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Dechanneling of protons in diamond
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The axial dechanneling of protons in natural diamond crystals selected for low defect levels has
been studied for beam energies of 1.0—8.9 MeV and crystal temperatures from 20—600'C. Measure-
ments of the dechanneled-ion yield were taken along the three major axes ( 110), ( 111),and ( 100).
The data have been analyzed in terms of the diffusion model of dechanneling and generally good
agreement between experiment and theory is obtained. The theory indicates that the predominant
contribution to the dechanneling is from the electronic scattering. A scaling of the energy-
dependent data for a given axis with a distance characteristic of the electronic scattering is ob-
served. This scaling holds approximately for all data in the three axes considered. Measurements of
the yield as a function of temperature indicate that the theory underestimates the nuclear scattering.

I. INTRODUCTION

The dechanneling of ions in crystals has been studied
for a number of years' and it is understood that the
transition from a channeled to a random state of motion
in a perfect crystal is brought about by the scattering of
the channeled ion by electrons in the crystal (electronic
scattering) and by the Auctuating force resulting from the
thermal motion of the crystal atoms (nuclear scattering).
The rate of dechanneling is determined by the combina-
tion of these effects, and depends on the energy of the ion
and the temperature of the crystal, as well as the atomic
numbers and masses of the ion and crystal atoms. While
it is not in general possible to separate these two dechan-
neling mechanisms, some understanding of their indi-
vidual effects can be obtained by studying cases in which
one or the other is favored. Most dechanneling studies
heretofore have been on crystals in which the thermal
(nuclear) mechanism is dominant. In this paper, we re-
port results for dechanneling in diamond. Diamond has
a low atomic number and a high Debye temperature
I1860 K (Ref. 7)]—both of these result in reducing the
importance of nuclear scattering. In addition the valence
electron density in diamond, which is important in elec-
tronic scattering, is relatively high. Thus, it is expected
that electronic scattering is important in the case of dia-
mond.

In order to explore this, we have studied the axial
dechannelirig of protons in selected natural diamonds,
with beam energies ranging from 1.0 to 8.9 MeV, and
crystal temperatures from room temperature (20 C) to
600'C. The data have been interpreted in terms of the
diffusion model of dechanneling. The analysis has
demonstrated the relative importance of electronic
scattering in the case of diamond.

The change with depth of the yield of a close-
encounter process such as backscattering is a complex
function of energy, temperature, and crystal direction,
and the question. arises whether it can be described by
some combination of these parameters, i.e., by some scal-

ing law. Several workers ' ' have suggested that the
yield should depend on the variable u&/E, where u2 is
the root-mean-square thermal vibration amplitude of the
crystal atoms in two dimensions, and E is the ion energy.
Such a relationship has not been observed by other au-
thors. ' We have determined that, in diamond, the
yield scales approximately with a length z, characteristic
of the electronic scattering. The scaling is broken by the
somewhat different energy dependence of the nuclear
scattering and, to a lesser extent, by the effects of large-
angle scattering and of damping (i.e., the effect on the
dechanneling process of the energy loss of the ion). Nev-
ertheless, the yield is determined approximately by one
parameter over a wide range of energy and temperature.
This scaling also extends, to some extent, to other axes.
This somewhat surprising observation can be understood
in terms of the diffusion model of dechanneling. While
the initial transverse energy distributions of the ions in
the three axes studied are quite different, leading to
different surface minimum yields, these differences are
washed out by the diffusion process and a similar behav-
ior is observed at some depth into the crystal.

