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Mechanism of quasilinear temperature dependence of the surface magnetization
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George T. Rado
Department of Physics and Astronomy, The Johns Hopkins Uniuersity, Baltimore, Maryland 21218

(Received 23 December 1988)

A semiclassical method involving surface spin waves is used to calculate the spontaneous magne-
tization M near the surface of a semi-infinite ferromagnet. The magnitude of the surface anisotropy
constant IC, introduced by Noel is assumed to be negligible compared to the magnitude of the sur-
face anisotropy constant X„ introduced by the present author. It is shown that under these condi-
tions any positive value of K„causes the dependence of M on the temperature T to be quasilinear
rather than proportional to T and the dependence of M on position to be exponential. This
surface-anisotropy-based mechanism contains a weakened-surface-exchange model as a special case.
The theoretical predictions are found to provide a possible interpretation of recent experimental re-
sults on MnF2-covered Fe(110).

I. INTRODUCTION

This paper gives a full account of a theory which we
published previously as an abstract' only. The motiva-
tion for our work was a series of experiments ' by Walk-
er and his co-workers on the temperature dependence of
the spontaneous magnetization M at a (110) surface of
iron. Their experiments showed that Mo —M&, the devi-
ation of the value of M at a temperature T from its value
at T=O, is proportional to T or approximately propor-
tional to T, depending on the material with which the
iron samples are covered. These results led us to suggest
that the form of the temperature dependence of Mo —Mz-
depends on the magnetic surface anisotropy of the fer-
romagnetic material under investigation. We predicted'
that the quantity Mo —Mz- is proportional to T or
quasilinear in T, depending on the range of values
characterizing the surface anisotropy constants E, and
K„. These lowest-order constants were introduced by us
on the basis of symmetry considerations more general
than the model-based arguments proposed by Neel
which led to K, only. We have postponed publishing the
details of our calculations until the results of additional
experiments on Fe(110) surfaces become available.

The method that we use includes generalizing our
semiclassical spin-wave calculation' of 1957 by the in-
clusion of surface anisotropy and surface waves. Our ear-
lier calculation' involves volume spin waves in a con-
tinuous medium and is relatively simple. Its two central
predictions are that the T dependence of M near the fer-
romagnetic surface is proportional to T and that the
value of (Mo —Mr )/Mo at the surface is twice that in the
interior. Both of these predictions were confirmed
theoretically a decade later in a quantum-mechanical
treatment of a semi-infinite Heisenberg ferromagnet by
Mills and Maradudin. " Moreover, these predictions
were also confirmed experimentally by Stern et al. in
MgO-covered Fe(110) and discussed in conjunction with
nonzero but small values of surface anisotropy by Rado

and Walker. ' Quite recently, Mathon and Ahmed'
showed in a calculation based on the assumption of a
weakened surface exchange that the value of (Mo—Mr)/Mo at the surface can be somewhat larger than
twice that in the interior, as observed by Walker et al.
in Ag-covered Fe(110) and by Pierce et al. ' in the amor-
phous ferromagnet Ni40Fe40B20.

The generalization of our 1957 calculation' reported
in the present paper has two main objectives. Firstly, we
wish to show that for a certain range of relative values of
the surface anisotropy constants K, and K„ the tempera-
ture dependence of I near the surface of a semi-infinite
ferromagnet can be quasilinear in T rather than being
necessarily proportional to T . Secondly, we wish to
determine the form of the position dependence of M near
the surface. We note that a quasilinear T dependence of
M was first observed experimentally ' in MnF2-covered
Fe(110). We further note that the possibility of a quasi-
linear T dependence of M has already been suggested
theoretically' but only for temperatures near the Curie
temperature. Various eA'ects of zero and infinite pinning
fields have also been examined. ' Our theoretical model
(see Sec. II) applies to temperatures low compared to the
Curie temperature and to situations where the exchange
interactions are independent of position rather than being
weakened near the surface. We show, in fact, that a
quasilinear temperature dependence of (Mp Mr)/Mp
does not require a weakened surface exchange but can
nevertheless be consistent with it. We further show in
Sec. II that our model calculations lead to an explicit for-
mula [see Eq. (42)] for the temperature and position
dependence of (Mo —Mr)/Mo and that this formula is
useful for interpreting experimental results. In Sec. III
we first present an approximate extension of our formula
[Eq. (42)] to the case of weakened surface exchange. This
is followed by a digression on volume spin waves, some
comments on the roles of surface anisotropy, and a dis-
cussion of the applicability of Eqs. (42) and (43) to the in-
terpretation of experimental results.
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II. THEORY

