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The two-band density-matrix dynamics of a semiconductor driven by an intense light field
is set up in a real-space representation. The relation to the corresponding k-space theory is
established. The real-space theory is applied to the case of excitonic resonances in a quantum
well of finite width. Solutions describing the dynamical Stark eR'ect are studied with particular
emphasis on the following points: (i) the dependence of the measured signal on whether the
spectral filtering of the probe beam is before or after the sample, and (ii) the influence of short
pump pulses, the delay between the pump and the probe pulse, and the dephasing of the pump
excitation. A perturbative analytical treatment and a real-time numerical integration of the
relevant equations of motion are compared.

I. INTRODUCTION

Since the pioneering experiments of Frohlich et aj, i 2

Mysyrowicz et al. , and Von Lehmen et a/. much the-
oretical work has been devoted to the understanding of
tae nonlinear optical response of excitons in semiconduc-
tors, particularly the optical Stark effect. This effect is
the modification of the excitonic absorption caused by an
intense pump beam.

Most theoretical works in the field consider an adia-
batic evolution of the system or even full stationarity.
Such models are valid for long and spectrally narrow
pulses. In this limit one must assume that the pump
frequency is so far below the resonance that the dephas-
ing of the pump excitation can be neglected. Beginning
with Schmitt-Rink and Chemlas a Hartree-Fock decou-
pling for electrons and holes in momentum representa-
tion has been widely used (dressed-atom approach). s

The equivalence to a derivation starting with the exciton
Hamiltonian~ has been shown recently. 3 More elaborate
schemes using nonequilibrium Green's functions
have also been reduced to (statically screened) Hartree-
Fock terms.

Other works have emphasized the dynamics of the
problem, i.e, , have set up more or less approximate
schemes which allow a study of the temporal evolution
during the pump pulse. In the works by Balslev and
Stahli" the Coulomb interaction is treated approximately
in that exchange integrals appearing in the equations of
motion for the two-band density matrices are neglected.
This approximation leads to a decomposition into iso-
lated two-level systems. Correcting our earlier position,

we would like to stress that the full exchange must be
taken into account. As was also overlooked in Refs. 11
and 12, the exchange terms are important even in the
low-field limit. The work by Schaferis is free from this
deficiency but uses an artificial pulse shape in the calcu-
lation. In general, the transformation of time-dependent
field quantities such as the polarization into measureable
quantities such as the optical transmission of a probe is
not well understood in the literature. The importance of
the specific experimental arrangement was emphasized
in Ref. 13 in which two schemes used also in the present
paper were introduced, namely spectral filtering of 'the

probe pulse before or after the sample. Unlike the ap-
proach in Ref. 13 the present paper goes beyond the limit
of low pump fields.

In the present work we shall report on a study which
for the first time combines the accuracy of a full Hartree-
Fock scheme with the advantage of a true dynamical ap-
proach. This is important when studying the influence
of short pump pulses and finite dephasing of the pump
excitation. The purposes of this paper are as follows.

(i) To compare the "dressed atom" approach of
Schmitt-Rink, Haug, and co-workers with the two-band
density-matrix approach in the form reported recently by
Stahl including the Hartree terms in the equations of
motion.

(ii) To utilize a real-space representation for treating
the case of a quantum well with a width W comparable
to the exciton Bohr radius.

(iii) To set up perturbative and nonperturbative calcu-
lating schemes for exploring the dependence of the optical
Stark effect as a function of W and the detuning.
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(iv) To study the inRuence of short pump pulses, de-

phasing of the pump excitation, the delay of the probe,
and the position of a spectral filter (before or after the
sample).

In Sec. II we present basic equations of motion for the
interband and intraband density matrices including the
exchange terms obtained in a Hartree-Fock treatment.
Important simplifications are achieved in the limit of long
electromagnetic waves and, at the same time, considering
either a homogeneous system or an extended quantum
well (Sec. III). In relation to a pump-and-probe experi-
ment it is important to set up equations linearized with
respect to the probe field and to specify the spectral fil-

tering system used in the experiments (Sec. IV). In Sec.
V it is demonstrated that the real-space density-matrix
theory used in the present work becomes equivalent to
related theories by Schmitt-Rink, Haug, and co-workers
if the former approach is taken in the homogeneous, long-
wavelength limit and proper attention is paid to the Fock
terms. In Sec. VI are presented results from a perturba-
tive and a nonperturbative, numerical treatment of the
basic equations. These results include a number of novel
features such as finite width of the quantum wells, finite
spectral width and dephasing rate of the pump excita-
tion, and noninstantaneous arrival of the two pulses.

m„mg are eR'ective masses, and Mo is the dipole mo-
ment of the allowed transition. The prefactors 2 in (2.2)
and (2.3) are due to the spin degeneracy which was not
included in Ref. 19.