II. EXPERIMENTAL ASPECTS AND DATA ANALYSIS

The experiments were performed at the Schonland
Research Center for Nuclear Sciences (formerly the
N.P.R.U. ) of the University of the Witwatersrand. Two
accelerators were used; a pressurized Cockcroft-Walton
accelerator was used for the 1.0-MeV measurements, and
an EN tandem van de Graaff accelerator was used for
higher-energy measurements. Similar experimental ar-
rangements were used on both accelerators. The target
crystal was mounted in a two-axis goniometer driven by
stepping motors, with an angular precision of 0.01'. The
proton beam was collimated to 0.2 mrad divergence on
the low-energy accelerator, and to 0.02 mrad on the
high-energy accelerator, by means of a system of adjust-
able slits and apertures. Backscattered protons were
detected at a laboratory angle of 155.0 in a silicon
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surface-barrier detector with an energy resolution of 14
keV. The detector was mounted in the plane defined by
the incident beam and the goniometer tilt axis, so that the
energy to depth conversion for scattered protons was in-
dependent of the goniometer setting. The target
chambers were pumped by means of turbopurnps, and
shields cooled by liquid nitrogen surrounded the target in
order to reduce contamination. Pressures during the ex-
perimental runs were of the order of 10 torr, and ob-
served rates of deposition of impurities on the targets
were low, as judged from the surface peak observed in the
channeled spectra, and the presence of higher-energy
peaks in the spectra. The predominant contaminants
were carbon and oxygen, and the surface coverage was at
most a few monolayers. The effect of this on channeling
was judged to be minimal. A filament arrangement was
used to supply electrons to the crystal in order to prevent
target charging, which had been observed to deflect the
incident beam slightly by an amount dependent upon the
target current at large goniometer tilt angles. The entire
target chamber was insulated from ground and used as a
Faraday cage for beam current integration. Measure-
ments were also taken at 1.0 MeV of the temperature
dependence of dechanneling, using a resistive heater in
contact with the target holder. The temperature was
measured with a therrnocouple sandwiched between the
heater and the target holder.

The crystals used were natural type-Ia diamonds with
a low concentration of platelets. These were expected
from other studies" to be the most perfect diamond crys-
tals for channeling purposes. The crystals were polished
to a high degree of surface finish using standard diamond
polishing techniques and were cleaned in solvents and
detergents before use. ' This technique of surface
preparation has been found to give good surfaces with no
effect in backscattered spectra that could be ascribed to
surface damage. These good results are presumably due
to the special mechanisms involved in the polishing of di-
amond. The surface peak in a (110) channeled spectrum
for 1.0-Me V protons typically corresponded to 6—8
monolayers (ML) of carbon; a Monte Carlo simulation of
such scattering gave approximately 4 ML.

Spectra in both channeled and random orientation
were accumulated for a fixed beam Auence, usually 1.2
pC. Random spectra were taken while rotating the crys-
tal about the axial direction, with the crystal offset from
the channeled direction by a few degrees (about 10$,).
This procedure gave consistent results for several ofFset
angles while the technique of selecting a particular direc-
tion far from the major axis and accumulating a spectrum
at fixed goniometer angles did not. Other methods of ob-
taining a random spectrum, e.g. , by using an amorphous
target, were not tried, as the stopping power of protons in
carbon, and hence the height of the random spectrum, is
known' to depend on the nature of bonding in different
carbon allotropes.

The scattering cross section for protons on carbon is
non-Rutherfordian even at 1.0 MeV, and at higher ener-
gies careful selection of incident energy was necessary in
order to avoid energy regions with strong resonances.
Measurements were thus performed at 1.0, 4.5, 7.0, and

3000

2000—
(/)
I—

O
1000-

0
0 0.2 0.4 0.6

ENERGY (MeV)
0.8 1.0

FICx. 1. Random energy spectrum and (110) channeled
spectrum for 1.0 MeV protons in diamond.

8.9 MeV. Figure 1 shows a random and a (110) chan-
neled spectrum at 1.0 MeV. The cross section varies
slowly over the path of the incident ion before scattering,
and thus the shape of the random spectrum is determined
largely by the stopping power; this leads to the strong dip
at low energies corresponding to the peak in the stopping
power.

Channeled spectra were normalized to random by di-
viding channel by channel with the random spectrum.
This method ignores any difference in energy loss be-
tween channeled and random ions. In addition, random
energy loss was used to assign a depth scale to the spec-
tra. %e feel that this procedure is justified for several
reasons. The energy loss of an ion from the surface to a
certain depth will depend on the exact path followed by
the ion, and using, as is often suggested, a channeled ion
stopping power which is a fixed fraction of the random
stopping power, will not give correct results for all ions.
The fraction to be used is not well known in diamond; in
addition the fraction to be used will also be depth depen-
dent in a manner which is not easily determined. Also,
the shape of the spectrum depends on the stopping
power. An analysis of a 1.0 MeV (110) spectrum, as-
suming that the channeled stopping power is half of the
random, shows that the main efFect is to change the shape
of the yield curve, rather than to raise or lower the yield
over the full extent of the curve.

