =cK—/pSkr .

Substituting this to Eq. (1) we obtain

K,tr=K(kT/kT) .

(30)

(31)

Equation (31) can also be obtained by using Eq. (23) and
the dilute form for P.

In this limit, simple kinetic theory predicts that D ap-
proaches a constant determined by the scattering of He
atoms with the excitations of the host liquid. ' Since,
even in the absence of He, thermal diffusive conduction
can still be carried by the host excitations alone, ' we also
expect K to approach a constant. Whether the system
contains superAuid or not, these two basic predictions of
microscopic theory appear to be extremely well estab-
lished. Equation (30) then implies that kT( 1 —kT/kT*)
must approach zero in the dilute limit. Clearly, either
kT~O or kT~kT*.

No explicit microscopic calculation for kT in the low-c
regime appears to exist. For an ordinary dilute mixture
one can argue' that as c approaches zero, both i and Vc
must approach zero, while VT can remain finite. Equa-
tion (2) then implies that kT —+0. In the superfiuid phase
this argument is not compelling since coupling requires

G —+1,
kT" ~M3S/R -0.56,

p~(R T/M3 )inc,

P~(kT/kT*)(ST/c) .

From Eq. (14) the relation between D, K, and kT becomes
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that V T must also approach zero with Vc. Thus kT ~kT*
is also an acceptable solution. It may be possible to de-
cide on the correct solution for kT based on general phys-
ical arguments, but so far we have not found a way to do
this. Instead, we will compare the predictions from the
two possibilities with existing experimental results. First,
we can use Eqs. (14) and (23) to rewrite kT in terms of
measurable quantities

kT =kT'( I cK,—ttlpSDGkT') . (32)

For c —10,we estimate D =3 X 10 cm /sec from the
data of Garwin and Reich, ' and K,s-10 ' W/cmK
from DZTM, leading to kT=(0.997+0.003)kT*. Clearly
this indicates that kT —+kT is the correct solution. The
largest uncertainty in this estimate is in the value of D.

Second, above T& it is possible to measure kT directly.
As the transition is approached, we expect the behavior
of the mixture to tend towards that of the coupled
superAuid case. The measurements of Gestrich et al. at
c=0.04, 0.12, 0.30, and 0.48 all show that kT-kT near
the superAuid transition temperature, where Vc and V T
become coupled. Since the lambda transition is second
order, we expect kT to be roughly continuous across the
transition. Thus experiment appears to indicate that the
solution kT~kT is not just limited to dilute mixtures,
but is a property of coupled mixtures of any concentra-
tion. This implies that the coefficient K,ttlpSDGkT in

Eq. (32) is small. In Sec. II A we discussed the quantity
F= [TK IpPDkT*+ kT Ik7 ] ', which approaches unity in
the strong-coupling region near T&. Therefore the obser-
vation that kT~kT* near T& would also imply that
TK/pPDkT* is small in the coupled limit. In the normal
phase at a fixed temperature from Tz, kT must approach
zero as c —+0. But the measurements of Gestrich et al.
suggest that at fixed c, kT-kT as c~O. Thus for small c,
it is necessary that kT remains near zero until very close
to T&. This behavior is observed in the data of Gestrich
et al. The quantity lim, o, okT(c, c, ) is not well
defined.

Third, it is already clear that the K,& measurements of
DZTM are not consistent with kT —+0, since this would
predict that K,&-1/c. On the other hand if kT kT*,

then K,~—+K, a constant, in approximate agreement with
observation.

Fourth, the relaxation time measurements of DZTM
present a serious diKculty with the kT ~0 solution.
Since ~-I/D, ft [Eq. (26)] and measurements of ~ by
DZTM show that, for small c, :r increases as c~0,
the implication is that D,z must decrease. If kT —+0,
then Eqs. (22) and (30) can be used to obtain
D -D,fr[1+cK IpSDkT*+0(c )]. Thus D is a product of
two terms, both of which are positive decreasing func-
tions as c~0, implying that D Inust also decrease as
c —+0. From simple kinetic theory, the removal of impur-
ities can only decrease the probability of collision in the
dilute limit. Therefore D -can only increase as c ~0. On
the other hand, if kT~kT*, then D-D,tt[pSDkT*/cK].
Therefore D is the product of decreasing function and an
increasing function as c ~0, and the relaxation data can-

not be used to determine whether D increases or de-
creases in this limit. But Eqs. (30) and (22) imply that
D,&

—+0. The increase of w as c~0 is then explained by
Eq. (26). Microscopically, we have already argued that
the apparent (or effective) diffusion is a process in which
He atoms must get rid of the energy they carry, through

thermal diffusion in the bulk, in order to diffuse, forcing
the creation of a V T in a superfiuid. In dilute mixtures,
the energy carried by He mass diffusion is k&STi lkTc
If kT kT* then this energy diverges as c ' for a fixed i.
This large energy carried by He is the cause of the long
relaxation time. The c ' divergence originates from the
logarithmic divergence of p3.

