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One-phonon resonant Raman scattering: Frohlich exciton-phonon interaction
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An explicit expression for forbidden Raman scattering by one LO phonon with excitons as inter-
mediate states is given. The theory can be applied at photon frequencies below and above the exci-
ton energy. The matrix elements corresponding to transitions between different exciton states are
calculated analytically. The different contributions to the squared Raman polarizability are com-
pared; the most important one is found to be due to discrete-continuous transitions. It is shown in
this case that the outgoing resonance in the Raman efficiency is always higher than the incoming
one, a peculiarity seen experimentally in all III-V compound semiconductors. From the theoretical
model a general criterion for the application of the free—electron-hole—pair theory is given in terms
of the exciton Bohr radius. An analysis of the interference effect between the allowed and forbidden
scattering is presented, and qualitative and quantitative differences with the free—electron-
hole—pair theory are discussed. Absolute values of Raman polarizabilities are calculated and com-
pared with recent measurements for GaP, yielding a good agreement without the use of any fit pa-
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rameter.

I. INTRODUCTION

Excitons contribute strongly to the resonant enhance-
ment of Raman scattering efficiencies in many ITII-V com-
pounds when the interaction with phonons is via the de-
formation potential! (DP). Taking as intermediate states
interband transitions modified by excitonic electron-hole
correlation suffices to reproduce the absolute values of
the Raman polarizability of some III-V compounds mea-
sured in allowed scattering configurations.!

It is well known in polar semiconductors that electrons
can also interact with LO phonons via the Frohlich (F)
mechanism? leading to forbidden scattering. In this case
the Raman tensor is diagonal® and the forbidden scatter-
ing can be observed in the backscattering configuration
Z(xx)z for a (001) surface (x||[[100], y||[010], z|[[001]
directions) in the zinc-blende-type semiconductors. This
Raman process is called forbidden because in the dipole
approximation the contribution of electrons and holes
cancel exactly when the wave vector of the phonon is tak-
en to be zero. The finiteness of the photon wave vector
and the wave vector conservation law make the process
“allowed” in backscattering.

Such forbidden scattering was first observed in CdS.*3
Since then, it has been reported in a number of semicon-
ductor materials.>® In the past several papers have ap-
peared on the subject of III-V compound semiconduc-
tors,” 13 semiconductor alloys,”"5 and semiconductor
superlattices.!® In these works absolute values of Raman
scattering efficiencies were obtained in several back-
scattering configurations. In particular, F-induced
scattering was measured at the E, and/or E,+ A critical
points (CP’s) and absolute values of the Raman polariza-
bility |ay|? were obtained.” '

In the specific case of bulk materials, some important
conclusions can be derived from Refs. 7-13. The theory
of forbidden Raman scattering, taking into account free
electron-hole pairs, explains neither the large scattering
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efficiencies nor the observed resonance profiles at the E|,
CP. The enhancement is due to excitonic effects. Quali-
tative agreement has been obtained in Ref. 10 by rescal-
ing the calculations of Martin!” in the region below the 1s
exciton. At the E,+ A, CP, however, the experimental
profiles of GaAs,!® GaSb,!> and InP (Ref. 9) were repro-
duced by adding a higher-order process consisting of elas-
tic scattering by impurities'® followed by Frohlich
scattering. A theory of the Raman tensor for F interac-
tion covering incoming and outgoing resonances with
CP’s in the whole spectral range is thus needed in order
to interpret the experimental results.

Ganguly and Birman'® obtained a formal expression of
ap, further developed by Martin!” in a Green-function
formalism, including only the discrete exciton spectrum.
Martin also gave an explicit expression for uncorrelated
electron-hole pairs as intermediate states. Zeyher et al.?°
calculated the Raman tensor only for incident frequencies
very near a discrete exciton or in the free—electron-
hole-pair continuum. Up to now an explicit expression
that allows us to calculate |a F[2 in a broad range covering
discrete and continuous excitons has not been reported.
We present here a general expression valid in a broad
spectral range around a CP, obtained taking Wannier-
Mott excitons as intermediate states. This theory will be
developed in Sec. II and a criterion to ascertain when ex-
citonic effects are important will be analyzed. Section III
will be devoted to the interference between F and DP
scattering. In Sec. IV the predictions of the theory will
be compared with experimental data for GaP and in Sec.
V the main conclusions of the work will be given.