A depth scale was assigned to the spectrum using the
stopping power fits of Andersen and Ziegler. ' There are
thus two sources of systematic uncertainty in the as-
signed depth scales: one from the channeled versus ran-
dom stopping power problem, and the other due to un-
certainties in the stopping power due to the allotropic
dependence. The latter efFect is expected to be rather
small, as measurements' of energy loss in thin diamond
crystals for (2.5 —12.0)-MeV protons showed good agree-
ment with the Andersen and Ziegler values; in addition,
calculation of the height of the random spectrum using
these stopping power values and the measured cross sec-
tion at 1.0 MeV gave good agreement with the measured
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height. We note that allotropic effects on the stopping
power depend largely on the valence electrons and can be
expected to be more important at lower energies. ' Pre-
sentation and discussion of the experimental results is
postponed to Sec. IV.

III. THEORETICAL DESCRIPTION OF THE YIELD

A. Theory of dechanneling

sible to an ion with transverse energy s~, D(ez) is a
diffusion function discussed below, 6(e~) is a function
describing the change of c~ due to energy loss of the ion
(damping), and o(ej) is an absorption function which
takes into account the effects of large-angle single scatter-
ing. The diffusion function is related to the rate of
change with depth of the transverse energy,

b(ei) =d(ej ) /dz,

In order to provide some basis for the evaluation of
various contributions to the dechanneled yield, the re-
sults were analyzed in terms of the diffusion model of
dechanneling. We have attempted to make the calcu-
lations as accurate as possible, and have thus used more
realistic potentials and electron densities than the usual
Lindhard' or Moliere' approximations. Iri addition we
have tried to take into account the two-dimensional na-
ture of the transverse plane. Our approach is thus some-
what different from that of other authors, such as
Matsunami and Howe, who attempted to find good ap-
proximations in order to extend their calculations to
more complex damage cases, and thus we summarize in
some detail our theoretical approach.

Within the continuum model of channeling the motion
of a channeled particle can be described by its motion in
the plane transverse to the axis along which channeling
occurs. The motion is governed by the transverse energy,

E~ =p j /2m + U(r),

where p~ is the transverse momentum of the ion at r in
the transverse plane, m is the ion mass, and U(r) is the
continuum potential at r, in general a sum of the continu-
um potentials of the rows forming the two-dimensional
transverse lattice. It is convenient to introduce the re-
duced transverse energy E~ 2E=~/Egf, where g, is the
Lindhard angle,

1/2
2Z1Z28

Ed

Here, Z& is the atomic number of the ion, E its energy,
Z2 the atomic number of the crystal, and d the average
atomic spacing in the axial row.

A beam of ions incident upon a crystal will have some
distribution in transverse energy upon transmission
through the surface. The process of dechanneling can
then be described by the evolution of this distribution in
transverse energy g (c~,z) with depth according to the
"diffusion" equation,

af (s„z) a'f (E„z) af(.„z)
=D(Ei) +b.(ej )

az Bcg

Bf(ei,z)
+5(e~) —cr(Ej )g(s~, z),

C)E,j

where

f (&j,z) =g(s~, z)/A (s~),

A (s~) is the fractional area of the transverse plane acces-

C~

D( e~)= f A(sj)h(e~)deI .
A (e~). o

The rate of change of transverse energy with depth can
be divided ' into a nuclear part b,„(s~), arising from
scattering by the thermally Auctuating force, and an elec-
tronic part h, (s~), arising from scattering by electrons in

the channel, with

5(s~)=b, ,(E~)+b,„(e~) .

The backscattered yield as a function of depth is then ob-
tained by integrating that portion of the beam able to in-
teract with the crystal, given by the expression

y(z) = J' "11(e,)g(.„z)dz,

where the reaction function II(E~), discussed below, gives
the probability of a backscattering event.

We discuss the various contributions to the dechannel-
ing equation in turn. In the following, N is the atomic
density of the crystal, d the axial row spacing, and u2 the
rms two-dimensional thermal vibration amplitude.