Throughout this paper we use the Cartesian coordinate
systems shown in Fig. 1. The axes of the x,y, z system are
parallel, respectively, to the [100], [010],and [001]axes of
a cubic crystal, and the g and i1 axes of the g, q, z system
are parallel, respectively, to 'the cubic [110] and [110]
axes. We assume that the crystal is bounded by the
planes r1=0 and i'd=1 along the i1 axis, by the planes /=0
and g=L along the g, and by the planes z=O and z =L
along the z axis. We further assume that I. is so large
that along the g and z axes the crystal is effectively un-
bounded. For the sake of definiteness we assume the
crystal to be bcc iron and the equilibrium orientation of
the spontaneous magnetization M to be along the +z
direction. For a different crystal or a different
configuration the calculation would be analogous to those
presented below.

Next we introduce the unit vector

/u&/ «1, iu„i «1, u, = 1, (2)

u=M/M =i&u&+i„u„+i,u, ,

where i&, i„,i, are unit vectors along the g, g, z directions,
respectively. Since we expect the thermally excited devi-
ations of u from its equilibrium orientation i, to be small,
we shall use the approximations

ally integrating) over all the spin-wave modes, and
( ) denotes performing a spatial average over a
volume V' =L dg which is not the volume V =I, I of the
entire crystal but the volume of a slab of thickness dg lo-
cated at a distance g from the sample surface g =0.

To calculate u& and u we use the Landau-Lifshitz'
equation of motion and write it in the truncated form

(1/y)Bu/Bt =uX[H&, i„+Hei, +(2A/M)V u),
where y =y, g /2 is the magnetochernical ratio,
y, =2' X (2.80) MHz/Oe is the value of y for a free elec-
tron, and g is the spectroscopic splitting factor. Here
H&, is the demagnetizing field and may be written as

4rtMu—„because the dimensions of the crystal in the gz
plane are assumed to be infinite. The quantity Hz
represents the magnetocrystalline volume anisotropy by
means of an effective "anisotropy field. " This is justified
by the fact that the inequalities (2) cause the deviations of
u from a magnetically easy direction (in this case from
the i, direction) to be confined to small values. The
remaining quantity in the brackets of Eq. (5) is the ex-
change term and contains the exchange stiffness constant

For reasons to be discussed in Sec. III, we choose for
the solution of Eq. (5) the elliptically polarized surface
spin waves

which justify the relation

1 —u, =—,'(u&+u„) . (3)
u ~

= u ~o(singlet)exp( prt)F (g,z), —

u „=u „o(coscot)exp( prt)F ( g, z—),
(6)

(7)

(MD —MTI/MD= —x((u&+u„))),1
(4)

where (( . )) denotes averaging over all the energy lev-
els of a given spin-wave mode, g denotes summing (actu-

The quantity we wish to calculate is (Mo MT)/Mo,
where MT and Mo are the position-dependent equilibri-
um values of M at temperatures T = T and T=O, respec-
tively. Because the approximation (3), we have

where F(g,z) is defined by

F(g,z) =cos(k&g)cos(k, z), (8)

and each of the quantities p, k&, k, is assumed to be real
and positive. By substituting Eqs. (6)—(8) into Eq. (5) and
using the approximation (2), we obtain two linear homo-
geneous equations for u &o and u „o. The requirement that
u &0 and u „o be nonvanishing then yields

(co/y) =[Hx. +4~M+(2A/M)(k, —p )]

00[ X [Hx + (2A /M)(k, —p )],
where the transverse wave number k, is defined by

k ='k +kz (10)

y=[oio]

Equation (9) is the dispersion relation for the surface spin
waves (6) and (7).

To obtain the attenuation parameter p we apply the
Rado-Weertman' boundary condition in a form similar
to Eq. (2.7) of Ref. 4. At the i)=0 plane, therefore, we
use

x= [I

(-[iioq

u X [V„E,„,t 2A ( Bu/Br) ) ]=0—, (11)

where E,„,f is the surface anisotropy energy density. In
the g', i),z coordinate system we have

FIG. 1. Orientations of the Cartesian coordinate systems
used in the calculations. The crystal shown is bounded by the
planes / =0, g=L, q =0, it = l, and z='O, z =L. E,„,& = —,'K, (u

&

—u z )+K„u,

(12)

(13)
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2E,„&=E,u uz+K„u, , (14)

which we proposed previously on the basis of symmetry.
We note that Eq. (14) contains a K„ term and that this
term is absent from Neel's expression for E,„,f. As
shown in the following, the K„ term is indispensible for
obtaining the central result [Eq. (42)] of the present pa-
per.

