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One-phonon resonant Raman scattering: Frohlich exciton-phonon interaction
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An explicit expression for forbidden Raman scattering by one LO phonon with excitons as inter-
mediate states is given. The theory can be applied at photon frequencies below and above the exci-
ton energy. The matrix elements corresponding to transitions between different exciton states are
calculated analytically. The different contributions to the squared Raman polarizability are com-

pared; the most important one is found to be due to discrete-continuous transitions. It is shown in

this case that the outgoing resonance in the Raman efticiency is always higher than the incoming
one, a peculiarity seen experimentally in all III-V compound semiconductors. From the theoretical
model a general criterion for the application of the free —electron-hole —pair theory is given in terms
of the exciton Bohr radius. An analysis of the interference effect between the allowed and forbidden
scattering is presented, and qualitative and quantitative differences with the free —electron-
hole —pair theory are discussed. Absolute values of Raman polarizabilities are calculated and corn-

pared with recent measurements for GaP, yielding a good agreement without the use of any fit pa-
rameter.

I. INTRODUCTION

Excitons contribute strongly to the resonant enhance-
ment of Raman scattering efficiencies in many III-V com-
pounds when the interaction with phonons is via the de-
formation potential' (DP). Taking as intermediate states
interband transitions modified by excitonic electron-hole
correlation suffices to reproduce the absolute values of
the Raman polarizability of some III-V compounds mea-
sured in allowed scattering configurations. '

It is well known in polar semiconductors that electrons
can also interact with LO phonons via the Frohlich (F)
mechanism leading to forbidden scattering. In this case
the Raman tensor is diagonal and the forbidden scatter-
ing can be observed in the backscattering configuration
z(xx)z for a (001) surface (x()[100], y)([010], z(~[001]
directions) in the zinc-blende-type semiconductors. This
Raman process is called forbidden because in the dipole
approximation the contribution of electrons and holes
cancel exactly when the wave vector of the phonon is tak-
en to be zero. The finiteness of the photon wave vector
and the wave vector conservation law make the process
"allowed" in backscattering.

Such forbidden scattering was first observed in CdS. '

Since then, it has been reported in a number of semicon-
ductor materials. ' In the past several papers have ap-
peared on the subject of III-V compound semiconduc-
tors, ' semiconductor alloys, ' ' and semiconductor
superlattices. ' In these works absolute values of Raman
scattering efficiencies were obtained in several back-
scattering configurations. In particular, E-induced
scattering was measured at the Eo and/or ED+ ho critical
points (CP's) and absolute values of the Raman polariza-
bility ~a~ ~

were obtained.
In the specific case of bulk materials, some important

conclusions can be derived from Refs. 7—13. The theory
of forbidden Raman scattering„ taking into account free
electron-hole pairs, explains neither the large scattering

efficiencies nor the observed resonance profiles at the Eo
CP. The enhancement is due to excitonic eft'ects. Quali-
tative agreement has been obtained in Ref. 10 by rescal-
ing the calculations of Martin' in the region below the ls
exciton. At the Eo+60 CP, however, the experimental
profiles of GaAs, ' GaSb, ' and InP (Ref. 9) were repro-
duced by adding a higher-order process consisting of elas-
tic scattering by impurities' followed by Frohlich
scattering. A theory of the Raman tensor for F interac-
tion covering incoming and outgoing resonances with
CP's in the whole spectral range is thus needed in order
to interpret the experimental results.

Ganguly and Birman' obtained a formal expression of
aF, further developed by Martin' in a Green-function
formalism, including only the discrete exciton spectrum.
Martin also gave an explicit expression for uncorrelated
electron-hole pairs as intermediate states. Zeyher et al.
calculated the Raman tensor only for incident frequencies
very near a discrete exciton or in the free —electron-
hole —pair continuum. Up to now an explicit expression
that allows us to calculate ~aF ~

in a broad range covering
discrete and continuous excitons has not been reported.
We present here a general expression valid in a broad
spectral range around a CP, obtained taking Wannier-
Mott excitons as intermediate states. This theory will be
developed in Sec. II and a criterion to ascertain when ex-
citonic effects are important will be analyzed. Section III
will be devoted to the interference between F and DP
scattering. In Sec. IV the predictions of the theory will
be compared with experimental data for GaP and in Sec.
V the main conclusions of the work will be given.