The electrodynamics of the system is described by
equations of motion for @2~ in the presence of an electro-
magnetic field. The Hamiltonian generating the dynarn-
ics has the following form:

H = Ho+ Hg „i b+ (pp —jA —EP)d r. (2.5)

Ho is the bare two-band Hamiltonian, Hc „~ b is the
dielectrically screened Coulomb interaction specified by
s, and the electric field E is related to the potentials A, P
as usual:

(2.6)

We shall here suppress the vectorial property of j, P, Mp,
E, and A.

Applying the Hartree-rock decoupling of the equations
of motion one finds the following closed set of equations
for the submatrices Y, C, and D

iMo
AY12 + &~eh Y12 + +12 — (Elb12 E1C12 E2D21) yh

II. TWO-BAND DENSITY-MATRIX THEORY:
REAL-SPACE REPRESENTATION

Our model will be a direct-band-gap semiconductor
idealized to have two parabolic, isotropic bands. The
density matrix in a real-space representation is written
as

Pzii(ri, r2, t)

e iMo
ctiC12 + &~eeC12 + +12 — (EiY12 E2Y21)

h

iMo
'AD12 + iflhhD12 + ~12 — (Y21E1 Y12E2)

h

(2 7)

(2 8)

C(ri, r2, t) Y'(ri, r2, t)
Y(ri, r2, t) b'gg(ri —r2) —D(ri, r2, t) p

(2 1)

C is the conduction-band submatrix, D is the valence
band submatrix in the hole representation, Y is the in-
terband density matrix, and b~ is a suitably broadened
delta function. Electromagnetic quantities derived from
@2~ are the following: The monopolar charge density

~eh = ~g + iT1 + —A1

h . e 2 e+ '&2 A2 + (4'1 ~z) (2 1O)
2m. h fi

The numerical subscripts are abbreviations for coordi-
nates in the sense Y12 = Y(ri, r2), etc. The 0 operators
describing the propagation in the (ri, r2)-configuration
space under the influence of the potentials A, P areis

p(r) = —2e [C(r, r) —D(r, r)],

the conduction current

eh
i (r) 2 ~ b(r rl)b(r r2)(71 V2)2i

(2.2)
h . e 2 . e

ee = & 72 A2 & 71+ A1
2m. h fi

+ q(&1 —6') (2.11)

(C
/me

~

ds, ds
mhj

and the interband polarization

P(r) = Mo[Y(r, r) + Y'(r, r)],

(2 3)

(2.4)

2 e 2
~~&, = — iV2+ -A2 — aV'1 —-A1

2m/ ri h

1 2h

The direct Coulomb interaction

(2.12)
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2

~12 = «s
I » —r, I

(2.13)
(c) field-induced changes of the propagation via the ap-
pearance of A and P in the 0 operators.

is included in A, g while the remaining contributions
from the Coulomb interaction are twofold, namely the
exchange terms X,X+,XD, and Hartree-type induced
fields. The exchange terms are given byis

III. TRANSFORMATIONS RELEVANT
FOR HOMOGENEOUS SYSTEMS

OR QUANTUM WELLS IN THE LIMIT
OF LONG ELECTROMAGNETIC WAVES

(V13 V23)(Y31Y32 + C13C32)d r3 Ih
(2.15)

X12 (V13 V23)(Y13Y23 + D13D32)d r3, (2.16)
h

while the induced potential P'" is given by

—ee'"(ri) = 2 / vii(cia —&ii)& i'i (2.17)

X12 = — (Vis —V23) (Y31C32 —Dsi Y32)d rs, (2.14)
In their bilocal form the BEE are unique for study-

ing nonhomogeneous systems such as the half-space
problemis and quantum wells. 22 The bilocal structure
is also essential for treating electromagnetic wavelengths
which are not much longer than the quantum coherence
lengths involved.