B. Potential, accessible area, and initial distribution

In order to obtain an accurate description of the chan-
neling and dechanneling processes we have chosen to use
the full two-dimensional transverse potential rather than
the single-string approximation. The potential is ob-
tained from the coefficients of Doyle and Turner. ' This,
in turn, is obtained from fits to Hartree-Fock calculations
and is expected to be reasonably accurate.

The Doyle and Turner potential' with coefficients op-
timized for diamond' is given in reduced units at room
temperature by

p
4 bf2

U(r)= g a, e
Z2

with

Ia j
= I0.7765,4. 1208,6. 1835,9.8763j,

Ibj = I1.0627, 3.4481, 13.3064, 79.2007j,

where r is measured in angstrom units and ap =52.9 pm
is the Bohr radius. The calculated continuum potentials
for the three major axes in diamond, in units of the re-
duced transverse energy, are given in Fig. 2.

The accessible area A (s~) and the initial transverse en-

ergy distribution go(E~) are then given by
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(a)

OQ

go(ej ) = dA(Ej)
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where Ao is the area of a unit transverse cell.
The initial distribution ca1culated for a multistring po-

tential has logarithmic singularities corresponding to sad-
dle points in the two-dimension@1 transverse potential.
In the calculation, these have been truncated to peaks be-
cause of the finite mesh used. This is not expected to
have a significant effect on the yield as this is insensitive
to small perturbations in the initial distribution. The ini-
tial transverse energy distributions for the three axes
(110), (111), and (100) are given .in Fig. 3. Also
shown for comparison are the corresponding single-string
distributions calculated with the Lindhard standard po-
tential'

Z)Z2 C2a 2

U(r) = 1n 1+
Ed r

0
2

&05&
~0.2~

0.1

where C =3 and a is the Thomas-Fermi screening ra-2

dius.

C. The reaction function

The reaction function gives the probability for an ion
with transverse energy cj to backscatter, relative to the
probability in a random medium of the same density. It
is given by'

II(Ej ) = IP(r)dr .
1
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FI(G. 2. Two-dimensional continuum potentials for the three
major axes in diamond. The potentials are based on the
Doyle-Turner potential„" and contours are plotted in terms of
the reduced transverse energy: (a) ( 110),(1) ( 111), (c) ( 100).

FICx. 3. Initial transverse energy distributions for the three
major axes in diamond as a function of the reduced transverse
energy. The solid line gives the distribution corresponding to
the two-dimensional Doyle-Turner potential, and the dashed
line corresponds to the single-string Lindhard potential.
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Here, P(r) is the density in the transverse plane of the
thermally vibrating crystal atoms,

—f /Q~P(r)= e
mN du&

D. The nuclear and electronic scattering terms

These terms are related to the change in mean
multiple-scattering angle with depth produced by the
respective phenomena. The change in transverse energy
with depth is then given by' where

(el) ( Pl+72)~ do

A(sl) = = f (r)dr,1 2 5ttj

dz A Ei . Ql 5z

where the integral is taken over a unit transverse cell.
The nuclear term receives contributions predominantly

from small impact parameter scattering events and may
thus be approximated using a single-string model. The
following expression has been obtained for small si (large
distances from the string) for the Lindhard standard po-
tential by Schidtt et al. , to second order in u 2 IC a:

3
u2

(ae '+ —') 1—
A(Ei) 2L„C2g2 ' a

1—(a+ —') 1 ——
3 A

3

2 ~l ~i 4 ~x 7 -2~& 26 —3~~ 24e e ' —2ae ' ——e ' — e '+ e ' — e '+ e2 3 4 5 5

4 7 26
(x 2(x +

u a
24 36

5a'

Here, y& and y2 are, resp'ectively, the first- and second-
order contributions, a=1+6 a /ro, where ro is the
eff'ective channel radius defined by re=(~Nd) ', and
L„=l (n1. 29 ),nowhere E is the usual reduced energy