II. RAMAN POLARIZABILITY

The Raman polarizability a is given by!
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where n; (), ®; (5, and e; () are the refractive index, fre-
quency, and polarization vector of the laser (scattered)
electric field, respectively, V, is the volume of the primi-
tive cell, @, the relative displacement defined as

AV 1/2
< , @)

l_l = —
| 2vM*w,

®, the phonon frequency, V the volume of the crystal,
and M* the reduced mass of the atoms contributing to
the optical mode. For a one-phonon process the ampli-
tude probability can be written as
(leER|q)<q|HEL|p)<p|HERIi)

(fiw;—E, +il , N fio,—E, +il;)

(f|Hgg|p){p|Hg,lq){qlHggli)
(fw, +Eq+i1‘q )(ﬁa)s+EP +i1‘p)

Wi=3

p,q

(3)

The subindices p and g refer to the excitonic intermediate
states, E, and I', (a=p,q) and their respective energies
and lifetime broadenings, and Hyy and Hy; the exciton-
radiation and exciton-lattice interaction Hamiltonians,
which can be expressed as'’

Hpp= 3 [T5(K)D)k(a . +al, )+cc.], 4)
K,p,
€,K,
c,v
Hy =3 SEXQIDD/x Db, +b_q,), (5)
> Vs
K,K',
p,q

where D, g (D;K ), Gy e (at,"e), and b_gq, (b&,,) are an-

e 2 V.Cx(cle;plv){vle,-plc)
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nihilation (creation) operators for excitons, photons, and
phonons, respectively, k is the wave vector of the light, Q
the wave vector of the phonon, v the phonon branch, and
K the center-of-mass momentum of the exciton. The
exciton-photon coupling constant T is given by?!
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(6)

(c|plv) being the matrix element of the momentum
operator and W, (r) the wave function of the internal ex-
citon state. The exciton-phonon coupling constant for
the Frohlich exciton-lattice interaction with long-
wavelength longitudinal-optical phonons is®

. 1 Cr
Si Q=4 I(;i [Z,,(—Qu)—1,,(Q.) 18k x—q »

7
Cr=—ile;'— ey DV 22mtiwge )2, (8)

€, being the static and €, the optical dielectric constant.
I,,(Q,) (a=e,h) is equal to

1,,(Q)= [drwire ="""w,r), ©)

Q,=(my,/m;)Qa, myr=m,+m,, m,(m,) is the electron
(hole) effective mass, and « the exciton Bohr radius. In-
troducing expressions (3)-(9) into Eq. (1) and considering
the term which dominates near resonance, the contribu-
tion to the Raman polarizability can be written as

[ (—Qp)—1,,(Q,)]

ap= | v>(0)

a7 172
uowl(wlws) Q P, q

In order to evaluate Eq. (10) it is necessary to know the
matrix element [, ,(Q) between different exciton states
(discrete-discrete, discrete-continuous, and continuous-
continuous). In the following we consider, in the frame-
work of the envelope-function approximation, the hydro-
genic model.

A. Matrix elements

For angular momentum [ =0, the discrete exciton
wave function is taken to be??