On the other hand, the treatment of the full dimen-
sionality of the configuration space is very demanding,
and so there are strong motivations for approximations
leading to a reduced dimensionality.

Before introducing such simplifications we shall first
transform the BEE in such a way that the vector poten-
tial A is removed from the propagation operators. We
substitute as follows:

When applying the Hartree-Fock decoupling [from Eq.
(2.7) and onj the fields E, P, and A are to be understood
as self-consistent fields composed of external and induced
fields.

The external part includes not only macroscopic ex-
ternal sources but also confining pseudopotentials from
isoelectronic spatial structures. The latter contributions
necessitate the distinction between Pe and P". Let us
emphasize some properties of the dynamical equations
(2.7)-(2.9).

(i) Equations (2.7)—(2.9) are a direct generalization of
the optical two-level Bloch equations to the case of
a two-band system with electron-hole interaction. We
shall denote these equations as the "band-edge equa-
tions" (BEE).

(ii) Within the approximation used there is a close re-
lationship between the induced fields and the exchange
terms: The induced fields represent the Hartree approx-
imation responding to the total net charge and the ex-
change terms (2.17) are the corresponding Fock terms. 21

(iii) The electric field E and the related potentials A, 4t

appear in a number of terms in the BEE. The most im-
portant one is the first term on the rhs of (2.7)—(2.9),
driving Y linearly and thus responsible for the linear op-
tical response.

(iv) As the diagonal parts Xi+1 and Xioi are zero, the
diagonal parts C(r, r) and D(r, r) are driven by terms
which in the long-wavelength limit become proportional
to E Im(y). These sources describe the build-up of elec-
tron-hole populations.

(v) The nonlinear dynamics of the band edge of a semi-
conductor is, according to the BEE, caused by three types
of effects: (a) band-filling effects represented by the terms
E1C12 and E2D21 on the right-hand side of (2.7), (b) ef-
fects from the exchange terms given in (2.14)—(2.16), and

Y ie(Aq rq —Ag rg}/3 (3.1)

ie(Aq rg —Ag rg}/5~12 —~12 ) (3.2)

-te(AI ry —Ag. rg)/h

Using the Coulomb gauge it can be shown that the func-
tions Y, C, D obey the BEE with 0 operators replaced
by the following operators with tildes:

h 2Oeg = Cdg-
2fAQ fA e

+~(4'1 —» &1 —42+ r2 E2),I t e t (3.4)

(+1 +2) + —()}1
—» Ei —4; + r2 ' E2),2m,

(3 5)

(&1 —») —-(41 —» Ei —42+» E2)a t h t
27AQ

(3.6)
0

where E' = —A is the transverse component of the elec-
tric field.

I et us first consider a homogeneous system. In this
case Y, C, and D depend only on the relative coordinate,
and the potentials Pe and P" are equal. Furthermore, in
the long-wavelength limit E, A, and P vary little over
the spatial extent of Y, C, and D in relative space. This
simplifies the band-edge equations considerably:
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]

—iM& y htee — V —eE r —V(r) ]
'Y(r) + J [V(r') —V(r' —r)][Y(r')C(r —r') —G(r')Y(r' —r)]d~r'

= Me[6(r) —eC(r)'] E—iM, C'(r) + /[V(r') —V(r' —r)]Y*(—r')Y(r —r')ti r' (3.7)

= -Mo[Y(r) —Y'(—r)lE (3.8)

Here p is the reduced mass and the space coordinates
r and I' refer to the relative space. We have used the
fact that there is no net charge, which implies that D(r)
= C(—r). We have neglected the infiuence of the electric
field on Q„be cause such a term gives rise to Drude-
like nonresonant response. As a consequence of this, C
becomes real, and so the CC term in the integral in (2.15)
vanishes.

Studying optical processes we are interested in the in-
terband polarization [Eq. (2.4)] involving Yii. As Yii
= Yi i there is no need for the distinction between quan-
tities with and without tildes. Consequently, we shall
drop the tildes in the rest of the present paper and still
use equations of the type of (3.7) and (3.8).