M2E=
Z&Zze ~~ +~q

This expression has been obtained using the Lindhard
potential, and has the advantage that it can be expressed
in closed form. However, the choice of potential does not
in fact infiuence this function much in the important re-
gion Ei (2, and in Fig. 4 we show b,„(El ) calculated with
three potentials, the Lindhard standard potential, the
Moliere potential, and a potential calculated from
Clementi single-g Hartree-Fock wave functions ' for car-
bon. The function has been calculated numerically for
the latter two potentials. (We note in passing that the
Doyle and Turner approximation to the Hartree-Fock
potential is inadequate for this purpose, as the derivatives
obtained from this potential are not suSciently accurate
and lead to large oscillations in the result. ) In view of
this numerical agreement, and in order to avoid computa-
tional complexity, we have used the Lindhard-potential
expressions in our calculations.

At larger c~ the nuclear scattering can be taken as pro-
portional to the local atom density in the transverse
plane, which yields

b.„(ei)= b,„„11(si),

ln 1.29m.
1 1

x. 2
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The nuclear term h„(si) also contains contributions
from low-probability large-angle scattering events. These
contributions lead to the value for b,„(ei) being overes-
timated at large transverse energies. %'e thus restrict the
scattering to small angles, i.e., angles less than P„and
take account of large-angle scattering by means of the ab-
sorption term in the diffusion equation. With this restric-
tion in scattering angles, the random nuclear scattering
term becomes

where b,„„is the random value and II(si) is the reaction
function. The random nuclear scattering value is'

FICi. 4. Nuclear scattering function for three potentials. 1.0
MeV protons in diamond, (110).
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From the usual impulse approximation for the scatter-
ing potential one obtains' the cross section for scattering
through an angle larger than some ttj„

2 2
ZiZ2e 1

Oa =7T
2
C

With g, =g„ the absorption term in the diffusion equa-
tion is then given by

o (ei) =o d II(Ei) .

The full nuclear contribution was then obtained by com-
bining the small-c~ and large-c, z approximations in the
manner of Schigftt et al.

The electronic contribution is given by ' '

1 A (s~)5$,

potential derived from the Doyle and Turner values, and
the scattering calculated from the result for the free-
electron gas obtained by Matsunami and Howe. For the
(110) axis, our parametrized expression for b, , (s~)
differed from that of a full LDA calculation using the
Doyle and Turner electron densities by at most 12%.

The damping term is given by

5(E~)= f [E~—U(r)]— (r)dr1 1dE
A (Ei) E dz

+i
(dE)

with P=0.5 and ( ) represents the average over the
accessible area. The term has a rather small effect and a
relatively crude approximation is justified:

E dE e

Various approximations for this function have been pro-
posed. ' ' ' These approximations are based on the use
of the scattering for an ion moving through a free-
electron gas; extension to the position-dependent e1ectron
density in the channel is through the local-density ap-
proximation (LDA). The approximations differ in the ap-
proximation used for the free-electron gas scattering, and
in the modeling of the electron density in the channel.
Most are based on the Lindhard potential.

We note that the validity of the LDA under channeling
conditions has not been established, and more elaborate
calculations of scattering in planar channeling have given
results very different from the LDA. Certain elements
of the LDA, such as the use of the local electron density
in the determination of the plasmon frequency (a collec-
tive quantity), are disturbing. It is apparent that the
LDA expression for electron scattering is, at best, a gross
approximation, and probably the most uncertain element
in calculating the dechanneling of ions. Nevertheless, we
are constrained, by the lack of alternatives, to use it.

In view of this, we have chosen to use the following pa-
rametrization of the function b,, (E~), which allows us to
match several different approximations by suitable choice
of the parameters a and P:

where a is chosen to match the stopping power at the
channel center.

E. Solution of the dechanneling equation

The diffusion equation was solved numerically using
the Crank-Nicholson method. Two approaches were
tried for handling the unbounded coordinate c~. In one,
the interval a~=0 to ~ was mapped into ( —1, 1) with
the transformation

tane~ = (m /2)y

In the other approach, the transverse energy space was
arbitrarily truncated at c~= 10 by imposing the boundary
condition g(Ej, 10)=0. That portion of the Ilux passing
the boundary, given by

10

was integrated and included in the yield. The two ap-
proaches were found to agree closely, and most calcula-
tions were performed using the second method. A check
was maintained on the overall normalization defined by

Here, z, is a characteristic length determined by the elec-
tronic stopping power and defined by X(z)=l+ f' AD g + f"oIIg dE, dz .