Equations (11)—(13) and the approximation (2) lead to

Equation (12) is a definition, and Eq. (13) arises from
transforming to the $, 7),z coordinate system the expres-
sion

E„&0.
Next we define u, by

Qt =lgug+l~u~

so that Eqs. (6), (7), and (20) lead to

u, = [i&u &psin(cot)+ i„u „pcos(cot) ]

X exp( —K„g/A )F(g, z),
From Eq. (23) we then obtain

((u, )) =((u, ))exp( —2K„7J/A)F (g,z),

(21)

(22)

(23)

(24)

(
—K, +2K„)u&+2A Bu&/By=0,

(K, +2K„)u~+2Aduq/dg=O,

which we combine with Eqs. (6) and (7) to obtain

Ks+2Kss 2' =0

(15)

(16)

(17)

provided we replace each of the quantities sin cot and
cos cut by its time average value —,'.

Turning now to the derivation of an expression for
« u~p && we begin by writing the exchange energy density
in the usual form

K, +2K„—2' =0 . (18)

These two equations evidently contradict each other. To
deal with this difficultly we could, of course, simply aban-
don the assumed solutions (6) and (7). We find it prefer-
able, however, to proceed by introducing the approxima-
tion

E'"'/V= ——'M. (2A/M )V M= —Au, .V u, .

With the use of Eqs. (22) and (10), Eq. (2S) yields

E,'„'= A [k, (K„/A—) ]f u,2dV,

which we equate to the quantized form

(26) '

~K,
~

negligible compared to 2~K„~ (19) E,'„'= nitro, „= nh'(2 A y/M)[ k,
—(K„/A ) ] . (27)

p =K„/A, (20)

which must be positive since p should describe a positive
attenuation. This means that if A is positive, as in Fe,
then we must also have

because it leads to the useful results derived in the follow-
ing. In other words, we confine the applicability of our
theory to situations in which the approximation (19) is
valid. We note, in this connection, that E,„,t (and hence
K, and K„) refer not just to surfaces but also to inter-
faces, e.g. , an MnF2-covered Fe crystal.

Use of the approximation (19) in either Eq. (17) or Eq.
{18)yields

(2yh'/M) [exp(%co/k~ T) 1]—
u,', ) =

f exp( —2K„g/A)F (g, z)dV
(28)

where the reciprocal of the bracketed quantity represents
((n )) and k~ it Boltzmann's constant. Substitution of
Eq. (28) into Eq. (24) yields ((u, )) which may be com-
bined with Eqs. (4) and (22) to give

Here n is the excitation quantum number of the spin-
wave mode under consideration and m,„ is that part of
the co of Eq. (9) which arises solely from exchange in-
teractions. Next we take the thermal average of E,'", ' in
each of the Eqs. (26) and (27). Use of Eq. (24) then leads
to

Mo —MT

Mo

(yA/Mp V. ')f exp( 2K„q/A)F (g—,z) dV'

[exp(A'co/k&T) 1)f exp( 2K—„g/A)F (g—,z) dV
(29)

Here the sum g and the spatial average ( ) were interchanged, and the latter was expressed as (1/V') times an integral
over V'. It was further assumed, and will continue to be assumed, that M can be replaced by Mo with sufficient accura-
cy.

We note parenthetically that if V' were equal to V, then Eq. (29) would yield

M, M, =ye«n » /V— ,

which is a standard result. ' lt should be recalled that yA is identical to gpss, where p~ is the Bohr magneton.
Returning to our surface magnetization problem, we see that Eq. (29) yields

(30)

Mo —MT 2y
exp( —2K„g/A )+[exp(A'co/kii T) 1]—

W~,I.' (31)

because the integrals over g' and z cancel. In obtaining Eq. (31) we assumed that exp( 2K„l/A ) is negligib—le compared
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to unity, i.e., that the penetration depth A/(2K„) of the surface wave is sufficiently small compared to the crystal
thickness l.

The remainder of the calculation consists in summing over k& and k, in Eq. (31). It is more convenient, however, to
convert the sum into an integral. We assume periodic boundary conditions in the transverse plane and thus introduce
integers N via the relation k, =N~/L. The number of modes for which k, is between k, and k, +dk, is then given by
the infinitesimal "area"

—,'(2m )N dN = ,'(2L—/m )k, dk, , (32)

where the factor —, assures that k& and k, are indeed positive, as assumed in connection with Eq. (8). Thus Eq. (31) be-
comes

M0 —MT

M0
(33)

which is seen to be independent of L. The functional
dependence of co on k, is expressed by the dispersion rela-
tion (9) in conjunction with Eq. (20).

