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One-dimensional model of a liquid metal in the effective-medium
approximation in the random limit
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In this paper it is shown that the effective-medium approximation (EMA) of Roth [Phys. Rev. B
9, 2476 (1974)] corresponds to the approximation No. 5 of Klauder [Ann. Phys. 14, 43 (1961)]in the
random limit for the one-dimensional delta-function model of a liquid metal. The random EMA re-
sults are compared with the exact results obtained by Frisch and Lloyd [Phys. Rev. 120, 1175
(1960)]for this model.

I. INTRODUCTION

Theoretical studies of one-dimensional models are use-
ful because they provide a critical means to test a given
approximation. If an approximation agrees well with ex-
act available numerical studies of one-dimensional sys-
tems, it is a natural step to extend a certain theory to
three-dimensional models of materials. Thus, the most
successful random-alloy theory, the coherent-potential
approximation (CPA) of Soven' and of Velicky, Kirkpa-
trick, and Ehrenreich has already been tested for one-
dimensional models. '

Klauder conducted a study on a system composed of
randomly distributed impurities using diagrammatic per-
turbation methods from field theory. Klauder arrived at
a series of approximations to the average Green's func-
tion for the system of random impurities, the highest lev-
el of approximation he analyzed was similar to the
Brueckner approximation of many-body theory. This ap-
proximation he called approximation No. 5. Klauder
compared the results of his approximations for the one-
dimensional delta-function model of a liquid metal with
the exact results of Frisch and Lloyd.

Faulkner investigated the case of a random liquid met-
al based on the coherent-potential approximation (CPA)
of Soven' and of Velicky et ul. and showed that the
CPA in general corresponds to Klauder's approximation
No. 5. This is an important result because it provides a
connection between two different calculational schemes.
It is also reassuring when an extension of the CPA
reduces to Klauder's results in the random limit.

Roth developed an effective-medium approximation
(EMA) for liquid metals based on the CPA but designed
to include short-range order. Roth ' showed in her
works that the EMA when applied to the alloy problem
reduces to the CPA. Yonezawa, Roth, and Watabe have
shown that the EMA is the proper extension of the CPA
to include short-range order such as found in liquid met-
als. The EMA has a tight-binding version due to Roth'
and the interested reader is referred to the work of Has-
bun and Roth" for a recent study of local effects in alloys
using the EMA and further extensions to semiconduc-
tors.

Singh and Roth' derived the full effective-medium ap-

II. THE MODEL

The model consists of hard rods of length distributed
randomly in one dimension. ' A negative 5 function is at
the center of each rod. The one-electron Hamiltonian is
given by

(2.1)

with Vo)0. From the work of Singh and Roth, ' the
pair distribution function of a correlated one-dimensional
delta-function model' has an order parameter a=a/1,
where I =L /N the average length per atom. For the case
of complete randomness a —+0 and the pair distribution
function becomes

g(X)=l . (2.2)

This gives the probability of finding an ion at X given one
at X=0. It has the value of unity since there is no
minimum separation of sites required. '"

We work with a dimensionless density parameter c.

given by

m, VoE=n /Ko, Ico-
h~

(2.3)

proximation (EMA) equations for the correlated case of
the one-dimensional delta-function model of a liquid met-
al. The authors compared their results with the exact
Monte Carlo calculation of Peterson, Schwartz, and
Sutler. '4

While the work of Singh and Roth' deals with the
correlated case of a one-dimensional model, to date it has
not been shown clearly that the EMA gives Klauder's re-
sults, i.e., approximation No. 5, for the random limit
case of the one-dimensional delta-function model of a
liquid metal. The purpose of this paper is to show that
indeed such correspondence exists. Below, in Sec. II the
model is discussed; in Sec. III we present the full EMA,
and its random limit case, followed by the results in Sec.
IV, and the conclusion in Sec. V.
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where n is the number of ions per length. The energy is
in units of binding energy c.b given by

I 2 2
Ko

Cb= 2' ~

(2.4)

III. THE EMA

We begin with the full self-consistent equations for the
one-dimensional delta-function model from the work of
Singh and Roth, ' which we restate for clarity. The total
Green's function for the system is given in k space by

(3.6), which need to be iterated self-consistently in order
to determine the Green's function Eq. (3.1) completely in
the full EMA.