1

3m3)1/2

¥, (p)=
(Tl'a

e P/MF(1—m,2,2p/m) (1n
with E,, =E, —R /m?, F(a,b,z) being the confluent hy-
pergeometric function, p=r/«, E, the energy gap, and R
the exciton Rydberg energy. The matrix elements corre-

sponding to a discrete-discrete transition can be written
as

" (fiw;,—E,+iT )N#io,—E,+iT,

7%, (0) . (10)

t Im[4(0,)], (12)

I ( . S —
n,m Qa) Qa(n3m3)

where

A =fowe_)‘Zzy_'F(a,y,koz)F(a’,y,k(,z)dz (13)

with y=2, a=-—n+1, ao'=—m+1, ky=2/n,
ko=2/m,and A=1/m +1/n —iQ,,.
The evaluation of Eq. (13) yields?
A=T(y)AT T (A—ky) " HA—kfH) ™
XFla,a',y,koko/(A—ko)(A—kg)) , (14)

where I'(z) is the gamma function and F(a,b,c,z) the hy-
pergeometric function.
From Eq. (14) it follows that
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—4 (mn)'”? 20,2, 212
I, .. (Q,)=— F(1—m,1—n,2, —4mn /[(m —n)*+n’m )
n,m Qa Qa [(m _n)z_i_nzszé] [ Qa]
. m N n
m —n —inm n—m —iQ_mn
X Im - 2 ,Q" (15)
m +n —imnQ, n+m—iQ,mn
For the continuous states we have??
\I/k(p)=—(——l—%l—72—ke”/2k|r‘(1—i/k)le—”‘”F(l+i/k,2,2ikp) (16)
o

with Ek=Eg+Rk2. The discrete-continuous matrix elements can also be solved using Eq. (14) with a'=1+i/k,

ko=2ik,and A=1/n +i(k —Q,), obtaining

(17)

3 172 /2k .
a 4ke |IT(1—i/k)| n—1.2
I = —1
ak(Qq) PET” 0. (—=1)""n
<1 F(1—n,1+i/k,2,2) [1—in(k — Q)" [1+in(k—Q,) |"*
P T—in (k=@ )[1—in (k +Q,)] [1+n%k—Q,)01" [1—in(k+Q,)

For simplicity we replace in the continuous-continuous
case the exciton wave function by the wave function of
free electron-hole pairs,

W (p) =2t 18
k\P)= ‘/—17 ’ ( )
which gives
3
Ik,k«Qa):(sz%a(k'—k+Qa) . (19)

It will be shown later that this contribution is negligible
compared with the other two.

B. Raman tensor

The diagonal components of the Raman tensor ap can
be obtained by introducing the calculated matrix ele-
ments into Eq. (10); then

D
___K n,m
R e S iy g —mat L/mi 4 iy)
© an 1 1 1
+ dk : — +
%fo 1—e 2% n3 | [n—Kk2+iv(K)(g—no+1/n+iy,) (p+1/n+iy, ) n—me—k>+iy(k)]
N ; 1 Vativ(k)+[n—me+ir(k)]V*—Q,
n —
8(Q2—QF) | Q. Vipt+iv(k)+[n—mo+iy(k)]'*+Q,
L Vig+iy(k)+In—m+iv(k)]V2—Q, 00)
S B B 6l ,
Q. Viptiy(k)+[n—n+iy(k)]V*+Q,
where
n=(fio;—E,)/R, ny=*%w,/R, y=T/R , (21)
I, (— —1I,,.(
Dnm= 1 n,m( Qh) n,m Qe) , 22)
s (n3m3)1/2 QeZ_QZ
b |’ V2 ek 1, (—0)— 1,4 (Q,)] 03
mk 23 ID(1—i/k)| Q2—Q}
2
2 | s M* g o Qay 2 |P?| au | Ru o Me — My
Kp== |a} 3 a — |—| C¥ , (24)
m m Ry fio,(fiwfiw, ) 3 m a R my
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FIG. 1. Raman polarizability |ar|? as a function of the pa-
rameter 7= (#iw; —E,)/R for fiw,/R =4.55. Also the different
contributions—discrete-discrete, |af|?; discrete-continuous plus
continuous-discrete, |af€|%; and continuous-continuous,
|af| —are shown in the figure. The |af€|? curve has been mul-
tiplied by a factor of 1 and |a£|? by 10%

ay and Ry being the hydrogen Bohr radius and Ryd-
berg, respectively, P =(s|P,|x ), and a, the lattice con-
stant. The first term inside the second set of large
parentheses in Eq. (20) represents the contribution of the
discrete exciton states, the second and the third terms
correspond to continuous-discrete and discrete-
continuous transitions, and the last one is due to the (un-
correlated) continuous states whose evaluation is given in
the Appendix.