From the above discussion it can be seen that a number
of different experimental results are in agreement with
the possibility that kT does not approach zero with c.
Also, to our knowledge, there are no data in convict with
this solution. From the theoretical standpoint, the only
relevant argument appears to be that of Landau and
Lifshitz' based on the normal Quid case, which is not
compelling, for reasons stated earlier. In the remainder
of this section we shall explore other implications of the
new solution.

We now return to Khalatnikov's original result [Eq.
(1)] for K,s.. This can be reduced to the simple form
K,tt-[(kT lkT)+O(c)]K-K+O(c), where the term of
order c contains contributions from assuming G —1,
kT-kT*, and using the dilute form of p. A microscopic
theory of the concentration dependence of K has been
given by Khalatnikov and Zharkov. ' In their analysis,
K is expressed in terms of the diffusive resistivity R4 of
pure He, enhanced by a term due to scattering by the
He, initially of order c. For T) 1.2 K, the phonon con-

tribution is small; R4 originates primarily from roton-
roton scattering. ' We now group all the contributions of
order c together to obtain K,tt'=R4+ Ac+0(c ) where
R4 and A are temperature-dependent parameters. Figure
2 shows a two-parameter fit to the data of DZTM

io'=+ ~ 0~ ~

C
47

y lp
IE

lllll I I I IIIIII I I I Illlll ' I I I I lllll I I I Illlll I I I I IIIII

Io-' IP-6 Io-5 IP-4 IO ~ IO~
He CONCENTRATI ON (c)

FIG. 2. Comparison of the measurements of DZTM with our
results near c=1.5X10 . o, our mass diffusion current mea-
surement; 0, our relaxation time measurement; ~, data of
DZTM;, the fit of our analysis to the data of DZTM for
c) 10 where their measurements are in the linear regime;
———,the 1/c divergence predicted by Khalatnikov's hydro-
dynarnic theory.
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represented by the solid line and yielding the values
R4 =0.0133 cm K/mW and 3 = 115 cm K/mW, for
c.—10 . Since the data for c &10 were obtained by
extrapolation to zero power, their accuracy is lower, and
we excluded them from the fit. The curve obtained from
the fit is shown over the entire concentration range. Ex-
cellent agreement is obtained over the range of the fit
(c ) 10 ), where the data are more reliable. At lower
concentrations, the data deviate slightly from the func-
tion, possibly due to residual nonlinearities in the extra-
polation scheme. It is interesting to note that the curve is
in good agreement with our measurements of K,z at
c —10 obtained from the experiment described in Sec.
III C. These measureinents have the advantage that they
were performed in the linear regime without extrapola-
tion. Improved measurements over the whole low-c re-
gion would lead to a valuable test of our prediction for
K,tr(c).

C. Pure He

The above analysis seems to contradict the well-known
fact that the measured thermal conductivity of pure
superAuid helium is essentially infinite. To explain this,
we point out that our analysis is valid only for small
values of b,c/c across a mixture. On the other hand,
measurements in the nominally pure superAuid always
violate this condition. In the derivation of Eqs. (2) and
(3), it is assumed that the state of the mixture is only
slightly perturbed from uniformity, ' requiring that

V'c «c/d, (33)

where d is the cell gap. DZTM have shown that this
linear regime is associated with an exceedingly small
power density as c —+0. Rewriting Eq. (33) we obtain
6T « cT/k T and —