A(k —k')~0 . (3.1 1)

We also have from the above section, using Eqs. (2.2) and
(3.11), that

A. The random EMA

In this limit, we recall Eq. (2.2) which when substituted
into Eq. (3.8) gives

Gk =Gok+Gok &kGok

where

h k
G = m — +)5pk

Plq

(3.1)

(3.2)
a11d

Gok Gok

T„~nt, l(1 —nt, Go„),

2
GoI dk

(3.12)

(3.13)

(3.14)

T„=nt, I( 1 —nt, G„),
where

Gk = Gok +f A( k —k') G k Tk dk'/2~

and

(3.3)

(3.4)

is the free-electron Green's function. The T matrix is
given by

2w web& w yo& yo ko/Ko . (3.15)

reducing the EMA equations to one self-consistent
energy-dependent quantity t, of Eq. (3.14).

For computational convenience we rewrite the above
equations in terms of dimensionless units. The energy
parameter becomes in terms of Eqs. (2.3) and (2.4)

Giik —= f Go(x)g (x)e'""dx, (3.5a)
With the above definitions we obtain the random EMA
Green's function in terms of dimensionless quantities

Go(x) = Pl~

ih ko
' 1/2

-ik /x/
e

(3.5b)

Gal=Goy/(1+bGo ),
Go =(yo y+i5)—

where the single-site scattering matrix b is given by

(3.16a)

(3.16b)

The single-site scattering matrix is given by

t, '=to ' nt, f G—ok(Gok+G kTk)dk/2m. , (3.6)

b '=bo ' ——f Go G dy/2m. ,

with

(3.17a)

where

to= Vo/(1+m, Vo/ih ko) . (3.7)

bo —= —nto/Eb =2E 1+ .
'

iyo
(3.17b)

and where we have made use of
The quantity A(k —k') in Eq. (3.4) is defined by

A(k —k')—:f [g (x)—1]e'" " '"dx, (3.8)
and

b
—= nt, /eb y =k/~o— (3.18a)

n(w)= ——Imf Gk dk/2',1

7T Qo

(3.9)

and carries information on the site exclusion property of
the EMA.

The differential density of states is obtained from the
imaginary part of the energy R-dependent Green's func-
tion of Eq. (3.1) by

Goy = ~b Gok x Gy: Cb Gk

The differential density of states is now given by

n(w)= n(w), n(w)= ——Imf G dy/2~,
Kp 1

Cb 77 y

(3.18b)

(3.19)

and the integrated density of states per site becomes

and the integrated density of states per atom is given by

N(w)= —f n(w ')dw '

Pg —oo

uX(w)= —f n(w')dw' .—oo
(3.20)

(3.10)

We note that, in general, the most difticult part of the
EMA is the coupled iterative nature of Eqs. (3.4) and

Equations (3.16)—(3.20) are the EMA equations for the
one-dimensional delta-function model in the random lim-
it.

We note that while it is not so obvious, this result for
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IV. RESULTS

We first discuss briefIy, and for completeness, the sim-
ple quasicrystalline approximation (QCA) of Lax. ' For
this case Eq. (3.17a) becomes

b~bo, (4.1)

where bo is given by Eq. (3.17b). By substituting Eq. (4.1)
into Eq. (3.16a) and performing the integral in Eq. (3.19)
we obtain

1 l
n (w)= —Im

(q +id, )'
(4.2)

where

2e, w 2~3'o
q

—=w+, 6=5+
1+w 1+w (4.3)

This is as far as we discuss the QCA since it has been well
documented in the literature. ' Furthermore, it corre-
sponds to Klauder's approximation No. 4 in that work.