Figure 1 shows the normalized |az|?> Raman polariza-
bility as a function of the reduced laser photon energy 7
for the case fiwy/R =4.55. The following empirical
relation is wused for the lifetime broadenings,
y.=v(k)—[y(k)—v,]1/n% with y(k)=1 and y,=0.54.
The squared magnitudes of the different contributions—
discrete-discrete,  |af|%;  discrete-continuous  plus
continuous-discrete, Ia}) -€|2; and continuous-continuous,
laf|*—are also shown. |af€|? has been multiplied by a
factor of 1 and the |af|? by a factor of 10%. As can be
seen in Fig. 1, the |af|? is several orders of magnitude
lower than the others. The most important contributions
to the Raman tensor comes from the discrete-continuous
plus continuous-discrete excitonic states. However, this
is only true when the phonon wave vector has a small
value, in our case k;+«,. The |afC|? presents an outgo-
ing resonance stronger than the incoming one. This is
due to the fact that the second term inside the second set
of large parentheses in Eq. (20) is doubly resonant for
laser frequencies near E,+#w,—R. Both laP|?> and
|laP€|*> show well-defined peaks in 7;,=—1 and
1N, =%wy/R —1. Nevertheless, the sum af+apC inter-
feres destructively, and a pronounced slope in the square
polarizability for =, is produced. However, the out-
going resonance remains well defined. The behavior of
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lap|? in the region 0<7<0.5 is due to the transitions
among n =2,3,... . These peculiarities of the exciton
states interacting with the long-wavelength longitudinal-
optical phonon explain the experimental observations for
many III-V compound semiconductors that cannot be ex-
plained within the uncorrelated electron-hole mod-
el.>1%12 The latter can be recovered from Eq. (20) by
making the exciton Bohr radius «— . The correspond-
ing expression for the Raman tensor retaining only terms
proportional to Q2 is, in agreement with Ref. 17,

. 1/2 , 1/213
2C=KC fiwo,—E, +il’ . fio;, —E, +il
FooF #w, #iw,
(25)
with
2
c_Q | e |Cr 1 3, ap%yl/2
== | = M
KF 12 | m#A ﬁwo a)l(a)la)s)l/z (ao,u )
m,—m
X%lp2| —‘m—h' (26)
T

It is important to analyze the range of application of the
uncorrelated pair theory. This analysis can be done in
terms of the Bohr radius a, a parameter easily evaluable
from the knowledge of the exciton Rydberg or the
effective masses corresponding to the different CP’s. Fig-
ure 2 shows the Raman tensor in units of K§ as a func-
tion of (#iw, — E,)/fiwy. This plot is practically universal.
The only ad hoc parameter is the ratio between the pho-
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FIG. 2. Raman polarizability |ar|? given by Eq. (20) in units
of KS, as a function of (#fiw; — E,) /i, for different exciton
Bohr radii. The @#— o curve corresponds to uncorrelated
electron-hole pairs, Eq. (25). For the calculation a value of
I' /#iwy=1 was taken. The nonmonotonic behavior for @ =200
and 300 A, and o seems to be an artifact of having used un-
correlated states for the continuous-continuous contribution in

Eq. (20).
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non energy and the exciton Rydberg, which only ac-
counts for the separation between peaks, not for their
strength.

In Fig. 2 the different curves correspond to Bohr radii
equal 100, 150, 200, and 300 A, and the limit «— .
From the result it is possible to conclude that, in general,
a Bohr radius of 200-250 A is large enough to neglect
Coulomb interaction in order to reproduce absolute
values, although the profile will still depend on the life-
time.