Q « cK,fr T/dk T* for steady-state
conditions under a constant applied heat Aux. To stay
within the linear regime at small c, it is clear that the
power must be kept small and the resolution of the ther-
mometer used in the measurement must be high enough
to resolve the reduced signal. Any measurements with a
finite applied power will be in the nonlinear regime when
c is small enough. Also, Eq. (27) indicates that the relax-
ation time diverges as c '. For our thermal conductivity
cell with a 2-mm gap (Fig. 4), the relaxation time was 4.5
days for c=1.5X10 . The same cell would have a re-
laxation time of 1.8 yr for a sample with c = 10 . There-
Fore experiments in the linear regime in a very dilute mix-
ture are technically dificult at present. DZTM have
shown that in the nonlinear regime K,ff increases with
applied power, and Behringer' has analyzed the system.
A complete treatment within the framework of our
analysis is beyond the scope of the present work. Howev-
er a qualitative argument can be made for the case of a
thermal conductivity cell with a large isothermal top
tank. In this system an upper limit on the concentration
difference between the end plate is c, when all the He is
flushed to the top tank. Since coupling is a force balance,
it is reasonable to assume that it holds even in the non-
linear regime. We then obtain the maximum temperature
difference between the end plates, AT = cT/kT'. For—

III. EXPERIMENT

Our analysis leads to four predictions: (1) the trans-
port coefficients are constrained by Eq. (14) when Vc and
7'T are coupled; (2) in the superfluid phase, K,s ap-
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FIG. 3. Comparison of K,ff and K. ~, measurements of E,ff
by Ptukha (Ref. 5) at c=1.04X10 . E, measurements of K by
Zinoveva (Ref. 17) using second sound damping in pure He.

large powers AT is a constant, leading to an extremely
large apparent value for K,ff given by K,fr=g, dkT/cT.
This K,s. diverges as c is reduced to zero, but Eq. (33) is
violated. It can also be seen that for normal well-grade
laboratory helium with c —10, AT is an extremely
small number, undetectable in all but the most sophisti-
cated experiments.

We note that a finite diffusive conductivity in the ab-
sence of counterAow has been observed in pure superAuid
He below 0.6 K, where there is not enough normal Auid

to support counterAow. ' Above 0.6 K, counterAow
causes the thermal conductivity to appear infinite, but an
underlying finite diffusive conductivity, of course, still ex-
ists. On the basis of our analysis, the value of R4 ' ob-
tained from the data of DZTM is the first direct measure-
ment of this diffusive conductivity near T&.

Measurements of the second sound damping coefficient
should also give information on the diffusive conductivity
of pure He. Figure 3 shows the results for K obtained
from second sound damping' and the K,z data Ptukha
at c = 1.04X 10 . From Fig. 2 we do not expect 8 4

' to
differ from the measurements of K,z at c —10 by more
that a factor of 2. Also measurements of DZTM indicate
that the function K,a(c) is only weakly temperature
dependent above 1.7 K. Therefore, to first order we ex-
pect Ptukha's measurement of K,~ to be a rough repre-
sentation of R4 '. Between 0.6 and 1 K, the two sets of
data in Fig. 2 fall in the same region of the graph. Above
1 K a large discrepancy exists. Very close to T&, K,ff
does not diverge while the second sound damping con-
stant Dz appears to be divergent. While there is not yet
enough data to allow a complete separation of X from D2
near T&, a clear discrepancy already exists in the temper-
ature range 1.2 K & T &2.0 K. This may indicate that
there is yet another property of the superAuid not includ-
ed in our analysis or in KTFH.
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FIG. 4. Cross section of the apparatus showing the geometry
of the two helium tanks and the connecting tube.

proaches a constant as c is reduced to zero; (3) r ap-
proaches infinity as c is reduced to zero [Eq. (27)]; and (4)
since diffusive energies are conserved independently, the
temperature gradient in a superAuid mixture is caused by
the diffusion of He atoms, and VT is related to i by Eq.
(24). We have already compared the first two predictions
with experiment, The data of DZTM suggest that ~' may
approach a constant at low c, in confIict with prediction
(3). However it is clear from their work that the mea-
surements were made in the nonlinear regime, in viola-
tion of Eq. (33). To measure r in the linear regime and to
observe the effect predicted by Eq. (24), we have per-
formed a preliminary experiment described below.