In the transformed version (3.7) of the BEE it becomes
manifest that the longitudinal electric field and the trans-
verse electric field exert the same inAuence on the proga-
gation of quantum-mechanical waves. The field-induced
modification of the propagation [lhs of (3,7)l gives rise to
the static Stark effect and the infrared resonant Stark ef-
fect studied by Frohlich et aL, ~ ~ while the band-filling
terms on the rhs of (3.7) give rise to the optical Stark
eHect appearing for near-band-gap frequencies. In this

I

work we shall concentrate on the latter eA'ect and so we

can neglect the electric field on the lhs of (3.7).
Next we consider a quantum well. If its width is

smaller than a few exciton Bohr radii (growth direction
parallel to the z axis) one may approximate Y', C, and
D as follows:

Yiz = ua(zi)u. (zz)Y(p),

Ciz —u, (zi)u, (zz) C(p),

Diz = ui, (zi)ui, (zz)D(p),

(3.9)

(3.10)

(3.11)

where p is the projection on the (z, y) plane of the relative
space coordinate, and u„ug are normalized confinement
wave functions of the considered sublevel. The conditions
for the approximation of (3.9)—(3.11) are (i) that the ex-
citon binding energy is small compared with the spectral
separation between different sublevel pairs and (ii) that
the Frohlich-type Stark effect can be neglected. z Apply-
ing the long-wavelength approximation we obtain after
integrating over the z coordinates:

(
h—i&ai+ h~g —
2

'7P —v(p) ~ Y(p) + 2 [v(p')Y(p')C(p' —p) —v(p')C(p')Y(p' —p)l d'p'

= moE[b(p) —2C(p)l —+&iC(p) + v(p') [Y'(l ')Y(p' —p) —Y(l ')Y'(p' —p)l d'p' (3.12)

= —mp E[Y (p) —Y'(—p)], (3.13)

mo —Mp Q~ Z ZEg Z dZ, (3 14)

E& is the field component in the (z, y) plane, and u& is the gap frequency associated with the actual pair of quantum-
well sublevels.

As shown in Appendix A the potential functions v(p) and v(p) depend on the width W of the quantum well and
the confinement sublevel in question. In the simple case of infinitely high confining barriers and common index n of
the sublevels we have

3
v(p) = 6(p) = dt

&
(1 —t) ~

2+ cos(2xnt) + sin(2snt
~

27m
(3.15)

This potential is Coulomb-like (ocl/p) for p )) W and logarithmic for p «W. It is important to note that in
situations other than this, the Hartree-type induced fields must be included. One way of doing this is to include a
Hartree term in the potential v(p) (see Appendix A).



TWO-BAND DENSITY-MATRIX APPROACH TO NONLINEAR. . .

IV. LINEARIZATION WITH RESPECT TO A. PROBE FIELD

We shall consider the strong pump with a known time dependence of the field E& (t) leading to the densities Y,C.
The addition of a weak probe field E~,(t) gives rise to changes A', bC. We shall assume that Er, is so small that the
relations between bY, bC, and E&„are linear. The linearized equation becomes

~

—ihi), + htd,
' — V', —u(p)) 6Y(p) + 2 f v(p')[6l (p')C(p' —p) + Y(p')6C(p' —p)]d'p'

6 p' $ p' Y p' —p + p' bY p' —p d p'

oE .[~(p) —2C(p)] —2moE ~C(p)

—Id (dC(i )I+f ~(p)(dY'(p')Y( ' —p) —dY(p')Y'(p' —p))d'i'

v p' Y* p'bY p' —p —Y p'bY' p' —p d p' (4.1)

= —m() Ep, [Y(p) —Y'(—p)] —m() Ep [bY(p) —bY'( —p)], (4.2)

where Y and C are solutions to (3.12) and (3.13) with E = E„
In relation to experiments we shall assume that suitable spatial filtering allows the detection of 6P (x bY(0) without

admixture of P oc Y(0) from the pump. We shall concentrate on the relative absorption EI/I of th—e probe light. If
the transmitted light is filtered through a monochromator the detected quantity is

~l(~) $ 1m[a, 6Y"(0)]
oc

1(~)
(4.3)

where the superscript u refers to a Fourier transformation. Without a monochromator after the sample, the relevant
quantity is

&I) f dhlm[E~, bY(0)]
I )„„„i„„ fdtiE „i (4.4)

In realistic applications of the BEE one must include irreversible dephasing processes. Simplest is a Tz-like relaxation
obtained by replacing (9iY by Oi Y'+ I'Y. As the actual absorption near the exciton lines has a line shape very diA'erent

from a simple I,orentzian, one should use two diferent dephasing rates, one for the dephasing of the probe excitation
I'~, to be inserted into (4.1) and one for the pump excitaton I'z~ to be inserted in (4.1).