0 alai A, ,=10 0

where

mZ, e I.,Xd

neU dEI., = 4' e XZ2 dz

The two fitting constants can be chosen to reproduce the
scattering at v~=0 and c.~

—+ ~. Typically, 6, varies by a
factor of about 2 over this region.

The parameters have been determined by using the
LDA, with the electron density at the minimum of the

This did not differ from unity by more than 0.1 fo.
Some problems can be experienced because A (e~)

tends to zero as c~—+0. Some authors"' impose a
nonzero lower limit on A(e~) by assuming a minimum
accessible area limited by thermal vibrations. We have
chosen a less arbitrary and perhaps more physical way of
treating this problem. With A (0)=0, the transverse en-

ergy distribution at the boundary, g(O, z) is forced to 0.
The equation may be solved with this condition imposed
from the outset. In order to have g (0,0)=0, we allow for
a Gaussian spreading of the incident beam due to beam
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divergence, and scattering from surface impurities. The
initial distribution then becomes

terms is small, while that of the nuclear scattering term is
somewhat larger. However, it is clear that the electronic
term is dominant in the theoretical calculations.

'l1
g(et, O) = exp

0

I
Cy

gp( Et et )d eg
&s IV. RESULTS AND DISCUSSION

where E, =2/, /P& and g, is the variance of the Gaussian
spread in incident angle. Now, since e is usually small

2
s

(tt, ((g, ), and gp is approximately constant for small et
and is relatively smooth thereafter, this integral may be
approximated, without much loss in accuracy, as

g(st, O) =gp(0, 0)(1—e ' '), et ~ E,

—
Cj /6

=gp(et —E„O)(1—e ' '),

The reaction function as given above is inadequate to
determine the yield correctly in that the calculated yield
is too low, and also the calculated value of ttrt&z is greater
than the experimental value. The reaction function has
thus been scaled so that the experimental value of g i /2
is matched. This leads to the value at which the reaction
function reaches 0.5 being reduced in c.~ by about 0.09 in
all three axes. This effect has been commonly noted in
calculations and Barrett has suggested that neglect of
focusing in the transverse plane is responsible. However,
use of the Doyle-Turner potential usually gives good
agreement between measured and calculated dipwidths,
suggesting that the potential chosen for the calculation is
equally important. (Barrett used the Moliere potential. )

It is possible that the use of the Doyle-Turner potential in
diamond is inadequate without taking into account the
redistribution of the valence electrons into the covalent
bonds.

The effect of the various terms in the diffusion calcula-
tion was determined by numerically switching off the
respective functions. The effects are shown in Fig. 5 for
the case of the (110) axis at room temperature for 1.0-
MeV protons. The effect of the damping and absorption

Energy spectra were taken with channeled and random
alignment for incident proton energies of 1.0, 4.5, 7.0,
and 8.9 MeV with the crystal of 20'C. Spectra were also
taken at 1.0 MeV with the crystal at temperatures of 300
and 600'C. The yield at room temperature was deter-
mined from the energy spectra according to the pro-
cedures outlined in Sec. II and is plotted as a function of
depth for the (110) axis in Fig. 6. This figure illustrates
the energy dependence of the dechanneling over the wide
range of incident energies used. The range of the data
rejects the depth accessible by ions of differing energies.

Because of the theoretical dominance of the electronic
scattering, it is interesting to scale the depth variable
with the characteristic length for electronic scattering, z, .
The resulting plots of the yield against the scaled variable
z/z, are shown for the three major axes in Figs. 7—9, to-
gether with calculations of the yield for 1.0 and 8.9 MeV.
The results indicate that the scaling of the yield is quite
good for all three axes. The scaling also holds over a
wide energy range. This suggests that the theoretical
dominance of the electronic scattering is confirmed by
the data. It must be noted, however, that the energy
dependence of the nuclear term is similar to that of the
electronic term, and thus some compensation will occur.
The diffusion-model calculation gives good agreement
with the experimental data.