We constructed an apparatus incorporating two very
high-resolution thermometers (HRT's), ' capable of
resolving temperature changes of 3 X 10 ' K. The
HRT's were attached to the copper end plugs of a cylin-
drical sample cell with a stainless steel wall 0.012-cm
thick. The end plugs were pressed into the wall section
with an estimated mean gap of no more than 0.005 cm.
A second helium container with a valve was connected to
the first by a copper tube of 0.08 cm internal diameter as
shown in Fig. 4, and the whole assembly was mounted in
a vacuum can. The main and secondary chambers had
cross sections of 1.2 and 2.5 cm, and vertical heights of 2
and 4 mm, respectively. Apart from the stainless-steel
spacer, the apparatus was constructed from high conduc-
tivity annealed copper with large cross sections. Two
samples of helium were studied: no. 1, containing a He
concentration' of 1.5X10, and no. 2, with a concen-
tration of 1 X 10 . These samples almost filled the
tanks, leaving a gas space of about 5%%uo of the volume of
the upper tank.

Our measurements primarily consist of observations of
small temperature differences hT established across the

samples under various conditions near T&. Data were
collected in two modes: continuous and discrete. In the
former, the temperature of the sample was allowed to
drift at a rate of about 10 ' deg/sec and the 6T across
the lower cell was recorded. Various power levels were
applied to the lower plate as desired. In the latter, the
temperature of the top plate was servocontrolled until
equilibrium was established, and the resulting AT was
recorded. The servoloop was then opened and the sample
allowed to move to a new temperature. At the start of
the experiment, we accurately cross calibrated the two
HRT's below T& over a range of about 200 pdeg, neglect-
ing the very small offset due to the background parasitic
power input of 4X10 ' W and the Kapitza boundary
resistance.

The main measurements commenced with the He
evenly distributed throughout the samples. Below the
transition, when power levels of up to 5 X 10 W were
applied to the bottom plate (avoiding convection), small,
almost temperature-independent offsets were observed.
Above the transition, much larger offsets occurred, due
to the finite thermal conductivity of the fIuid. Similar re-
sults were obtained for both samples, and the results for
sample no. 2 with only the parasitic power input are
shown by the crosses in Fig. 5(a).

On the other hand, with sample no. 1, if the He was
first fIushed into the top tank, quite different results were
obtained. Values of the temperature differences across
the sample with zero applied power obtained after Gush-
ing are shown by the triangles in Fig. 5(a). Above the
transition the results were unchanged, but well below, a
large additional temperature differential was seen. We
assume this region is the well-coupled region, where our
analysis is applicable. To generate the observed offset
with a heat Aux, a power input to the bottom of the sam-
ple of about 10 W would be required, yet observations
above the transition always gave values corresponding to
the background power of 4 X 10 ' W mentioned above.
In the region just below the transition temperature, the
offset is attenuated, possibly due to nonlinear effects near
T&. Outside this region the anomalous offsets are tem-
perature independent to the accuracy of our measure-
ments.

The temperature difFerential was found to decay ap-
proximately exponentially with a time constant of about
4.5 days. Measurements taken approximately 48 h after
the first set are shown by the solid circles in Fig. 5(a).
The relaxation time we observe is many times longer than
that expected from the DZTM data, about 10 sec. How-
ever, the geometry of our cell is somewhat more compli-
cated, making the interpretation of our result less direct.
It is possible that the constriction between the top and
the bottom tanks somehow limits the fIow and
significantly alters the time constant. However, we note
that the entire upper assembly up to the top plate of the
sample cell is constructed from high conductivity an-
nealed copper which is estimated to have a conductivity
200 times larger than K,~. Therefore, to a good approxi-
mation, we can treat the entire upper assembly as iso-
thermal. Coupling then ensures that this assembly has a
uniform concentration right up to the immediate vicinity
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To Gush the He into the top tank we applied a power
of —10 W to the bottom plate. To verify that the
Gushing had occurred, we monitored the change in the
relative concentration of He in the two tanks by observ-
ing the relative shift in their transition temperatures with
time, 6T&/6t. Heat-capacity measurements were used to
locate the transitions in each tank, allowing us to observe
relative changes of c of about 3X10 . These measure-
ments indicated that at least 80% of the He in the lower
tank initially was moved to the upper tank. After the
heater is turned off, the He begins to return to the lower
tank, and in this process sets up the observed anomalous
temperature gradient. A quantitative relation between
V T and i is given by Eq. (24). The total He mass current
was estimated from the time dependence of the heat-
capacity data. Based on our analysis, when the heater is
off, U„=O, and the total He mass current is purely
diffusive. Under these conditions, it can easily be shown
that the mass diffusion current i is related to 6T&/6t by
the expression

i -pd(5cl5T~) (5T~I5t), (34)