III. INTERFERENCE EFFECTS

It has been shown that allowed and forbidden scatter-
ing can interfere’ '* for experiments performed on the
|
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(001) surface due to the form of the total Raman tensor:

R=lapp ar O, 27

app being the Raman polarizability for deformation-
potential interaction. In the Z(x'x')z and Z(y'y’)z back-
scattering configurations (x’||[110], y’|[110]) both
aptap, can be selected. For a three-band model, and as-
suming the same Bohr radius for the excitons formed
from the conduction and valence bands (heavy-hole,
light-hole, and split-off), app is given by’

- 1 1 | 1

o Ez v [El n® (m, +1/n’+iy,Nn,—me+1/n’+iv,) T2 [, +1/n+iy(k)ln,—no+1/n*+iy(k)]
—notiy(k)
+1 1 To Mo V2 4 i |coth——"——— —coth R TRTTYE) (28)
4 1, =m0 np +iy (k) [, +iv(K)] [ng —mo+iv(k)]
{

where culation a background due to other transitions equals
n, =i, —Eg)/R (29) zero, and the parameters of the Ey+ A, gap for GaAs

E,, being the corresponding gap. The factor K, is given
in Ref. 1, and the sum in p,q runs over the heavy, light,
and split-off excitons. With the two tensors app and ap
we can calculate the interference effect according to
laptapp|® In Fig. 3 the real and imaginary parts of the
Raman polarizabilities app and ay are shown. In the cal-

Raman Polarizability (A?)

hw, (eV)

FIG. 3. Energy dependence of the Raman polarizabilities
app for allowed scattering and ay for intrinsic forbidden scatter-
ing by LO phonons. The parameters used correspond to GaAs
in the Ey+ A critical point (Ref. 8).

were used. Since m, —m, <0 the real part of the Raman
polarizability a is negative near the incoming but posi-
tive near the outgoing resonance. The imaginary part of
ap presents a negative minimum for laser frequency near
the outgoing resonance. The imaginary parts of app and
ap have opposite signs. If the exciton Bohr radius
a— o, both components of ap have the same sign near
the maximum of |aF|2 (Ref. 8), and the same behavior
and conclusions as found for the electron-hole uncorrelat-
ed theory are obtained. These facts signal a qualitative
difference between the excitonic and free—electron-
hole—pair models and the way in which Raman polariza-
bilities ap and app interfere in each case. A detailed
study of the interference effects and the role of excitonic
states in some III-V compounds will be published else-
where.?*

IV. COMPARISON WITH EXPERIMENT

In a previous paper! we calculated the Raman polari-
zability app for DP-induced scattering. The calculated
lapp|? were compared in a large spectral range with the
experimental data of GaP (Ref. 12) in absolute value.
Data of F-induced scattering are also available in Ref. 12.

In order to calculate ay it is necessary to consider three
intraband terms, corresponding to light (lh), heavy (hh),
and split-off (s.0.) excitons, E,+ A, being CP’s too close
to the outgoing resonance with E,. Thus

ap=ay, taytag, +b, (30

where b is a small background coming from nonresonant
processes. The calculated IaFl2 is plotted in Fig. 4 to-
gether with the experimental values taken from Ref. 12.
The values of the parameters needed for the present cal-
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FIG. 4. Comparison with experimental data for GaP (Ref.
12). The circles represent the experimental points while the
solid line was calculated with Eq. (20).

culation are given in Table I. The set of parameters used
is the same as in Ref. 1, except that here we took the
same Bohr radius (50 A) for the E, and for the EO+A0
CP’s. With this Bohr radius the same profile for |app|? is
obtained. As discussed in Ref. 1, that is a good approxi-
mation in III-V compound semiconductors. Sell and
Lawaetz>* found an exciton Bohr radius of 56 A for GaP,
which agrees well with the 50 A used by us in the fit for
|a DPIZ-

The theoretical curve shown in Fig. 4 reproduces well
the maximum measured value without any fit. It also
reproduces the main characteristic of the resonance
profile: the outgoing resonance is about 2 times higher
than the incoming one. The peak corresponding to the 1s
exciton is, however, absent for the present set of parame-
ters because of the interference between the discrete-
discrete and the discrete-continuous excitonic states, as
was already stated. The region close to the Ey+4 is
reproduced qualitatively, although the interference be-
tween the outgoing resonance at E; and the incoming
one at E,+ A, is more pronounced in the calculation.