The integral in Eq. (33) is not simple but it can undou-
btedly be worked out numerically as a function of tem-
perature. We prefer, however, to make a suitable approx-
imation which enables us to perform the integration by
elementary analytical methods. This has the advantage
of providing physical insight and exhibiting clearly the
quasilinear nature of the temperature dependence of
(Mo MT ) /M—o Specific. ally we assume

v=A k

and the dimensionless parameters

13=(gptt /ks T)(H~+2rtM0),
a=A (K„/A)

(37)

(38)

(39)

I

introduced by us previously. ' We note that A equals
1/(2m. ) times the wavelength of those volume spin waves
for which one quantum of exchange energy, namely,
fitv=(2A yh /Mo)k, just equals ktt T.

Next we introduce the dimensionless variable

H~ + 4' ((1 )
(2A /M) lk,' —(K„/A)'I

(34) The integral in Eq. (33), to be denoted by J, can now be
written as

K„=Ak+ (H +2~M )
—A (35)

where we replaced M by M0 and yA by gp~. The quanti-
ty A denotes the characteristic length

1/2
2AgpB

Moke T (36)

which means that the sum of the anisotropy field and the
demagnetizing field is assumed to be small compared to
the exchange field. A straightforward calculation shows
that use of the approximation (34) in Eq. (9) yields

1J= dv
0 exp(v +P—a) —1

(40)

J= —
—,'A in[1 —exp(a —13)j . (41)

By combining Eq. (41) with Eqs. (36), (38), and (39) and
then substituting it into Eq. (33), we obtain our principal
result

which can be worked out easily. We multiply the
numerator and denominator of the inte grand by
exp[ —(v +P—a)] and convert the resulting fraction into
an infinite series. After having to integrate only a simple
exponential, we recognize this series as the expansion of

M0 —MT

M0

K„ks Texp( —2K„g/A )
ln ~ 1 —exp

4m A

gPa 2K„
Hx+2~M0-

BT 0
(42)

Among the central predictions of Eq. (42) are the fol-
lowing.

(a) The temperature dependence of (Mo MT)/Mo is-
quasilinear in that it is directly proportional to the prod-
uct of T and a slowly varying function of T.

(b) The position dependence of (Mo MT )/Mo is an—ex-
ponential decay from the crystal surface g=0 toward the
crystal's interior (g )0).

(c) The newly introduced lowest-order surface anisot-
ropy constant K„ is indispensible for our mechanism, in
contrast to Neel's constant E, . Specifically, K„deter-

mines not only the penetration depth A /(2K„) but even
the entire existence of the quasilinear (Mo —MT )/Mo.

III. DISCUSSION

A. Extension to weakened surface exchange

As mentioned in Sec. I, the possibility of a quasilinear
temperature dependence of (Mo —MT)/Mo has already
been suggested in previous theoretical work' for temper-
atures near the Curie temperature and for situations in
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which the exchange interactions at the surface of a fer-
romagnet differ from those in its interior. It is shown in
the following that an explicit prediction of a quasilinear T
dependence of (Mp —Mr ) /Mp for the case of a weakened
surface exchange can be obtained by suitably adapting
Eq. (42). To do this, we replace the exchange stifFness
coefficient A by its surface value A, in each of the three
places in Eq. (42) where A arises from the boundary con-
dition at g=O rather than from the equation of motion.
Specifically, we replace I(.„/A by K„/( A, A), replace
IC„/A by E„/A„and replace K„/A by K„A/A, .
Stated equivalently, we replace throughout Eq. (42) the
quantity E„by its effective value

(43)

It follows that if the positive quantities A, and A satisfy
the relation A, /A(1, i.e., if the surface exchange is
weakened, then the use of IC;, in place of IC„ in Eq. (42) is
equivalent to the use of a spatially uniform A and an in-
creased K„. Our surface-anisotropy-based mechanism is
seen, therefore, to contain a weakened-surface-exchange
model as a special case.

B. Digression on volume spin waves

The thermally excited modes in a ferromagnet include
volume spin waves as well as surface spin waves of the
kind treated in this paper. It is instructive, therefore, to
refer brieAy to the effects of volume spin waves on the
temperature and position dependence of the spontaneous
magnetization. Some of these effects were predicted by
us in an early calculation. ' already mentioned in Sec. I„
which includes exchange interactions but neither volume
anisotropy nor demagnetizing fields. In that calculation
we omitted surface anisotropy and used free ("unpinned" )

boundary conditions. This was the first use of nonperiod-
ic boundary conditions in a thermal magnetization prob-
lem. As discussed in Ref. 12, the free boundary condition
remains valid even in the presence of surface anisotropy
provided the latter is negligibly small compared to Ak,
where the magnitude of k is predominately the 1/A of
Eq. (36).