V. CONNECTION TO RELATED THEORIES

So far we have worked in real space. Since most other papers in the field use a k-space representation we Fourier
transform the basic equations with respect to space in order to compare more directly with other works. We shall
concentrate on the two-dimensional case. Then we use

n(k) = f d~p C(p)e'" ~, P(k) = f d'p Y(p)e'"'~ . (5.1)

The change in notation (C ~ n for pair density, Y ~ P for the polarization) should further help to compare with
the literature. The set of difFerential equations becomes

ihBi + E', (k)—+ ZI, (k) —2) 6(k —k')n(k') P(k) —[1 —2n(k)] ) v(k —k')P(k') = m()E[l —2n(k)], (5.2)

—ihB, n(k) + ) v(k —k')[P'(k')P(k) —P(k')P (k)] = —mpE[P(k) —P"(k)]

where 8', (k),Zg(k) are the free-particle energies [E,(k) + t), (k) = hu' + h k~/2p]. The term containing 6 is the
Hartree-Fock self-energy of electrons and holes, and the prefactor (1 —2n) describes the phase-space filling which acts
to reduce the exciton binding as well as the coupling to light. Equations (5.2) and (5.3) are identical to the equations
derived by Schmitt-Rink and co-workerss s based on the Hamiltonian I in k-space (here applied to a quantum-well
situation with an isolated pair of sublevels):
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H = ) 8,(k) cia cy + Eg(k) vs vy —tns E(cia vy + vs cy)

+ z ) [V«(ki —k4)ciczcsc4 + Vgg(ki —k4)vi vzvsv4 + V g(ki —kq)(ci v2vsc4 + viczcsv4)],
1234

(5.4)

—([1—2n(k)] + 4 iP(k)) j = —8r iP(k)i
cB

(5.5)

which follows by inspection of (5.2) and (5.3). How the
dephasing spoils the strict conservation was first dis-
cussed by Zimmermann. Noting that n(k) = 0 and

P(k) = 0 before the arrival of a light pulse we integrate

(5 5):

where c&t (v&t) creates an electron in the conduction (va-
lence) band. The quantities V„, Vi,i„V,q are quantum-
well interaction potentials defined in Appendix A. A
Hartree-rock decoupling of the equations of motion for
n(k) = (c„ci,) and P(k) = (v„ci,) gives the above set of
equations. This completes the proof that the real-space
treatment of Stahlis and the theories based on a k-space
representation are equivalent which was already stated in
Refs. 6 and 7.

Only for the Hartree term are there are differences: In
our framework this term is due to a nonvanishing charge
distribution along z in the quantum well (see Appendix
A), whereas in Ref. 8 a probe-induced modulation in p
space is considered.

Note that we remain in the real-time domain and do
not assume stationarity. In a number of studies the fol-
lowing conservation law has been utilized:

the temporal integration to P(k, t) only. In this case
there remains an ambiguity with respect to the sign of
the square root. It should be minus at the start time,
but could switch as a function of / and k whenever the
radicand touches zero. This point has sometimes been
overlooked and is particularly uncertain in the strictly
stationary limit. A clearcut answer follows from an inde-
pendent temporal integration of the equations for n(k).
Note that in the real-space representation the conserva-
tion law becomes a convolution integral from which C(p)
cannot be expressed easily in terms of Y(p).

VI. CALCULATED RESULTS

We have calculated the optical Stark effect assum-
ing both pump and probe pulses to be Gaussian with
peak fields E&~,E&„center frequencies ~z, ~», and
full width at half maximum (FWHM) duration for the
intensity f~~,t», respectively. The delay of the probe
pulse with respect to the pump is td, i r We ap. ply the
rotating-wave approximation thoughout, and the above
electric field amplitudes are meant as the rotating parts
only. We study the Is exciton and quote absolute values
related to GaAs (the bulk rydberg is equal to 4 meV, the
dephasing rate near resonance F»——1.5 meV).

n(k, t) = — 1 +
i

1 —4 iP(k, &')i
2

i i/2
—8F dt, ' iP(k, t')iz

i

—OO

(5.6)

As appropriate for a pump frequency far off resonance
the dephasing is often neglected when treating the pump
excitation (F&~—0). Then (5.6) is used for reducing