-0.8
I

-0.4 0 0.4
(T —Ty) microdegrees

l

0.8

FIG. 5. Temperature differences observed across the cell
near the lambda point. (a) X, sample no. 2, c=10, without
heat Aush; 4, sample no. 1, c=1.5X10, 137 h after heat
Bush; 0, sample no. 1, 185 h after heat Aush. (b) The region very
close to the transition. 1, sample no. 2, 500 h after heat Aush; 2,
sample no. 1, 670 h after heat Gush; 3, sample no. 1, 240 h after
heat Aush. Curves 2 and 3 have been slightly offset vertically for
clarity. The region over which helium I and II coexist in the
lower tank is indicated.

of -the top plate. Under isothermal conditions He is
transported entirely by counterAow, giving rise to a finite
U„ in the constricted area between the two tanks as well
as near the surface of the top plate. This is equivalent to
assuming that the incoming He spreads rapidly across
the face of the top plate, under essentially isothermal
conditions, before diffusing across the gap. We note that
when the constriction in the isothermal tank is small
enough, viscous drag on the normal fIuid Aow would
affect the time constant. When this happens, coupling
would no longer be a good approximation, since in this
limit the hydrodynamic pressure gradient created by the
drag would balance the osmotic pressure created by hc.
To be sure that we were not in this limit, we checked that
the coupling relation applied by flushing all the He to
the top tank and measuring the initial AT. Our results
agreed with the coupling prediction to within 30%. We
then used the observed time constant and Eq. (27) to ob-
tain E,&=50+10 mW/cm K, reasonably consistent with
the DZTM data. This result is shown in Fig. 2.

where the inverse slope of the lambda line
(5c/5T&)p=0. 535 K '. Using Eqs. (24) and (34), the
observed 5T&I5t and the b.T well below Tz, we compute
the value K,I =80+30 mWIcm K for c = 1.5 X 10
This result is also shown in Fig. 2. Since the heater was
off, the heat input to the sample was zero, so negligible
temperature drop occurs at the boundaries of the sample
due to Kapitza resistance. This circumstance greatly im-
proves the reliability of our results for K,~ over previous
experiments, in which the correction for the temperature
drop across the boundaries was a dominant factor in the
low-c regime. Figure 2 also shows that three methods of
measuring E,z are in reasonable agreement with the pre-
diction based on our analysis. Also the internal con-
sistency of the results gives additional support for the va-
lidity of our time constant measurement described above.

Near T& we observed two anomalies as shown in Fig.
5(b): a steplike feature observed near the temperature
where the first layer of superAuid appears in the two-
phase region, and a gradual rise in hT in the superAuid
region just below the two-phase region. Comparison of
curve no. 3 and curve no. 2 indicates that the gradual rise
in AT in the superAuid phase exists only where Vc is
large. No gradual rise is observed in curve no. 2 where
Vc is small. This leads us to postulate that this feature is
related to nonlinear effects near T&. Behrin ger and
Meyer' observed a strong-coupling region above T&. In
this region, we expect V T to rise to the coupled value as
Tz is approached, leading us to interpret the steplike
feature as the onset of coupling above T&. If this inter-
pretation is correct, the location of the sharp anomaly
would indicate that the samples are uncoupled until
7X10 K from T&, implying that the strong-coupling
region above T& is extremely small for dilute samples.

IV. CONCLUSION

Our analysis of the hydrodynamics of superQuid mix-
tures indicates that Khalatnikov s original solution is in-



4314 T. C. P. CHUI AND J. A. LIPA

complete. Difhculties arise from treating B, K, and kz as
independent parameters. We have obtai. ned a relation be-
tween them by accepting the coupling between V T and
V'c as an additional constraint. This relation enables us
to derive a new solution which eliminates the divergent
behavior of K,ff as a function of c, and restores agreement
with the measurements. This solution implies that the
quantity measured in a superAuid thermal conductivity
experiment is actually the background diffusive thermal
conductivity that would appear in the absence of
counterAow.