The result for the random EMA is obtained by substi-
tuting in the Careen's functions of Eqs. (3.16) into Eq.
(3.17a) and performing the integration. We find that the
single-site scattering matrix obeys the equation

(w+b) ~ i(w +b—) —(2 +e)w(w+b)'~ +iw=0,
(4.4)

which is a cubic.
If we make the substitution

(4.5)

where Xz is Klauder's self-energy X5 in that work, into
Eq. (4.4) we obtain

the random EMA is the CPA of Soven' and Velicky
et al. In fact, the purpose of this paper is to show this
by demonstrating, in the next section, that the above
equations give Klauder's approximation No. 5. The
connection with the CPA follows from the work of
Faulkner.

dimensional delta-function potential model of Frisch and
Lloyd. We note that the density of states variable in
Ref. 5 is yo of Eq. (3.15) and we can easily compare our
density of states Eq. (3.20) with Ref. 5.

We have calculated the integrated density of states us-
ing Eq. (3.20) with the help of Eqs. (3.16) after solving for
the single-site scattering matrix b of Eq. (4.4) by the stan-
dard method for cubics. Our results for a=0. 1 and
m=1.0 are shown in Figs. 1 and 2, respectively, and they
are labeled random EMA. Frisch and Lloyd results are
labeled FL in the figures. The curves labeled FE corre-
spond to the free-electron results which we provide for
comparison.

We see in Fig. 2 that for the high-density a=1.0 case
the random EMA, which as shown above corresponds to
the CPA, is in very good agreement with the exact re-
sults. For the low density a=0. 1 case, Fig. 1, however,
the agreement is not so good. These results appear in the
work of Klauder as well. The low-density problem has
been discussed by Roth and Singh and Roth. ' In gen-
eral, the CPA was shown by Schwartz and Siggia' to
correspond in some sense to an expansion of 1/z, where z
is the number of neighbors in a nearest-neighbor tight-
binding model. For certain energies terms in the self-
energy of the order z are omitted in the CPA. For
low concentration the impurity band is not well described
by the CPA because z, which is the number of impurity
neighbors, becomes small in this region. Similarly the
EMA for liquid metals has been shown to be best for a
large number of neighbors, i.e., at high density.

V. CONCLUSION

In this work it has been shown that the effective medi-
um approximation (EMA) of Roth corresponds to the
approximation No. 5 of Klauder in the random limit for
the one-dimensional delta-function model of a liquid met-
al. We have compared our EMA results with the exact
results of Frisch and Lloyd for this model. Our results
for the high-density c, =1.0 case are in very good agree-
ment with the exact results. For the low-density case
c =0.1, the agreement is apparently not quite so good. "'

wXx. —(2e+w)Xx. +Xx.=1 . (4.6)

Equation (4.6) is Klauder's self-consistent expression for
his approximation No. 5 if we note that Klauder's energy
variable c, is related to our energy variable by

4.0.

3.0.

(4.7)

Finally, we make complete correspondence between the
random EMA and Klauder's approximation No. 5 by
noting that

1.0.

0.0
-2.0

FL

Rand. EM
-1.0 0.0

Energy w
1 ~ 0

n (w) =2px (e), (4.8)

where pz is Klauder's differential density of states.
Finally, for completeness, we compare our random

EMA results with the exact results for the one-

FIG. 1. The density of states X(m) vs energy w, labeled
Rand. EMA, from Eqs. (3.20), and the solution of Eq. (4.4) is
compared with the exact results of Frisch and Lloyd, Ref. 5, la-
beled FL for the case of v=0. 1. The free-electron results FE
are shown for comparison.
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FIG. 2. The density of states N(m) vs eJIergy w, as in Fig. 1,
for the case of c= 1.0.

While this work provides conclusive evidence that the
EMA of Roth for a random liquid is equivalent to
Klauder's approximation No. 5, it also follows from the
work of Faulkner that the EMA for the random liquid
case is equivalent to the coherent-potential approxima-
tion (CPA) of Soven' and Velicky et al.

Further investigation on the full EMA equations of
Sec. III above for the correlated one-dimensional model
of a liquid metal is needed. Suggestions have been pro-
posed' to account for the fact that the EMA has too
many pair-distribution functions in it in this one-
dimensional case. We hope to continue work in this area
where exact results are available. '

The self-consistent theories which are extensions of the
CPA as is the EMA are not expected to be good in this
region. '
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