A. Perturbative treatment

For pump pulses long enough for assuming stationarity,
a perturbative treatment to second order in E&o leads
to results expressed as spectral shifts and bleaching of
excitonic resonances as a function of pump field, detuning
b = u&~ —us, and well width W (ufo is the unperturbed
exciton frequency). Concentrating on the shift Ahu of
the lowest exciton the result of such a treatment's is

b/i~ = 2(mph~~) ) G(k, ~@~)p (k) + ) v(k —k')G(k, ~@~)[G(k',~@~)p(k') + G(k, ~p )p(k)]p(k')

—) v(k —k')G(k, ~~ )[G(k', ~, )P(k)+G(k, ~, )y(k')]y(k') ~ (6 1)

where v(k) and 6(k) are Fourier transforms of v(p) and
v(p), P(k) is the k-space envelope wave function of the
lowest exciton level, and C(k, u) is the k-space Green's
function given by

[Z,(k)+ Fp, (k) —h~]G(k, ur) —) v(k —k')G(k', ~) = 1.

(6.2)

2(MOEp )Ah~ = —hb
(6.3)

Assuming no pump dephasing we have calculated the
shift LAu for difFerent values of the detuning b and well
width W. As Ehu is proportional to (Eo )~ we show in
Fig. 1 the results for the dimensionless factor 8 given by
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e . ). ote in Fig. 1 that the large Stark shift in

is re uce significantla pure two-dimensional system i d d 'fl

w en going to a finite well width as small 0 2
is the buis e bulk exciton Bohr radius). The shift far W in
the range 0.2—l)atI becomes even smalle th th

ree- imensional case. This unexpected result is in clear
contrast to the bo e behavior of the binding energy (see the
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inset in Fig. 1 far which the interpolation between theen e

that t e
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B. R leal time numerical integration~ ~

In order to explore the optical Stark effect to hi her
ordel lil Zpni and with finite duration and dephasing t'

e pump excitation, we have performed calculations
ased an real time integration af (3.12) and (3.13) and

(4.1) and (4.2) as explained in Appendix B.We calculate
two types of spectra, one based on filtering the response

meV above and band below the resonance investigated, and
one based on a spectrally narrow probe pulse with no
filtering after the sample.

It turns out that the two systems hms s ow very similar
~ ~ Q

0.0
-20

Photon energy relative to the gap (meV)

FIG. 3. Absor tive rp response for a finite duration (tp =0.9
ps) of the pump pulse. (a) shows the filtered response with
a short probe pulse (tp, =20 fs), h=l0 meV W=

3.2 meV (curve c). For comparison we show in (b) the corre-
sponding unfiltered response with t ll
pulse (tp&=0.9 ps) centered at the plotted frequency. The pa-
rameters for the filtered and unfilt d

entic . 0th~

d ~ ~

un ere spectra are otherwise
ai. ther important parameters are I' =0 I'are pm= I pr=1-5
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distorted and a region with oscillatory behavior about
zero absorption develops. This is the remainder of the
coherent oscillations at negative delay discussed by Koch
e] ah~ The effect is absent if the spectral filtering is
before the sample. In any case the absorption line is less
shifted and significantly broadened when compared with
the steady-state result [Fig. 2(a)].

It is not meaningful in the true steady-state limit to
allow a finite dephasing of the pump excitation because
of the build-up of pair population. However, for finite
duration of the pump pulse the infIuence of pump de-
phasing can be studied. Figure 4 shows such spectra. It
is seen that noticeable changes of the Stark-shifted line
set in when the total density becomes comparable to the
peak density without pump dephasing, i.e. when

FIG. 4. Absorptive response for various values of dephas-
ing rate I'~ of the pump excitation. The parameters are
otherwise the same as for curve b in Fig. 3(a). The pump
dephasing rate is I'z ——0 (curve a), 0.5 meV (curve b), and
1.5 meV (curve c). Curve d is the unperturbed absorption.
In the upper right corner is shown the temporal behavior of
the density C(0, t) for the above dephasing rates.

treatment fails for the largest pump field in Fig. 2(a)
because the shift in this case is comparable to the exci-
ton rydberg. The spectra in Fig. 2 are close to the true
stationary limit. A weak consequence of the finite pump
pulse duration (introduced for calculational reasons) is
seen as irregularities in curve c in Fig. 2(a). Unlike the
crude two-level approximation giving strong bleaching,
the present calculations show a slight increase of peak
absorption (Fig. 2) with increasing pump field.