We have not included critical effects due to Auctua-
tions near T&, so we cannot predict the temperature
dependence of the transport coe%cients in this region.
However, we deal with a very general aspect of the hy-
drodynamics, namely the reduction of one degree of free-
dom due to the constraint applied by coupling. It ap-
pears unlikely that the growth of Auctuation effects near
the transition would affect our arguments. We can use
our results together with those of Gestrich et al. to
show that, in the superAuid phase, coupling applies for
c )10, so there appears to be no reason to expect our
analysis to fail in this region. Assuming there is no prob-
lem, we can then use the results of DZTM over the range
10 &c &10 to show that E is constant, to within
about 10%, over four decades of c. For comparison, the
thermal conductivity above the transition changes by a
factor of about 30 over a similar range of c. Also, for
c=0.12, measurements of K indicate that there is no
divergence at T&, but a continuous evolution into K,ff at
the transition. It is important to determine whether the
same behavior exists for mixtures with c & 10 . Our
analysis of the data of DZTM suggests that for c & 10
thermal conductivity measurements in dilute mixtures
essentially probe a property of pure He. If we take this
point of view, then any measurements of K, above or
below T&, would not be affected significantly by a very
low concentration of He impurity provided that the
power density used is small enough. But dynamic
renormalization-group theory ' predicts that in pure He
E diverges at T&. It is not clear how this can be recon-
ciled with our analysis and the measurements of K,z
below T&.
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celerate, which leads to a v„ that is not a function of posi-
tion or time. A formal mathematical proof is presented
below. The derivation applies to both static and dynamic
cases with the following restrictions: (1) effects of viscosi-
ty and pressure are neglected and (2) the time scales are
long compared to the damping of second sound.

For one-dimensional Aow along the z axis, setting
Vp„=O, Eq. (7) becomes

Bu, /Bt = —u, Bu, /Bz .

Using the method of separation of variables, we write

u, =g(t)f(z),

(35)

(36)

where g and f are unknown functions to be determined.
Substituting Eq. (36) into Eq. (35), we obtain

—(1/g')Bg/'dt =df /dz =a (37)

where a is an integration constant independent of both z
and t.

Solving Eq. (37) we obtain
g(t)=1/(at+y), and

f(z)=az+p,

u, (z, t) = (az+ p)/(at +y ), (38)

Bu, /Bz =0 (39)

and

du, /dt =0 . (40)

A possibility exists that a is a function of the applied
heat Aux Q in such a way that a(Q) =0, when QAO, and
a(Q) =ao, when Q =0. Thus it seems that the appropri-
ate functional form of u, (z, t), for the case Q=0, should
be given by Eq. (38). But Eq. (10) asserts that u, must be
a smooth function of Q. This would force ao to be zero
as well.

In the problem considered here, there is no net mass
Aow in the laboratory frame, leading to

p, v, +p„v„=G .

Differentiating Eq. (41) and using Eq. (39), we obtain

where p and y are integration constants independent of
both z and t.

As t approaches infinity, Eq. (38) shows that u, must
approach zero. But it is commonly known that when a
constant heat Aux is applied, there is a constant v, even as
t approaches infinity. Since we have let the applied heat
Aux be a free variable in this calculation, Eq. (38) must
also apply to the case of a constant heat Aux. This im-
plies that the integration constant o. must be zero. Equa-
tion (38) then reduces to u, =P/y. Since both P and y
are independent of z and t, we obtain

APPENDIX v, Bp, /Bz+p„Bv„/Bz+ v„Bp„/Bz =0, (42)

In this appendix we show that Bv„ /Bz =0, when
Vp4=0, i.e., when the temperature and concentration
gradients are coupled. This result can be expected. By
observing that when there is no external force acting on a
Auid element (Vp4=0), we can see that it does not ac-

For a small amplitude disturbance (when Q=0) u„u„
and the derivatives of p„p„are assumed to be small,
leading to Bu„/Bz =0. Thus the result Bu„/Bz =0 can be
obtained without using Eq. (8). However, the use of Eq.
(8) allows the derivation to be extended to the case in
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which u„u„are not small, i.e. , when QAO. This can be
shown by writing Eq. (8) as

c)[p„(p,/p„) +p, ]/r)z =0 . (45)

r)(p„u„+p, u, )/Bz =0 .

Using Eq. (41) we obtain

r)I [p„(p, /p„) +p, ]u, I /t)z =0 .

Using Eq. (39) we obtain

(43)

(44)

Since the total density p is a constant (neglecting pressure
efFects) and p=p„+p„substituting this into Eq. (45) we
obtain Bp„/c)z =0 and c)p, /t)z =0. The result r)u„/Bz =0
for all U„u„can then be obtained by substituting into Eq.
(42).
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