C. Roles of surface anisotropy

Returning to the calculation of (Mp Mr)/Mp given
in Sec. II, we now summarize some of the crucial roles of
the surface anisotropy constant K„. We recall, for this
purpose, the prediction (c) at the end of Sec. II, the im-
portant approximation (19), and the inequality (21). In
addition, we note that K„has a role which has not yet
been mentioned, namely its tendency to destabilize the
calculated surface magnetization. To see this, note that if
the value of E„and' hence a were sufficiently small, then
the integral J [see Eqs. (40) and (41)] would be kept from
diverging even if p included solely Htt rather than
Hx +2m.Mp. But if K„ is sufficiently large, then a p aris-
ing from Hz alone would not prevent the integral J from
diverging. It is, in fact, this role of K„which led us to in-
troduce a demagnetizing field for helping to stabilize J.
Our use of H& and the demagnetizing field implicitly as-
sumes, of course, that the sample is a single ferromagnet-

ic domain. This can be accomplished either by choosing
the value of the thickness l to be sufficiently small [but
still large compared to the penetration depth A /(2IC„)]
or by applying an external magnetic field parallel to Hz.

Particularly interesting is the manner in which K„
causes the T dependence of the surface magnetization to
be quasilinear. The essential point is that the integration
(originally summation) over modes contained in Eq. (33)
involves only two dimensions (namely g and z) rather
than three. This, in turn, arises from the fact that the
component of the wave vector along g, which we call p, is
forced by the boundary condition at g=O to have only
the single value of p =K„/A rather than several values.
The semi-infinite ferromagnet we are considering [i.e.,
one described by the approximation (19), etc.] behaves,
therefore, similarly to the two-dimensional ferromagnet
treated, for example, in Keffer's' review of spin waves.

D. Interpretation of experimental results

As noted in Sec. I, a quasilinear T dependence of
(Mp —Mr)/Mp was first observed experimentally ' in
MnF2-covered Fe(110). Additional experimental re-
sults on this T dependence and on the position depen-
dence of (Mp —Mz. )/Mp were published more recently.
The newest work, by Tang et al. , provides considerable
experimental support for the theory of the present paper.
Reference 9 clearly shows a quasilinear T dependence of
(Mp —Mr)/Mp at the Fe-MnF2 interface (rl=0) and also
at a distance of 5 atomic layers (i'd=1. 014X10 cm)
below this interface. At a sufficiently large distance,
namely 10 atomic layers, the observed T dependence is
no longer quasilinear but proportional to T . Using Eq.
(42) of the present paper, which Tang et al. quote in a
regrettably incorrect manner, they infer the value
K,, =5.9 ergs/cm from the ratio of the observed slopes
of (Mp —MT )/Mp versus T at i) =0 and ii= 1.014X 10
cm. In reference to the discussion given in Sec. III C, we
find that the value K„=5.9 ergs/cm is sufficiently large
to require the use of the 2rrMp term in P [see Eq. (38)] to
keep the integral J [see Eqs. (40) and (41)] from divering.
If we had to work with IC„~ I erg/cm (but not, say,
K„=1.5 ergs/cm ), then the 2m.Mp term in p would not
have to be used. We also note that even if the "semi-
infinite" sample thickness 1' is as small as 50 A, the value
E„=5.9 ergs/cm means (with the use of A =2.0X 10
erg/cm) that exp( —2'„l/A) is as small as 0.053, i.e.,
barely small enough to satisfy one of the assumption un-
derlying Eq. (31).

The physical origin of a E„value as large as 5.9
ergs/cm is presently unknown. It is worth recalling,
therefore, that our surface-anisotropy-based mechanism
contains a weakened-surface-exchange model as a special
case. This means, according to Eq. (43), that if the value
of A/A, for MnF2-covered Fe(110) were roughly 10,
then the above-mentioned experimental data could be
explained by some more reasonable value (e.g. , K„(1) of
the true surface anisotropy. In any case, it appears that
Eqs. (42) and (43) of the present paper constitute a possi-
ble interpretation of experimental results on the T depen-
dence and position dependence of (Mp MT)/Mp lii
MnFz-covered Fe(110).
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