We then consider pump pulses with a duration of the
order I',i (see Fig. 3). We still neglect dephasing of the
pump excitation and consider zero delay. With spectral
filtering after the sample the absorption peak becomes

[C(0,t = 0)]p —p [C(0, t = oo)]z go (6.4)

(the pulse is centered about t = 0); see the inset in Fig.
4. With the actual values of pump pulse duration, the
detuning, and dephasing rate, it is seen that even in case
of 1 pm

—I'p, (which represents an unrealistically high
dephasing rate of the pump), the spectra are not strongly
affected by the dephasing of the pump excitation.

We finally show in Fig. 5 the inHuence of a nonsimul-
taneous arrival of the pump and probe in case of a pump
pulse duration of 1 ps (FWHM) and a reciprocal de-
phasing rate Fp, of 0.5 ps. These results give an impres-
sion of the speed of the excitonic Stark efFect in relation
to potential switching applications.

It should be noted that the calculated spectral struc-
tures in Figs. 2—5 cannot be trusted at energies above
about Au' —1 meV because of the cutofI' in relative space
at (4—6)a~. On the other hand, near the lowest exciton
peak the spectra are reasonably accurate. For example,
the relatively coarse spatial step size of 0.2a~ causes an
inaccuracy of 1 meV in the two-dimensional limit (giv-
ing uz —uo ——15 meV instead of the exact result 16 meV).

t I ) I l I I
i

I 1 I I I I I I I
[

I I I I I I 1 I I
I

I I I

g 6.0

~ ~
r 40
CD

0
C4

8 2.0
tD

~ W

0.0

I I I I I I I I I I I I I I j I I I I I I I I I I I I I I I I I

-20 -10 0
Photon energy relative to the gap (meV)

FIG. 5. Absorptive response for diR'erent values of the
delay of the probe pulse. Curve a is valid to a good ap-
proximation for 1.5 ps ()tg, i~„~( oo. The other curves have
tq, i~& ———0.65 ps (curve 5) and 0 (curve c). The rest of the
parameters are the same as for curve 5 in Fig. 3(a).

VII. DISCUSSIQN AND OUTLOOK

In the present work the nonlinear optical properties,
particularly the optical Stark efFect, have been studied
using a real-space, real-time representation of a two-band
density matrix theory. The real-space representation is
useful for treating inhomogeneous systems such as quan-
tum wells, while the real-time representation is unique for
studying systems under inhuence of short external pulses
(durations comparable to the typical relaxation times of
the system). By separating the equations of motions for
the pump and the probe excitations we allow for different
dephasing rates of the two types of excitation.

Two important consequences of short pump pulses
should be mentioned here. First, the detected absorp-
tion spectrum of the probe beam depends strongly on
whether the spectral filtering of the probe beam is before
or after the sample. The spectra with filtering after the
sample sufFer from a profound line distortion and from
coherent oscillations on the red side of the exciton line.
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Secondly, while the peak absorption of the exciton line
increases with the pump field for steady state pumping,
the opposite is the case for short pump pulses. Note that
it is the peak absorption and the linewidth which depend
on the pump pulse duration, not the integrated absorp-
tion. The calculated behavior for the short pump pulses
agrees qualitatively with the experiments. a 4

It should be emphasized that the input pulses used
in the present study are Fourier limited. An interesting
class of calculations yet to be performed concerns the
influence of fluctuating phases of the incident pulses.

The quantum well specifics enter the equations only
via the Coulomb potential averaged over the confinement
wave functions. The simple expression (3.15) implying
infinite barrier heights can be improved without much
di%culty. Preliminary calculations using finite barrier
heights relevant for typical Al Gai As quantum wells
shaw that the Stark shift coefficient 8 follows the trend
shown in Fig. 1. The diminished Stark shift in real-
istic quantum wells compared with both the pure two-
dimensional and three-dimensional systems holds for fi-
nite barrier heights, too, and any linear interpolation
scheme has to be abandoned. At present we have no
simple physical argument for this surprising result. Note
that 8 is larger for the bulk case than realistic quantum
wells. Nevertheless, for experiments on the dynamical
Stark effect, the quantum wells are still superior due to
their enhanced exciton oscillator strength.