V. CONCLUSIONS

The Raman polarizability ap for one-phonon reso-
nance Raman scattering is calculated for Frohlich in-
teraction considering excitons as intermediate states in
the Raman process. The main characteristic of the |a Flz
profile as a function of the wavelength is that the outgo-
ing peak is higher than the incoming one. This is due to
the double-resonance behavior of the outgoing resonance
(the phonon connects an exciton in the continuum with

ONE-PHONON RESONANT RAMAN SCATTERING: FROHLICH . . .

4035

TABLE I. Numerical values of the parameters used for the
theoretical fit of Fig. 4.

Parameters Values Reference
R 11 meV 24

E, 2.873 eV 12

Ao 80 meV 26
Hicg 50 meV 12

ao 545 A 27
M* 21.45 amu 28

n 4.0 29%

) 1.19%x1072 37" b

€ 11.11 30

€0 9.11 30
|Ce| 0299 eV &'

|P%| /m 10.63 eV c

Flh 5 meV 1

| N 5 meV 1
I-\s.o. 10 meV 1

a 50 A

b 55 A’ 1

m, 0.12m 12
Muyn 0.45m 31d
my, 0.16m 12
Ms.o. 0.24m 12
#Mean value in the region of 2.7-3.1 eV (Ref. 31).
*g=(n/c)w +w,).

°This value was calculated from the k-p expression
lel/m=%(m/me—-1)[E0(E0+Ao)/(E0+%A0)] for

=0.12m.
dAmong the values in the literature, we selected that which
gives the best fit to experimental data.

an exciton in the discrete spectrum). It is shown that the
uncorrelated electron-hole—pair model for the Raman
polarizability can be used when the exciton Bohr radius is
of the order of 200~250 A. The interference effects due
to deformation-potential and Frohlich interactions calcu-
lated using the correlated or uncorrelated electron-
hole—pair models show different qualitative behavior.
The calculated |ap|? has been compared with the experi-
mental data available for GaP, giving an excellent agree-
ment in absolute value without any fit parameter. The
theory should be applicable to other polar semiconduc-
tors such as the II-VI compounds.
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APPENDIX

The term corresponding to the continuous-continuous
transition can be written, by using the definitions given
by Egs. (18) and (19), as
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— 1 with
© T 2nrR?
E=n—mng+iy and E=n+iy. (A4)
X [ d’k
f The integral (A3) can be separated into two integrals
3 O(k'—k—Q,)—8(k'—k+Q,) by expanding the squared terms in the logarithm. If k is
X f d’k changed by —k in the second one, we obtain

[p+iy(k)—k3[g—me+iv(k)—k?]
(A1)
One of the integrals can be performed automatically by
making use of the properties of the § function. Integrat-

ing the angular part of the second integral with ¥ (k) con-
stant yields

1 1 1
=——"— |—F ——F , A2
¢ 8722°R% | Q, (@) 0. (Q,) (A2)
where
_ [ k &—(k +x)*
Flx= [ R (A3)

k| Etktx

+ o0
Foo=[""dk y—,

Sy (A5)

The branch cut in the logarithm is in the lower half-
plane. We can avoid its contribution by closing the con-
tour in the upper half-plane. The result is

N e S
F(x)=i 1n§+§_x .

Inserting the values of § and & into (A6) and substitut-
ing in (A2), the final expression contained in Eq. (20) is
obtained.

(A6)
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