Th e expression for z, also contains the scaling of the
e ectronic term from axis to axis; however, the functionall
dependence on c~ differs from axis to axis in the small-c~
region. At larger c~ the electronic scattering is deter-
mined essentially by the value for random alignment.
One may therefore expect that the dechanneling behavior
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FIG. 5. Sensitivity of the dechanneled yield to various terms
of the diffusion calculation. '

F1Cx. 6. Dechanneled yield of protons in diamond ( 110) as a
function of depth at 1.0, 4.5, 7.0, and 8.9 MeV.
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points give experimental results and the curves give the results
of the calculations discussed in the text.

FIG. 10. Dechanneled yield as a function of depth for all
axes and energies.
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FIG. 8. Dechanneled yield as a function of reduced depth for
1.0-, 4.5-, 7.4-, and 8.9-MeV protons in diamond (111). The
points give experimental results and the curves give the results
of the calculations discussed in the text.

FIG. 11. Dechanneled yield as a function of temperature at
1.0 MeV for (110). Solid line: 20'C, dotted line: 300'C,
dashed line: 600'C.
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FIG. 9. Dechanneled yield as a function of reduced depth for
1.0-, 4.5-, 7.4-, and 8.9-MeV protons in diamond (100). The
points give experimental results and the curves give the results
of the calculations discussed in the text.

FIG. 12. Dechanneled yield as a function of temperature at
1.0 MeV for (111). Solid line: 20'C, dotted line: 300'C,
dashed line: 600'C.
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all three axes should show some similarities. The experi-
mental results for all three axes are plotted in Fig. 10.
The general agreement for all three axes is remarkable,
considering the wide range in axes and energy represent-
ed by the data. It is evident that the diffusive nature of
the dechanneling process is responsible for smoothing out
small difference in the initial distributions to produce a
similar behavior at larger depths in all three cases. We
conclude that, provided that one dechanneling mecha-
nism is dominant, scaling behavior may be observed in
dec hanneling.

The temperature-dependent data are plotted in Figs.
11—13 together with the corresponding results from the
diffusion model calculations. It is clear that the tempera-
ture dependence of the dechanneling is seriously underes-
timated by the calculations. The reason for this is not
clear. We do not believe that a change in potential will
affect the results much. It is possible that the underlying

FIG. 15. Yield as a function of depth for 1.0-MeV protons in

( 110) plotted as a function of the variable zu 22.

model description of the thermal dechanneling contribu-
tion is inadequate. For instance, it has been suggested
that focusing in the transverse plane may enhance this
term. Such effects are not easy to evaluate without a
Monte Carlo simulation. However, the connection of
such a simulation to the dechanneling contribution is also
not easily made. In order to examine the increase in the
thermal term necessary to match the data, we have made
calculations with the thermal term multiplied by an arbi-
trary factor and find an increase in u, by a factor of
about 2 is needed. This factor has little effect on the
room-temperature results. The resulting agreement be-
tween experiment and calculation is illustrated in Fig. 14.
We note that the crystal temperatures reached in this ex-
periment are all well below the Debye temperature of dia-
mond. This is in contrast to the usual case with other
crystals, and so comparisons may be diScult to make.

Some authors ' * have sought a scaling of
temperature-dependent dechanneling data with the vari-
able zuz. We have therefore plotted the dependence of
the experimental yield on the variable in Fig. 15, for the
1.0 MeV, (110) case. While there is a region of scaling
near the origin, this does not hold for larger zu 2. Similar
behavior has been observed by others ' for silicon and
germanium. We conclude that scaling with this variable
also does not hold in the case of diamond.

In summary, we have measured the dechanneled yield
for protons in diamond over a wide range of energy and
temperature. We conclude that the diffusion model pro-
vides a good description of the dechanneling. Scaling of
the yield by a suitably chosen variable allows the data
from a wide range of energies and axes to be consolidat-
ed, and lends support to the theoretically based supposi-
tion that the dechanneling in diamond under the above
conditions is dominated by electronic scattering.

FIG. 14. Comparison of experimental and theoretical results
with increased thermal term in the calculation. 1.0-MeV pro-
tons in (110). Solid line: 20'C, dotted line: 300 C, dashed
line: 600 C.
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