A limitation of the present approach is the attachment
of the interband and intraband density matrices to one
sublevel only [Eqs. (3.9)—(3.11)j. This is justified as long
as the excitonic correlation in the growth direction can be
neglected with respect to the confinement of electron and
hole within the well (the exciton binding energy small
compared with the sublevel separation). For the low-
est sublevel pair in Al Gai ~As, this will hold for well
widths W in the range 3 nm to 25 nm which covers the
major part of the quantum well structures under study.

In relation to possible applications in the field of fast
optical switching, the important findings of the present
work are (i) that coherent oscillations are absent if there
is no filtering device after the sample, and (ii) that —as
expected and confirmed in Fig. 5—the switch-ofI' time is
of the same order of magnitude as the probe dephasing
time.
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APPENDIX A: QUANTUM WELL
COULOMB POTENTIALS

AND THE HARTREE TERM

Using units of the three-dimensional exciton, the Cou-
lomb potential is 2/r and gives on integration with the

confinement wave functions

(A1)

the Coulomb potential matrix elements to be used for
setting up the two-dimensional band-edge equations. In
case of infinite confining barriers we have for sublevel
index n

(2& ~ . n'nz
u, „(z) = up, „(z)=

~

--
~

sin, 0 ( z & W.

(A2)

One integration in (Al) can be carried out analytically.
For equal sublevel index (relevant for allowed transitions)
ane obtains Eq. (3.15).

The binding patential v(p) in (3.12) and (3.13) is equal
to V, ), (p) while the potential v(p) appearing in the ex-
change integral of (3.12) is given by

Here the Hartree term derived from (2.17) is included as
the last term in (A3). The quantity h of the Hartree term
is given by

h= dp V„p +V(,y, p —2V,g p (A4)

For a strictly two-dimensional situation h = 0 and v
= 8 = 2/p. For equal sublevel indices, infinite confin-
ing barriers, and finite well width $V one has 6 = 0 and
the equal potentials v and v given by (3.15).

APPENDIX B:DETAILS OF THE NUMERICAL
TREATMENT OF THE BAND EDGE

EQUATIONS

The calculation of the temporal development of Y, C,
bY, and bC is based on a numerical integration in time
of the sets of equations (3.12) and (3.13) and (4.1) and
(4.2). For each time step b.t the terms contributing to
the rate of change are calculated. This involves two-
dimensional integrations and, in case of BiY and Oi(bY)
also a calculation of V' Y' and V' bY.

In these steps a common spatial discretization with cell
size Lp is introduced, and the integrals and derivatives
are replaced by their discretized counterpart. In the two-
dimensional integrations the integration variables were
transformed to be

(
p'

(
and

( p —p'
(

before the discretiza-
tion. Simpson's method was used throughout, and care
was taken in treating the square-root singularities in the
problem. As for the calculation of terms involving V'

we use a five-point calculation giving errors higher than
fourth order in Lp. As a pointlike function b at the
origin of relative space on the rhs of (3.12) causes diver-
gences (related to the choice of the background dielectric
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constant~s) we use a ring source at p = ». According
to the discretization, b is replaced by a function which
is zero unless the spatial counting index j (= p/») is
1. The density Y'(0) must be calculated separately. The
dominant terms in (3.12) near p = 0 are (1/p) d Y/dp and
u(p) Y. These two terms cancel each other approximately
if we put

Y(0) = Y(»)f1+ (»)'u(&p/2)/21

if excitonic units are used. A similar expression is used
for calculating A (0). The boundary condition for large
r is that all densities Y, C, bY, bC vanish at a distance
p „ from the origin.

For technical reasons we transform the BEE by re-
placing u' by u' —w&~ and at the same time replace
Ep~ Epz Y and bY by the resp ecti ve qu anti ties times
exp(ice&mt). In this way the equations can be treated
numerically by using time step size larger than the opti-
cal period us t (but much smaller than the reciprocal
detuning).

The typical calculational parameters are» = 0.2atr
(for W = 0) or 0.3atr (for W = atr), p /» = 20, and
At=I fs. The Fourier transformation covered the time
from 3t&r before the peak of the probe pulse to about
6I pze later. The typical run time for the parallel inte-
grations of Eqs. (3.12) and (3.13) and (4.1) and (4.2) is
about 1 hour on a Domain 4000 (Apollo) work station.
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