II. RAMAN POI.ARIZABII. ITY

The Raman polarizability a is given by'

n&n, V,
a = 8'f;(co„e„cot,et),

2m „— Ace
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where n& (,&, coI (,], and eI (,] are the refractive index, fre-
quency, and polarization vector of the laser (scattered)
electric field, respectively, V, is the volume of the primi-
tive cell, uo the relative displacement defined as

1/2A'V,

2 VM*coo

~0 the phonon frequency, V the volume of the crystal,
and M' the reduced mass of the atoms contributing to
the optical mode. For a one-phonon process the ampli-
tude probability can be written as

&flH~It le &&rIIH«lp &&plHgg li &8',-=W
(f~, E, +—ir, )(f~, E,+—ir, )

&flHE+ Ip &&plH«le &&el(IIFri li &+
(fico)+E +iI )(fico, +Ez+iI &)

The subindices p and q refer to the excitonic intermediate
states, E and I (a=p, q) and their respective energies
and lifetime broadenings, and HE~ and HEI the exciton-
radiation and exciton-lattice interaction Hamiltonians,
which can be expressed as'

nihilation (creation} operators for excitons, photons, and
phonons, respectively, a is the wave vector of the light, Q
the wave vector of the phonon, v the phonon branch, and
K the center-of-mass momentum of the exciton. The
exciton-photon coupling constant T is given by '

1/2
e 2~%

2~1 (&) ~ (&)

e, (,)&cipiu&e (0)5„„,T)'„(K)=—

CF = i (e—' —eo ')' (2qrficooe )'

e~ being the static and e the optical dielectric constant.

Iqz(Q ) (a=e, h) is equal to

&c~p~u) being the matrix element of the momentum
operator and %z(r) the wave function of the internal ex-
citon state. The exciton-phonon coupling constant for
the Frohlich exciton-lattice interaction with long-
wavelength longitudinal-optical phonons is

1 CF
Q

V
~

~. . .K

HFg = g [T~„(K)DpK(a„,+a „,)+c.c.],
K,p,
C, K,

C, U

(4)

Iq~(Q )= Jd rq'q(r)e' ' "+ (r), (9)

H« —g Sq p' (Q)DqK, DpK(bQ ~+b Q )

Q, v,

K, K',

pq

where D~it (D~K), a„, (a „,), and b & (bq ) are an-

Q =(m. lmT }Q~, mT=m, +mh, m, (m„) is the electron
(hole) effective mass, and ~ the exciton Bohr radius. In-
troducing expressions (3)—(9) into Eq. (1) and considering
the term which dominates near resonance, the contribu-
tion to the Raman polarizability can be written as

eQF=
m

V CF'&c)e) p~(u &&u'~e p~c) [Iqp( QI, ) Iqp(Q )]
„-,„,(„,„})~2Q q (f~, E, +ir—, )(f~, E, +ir—, )

(10)

In order to evaluate Eq. (10) it is necessary to know the
matrix element I~ q(Q) between different exciton states
(discrete-discrete, discrete-continuous, and continuous-
continuous). In the following we consider, in the frame-
work of the envelope-function approximation, the hydro-
genic model.

A. Matrix elements

I„(Q )=, 1m[A(Q )],4
n, l71 ct

Q (
3 3)i/2

where

g =j e 'zr 'F(a, y, koz)F(a', y, koz)dz
0

(12)

(13)

For angular momentum I =0, the discrete exciton
wave function is taken to be

(p}=, e ~~ F(l —m, 2, 2plm )
(ir 'm')'

with y =2, a= —n +1, n'= —m +1,
k0=2/m, and A. = 1/m +1/n —iQ

The evaluation of Eq. (13) yields

A=I ( )A,
+ r(A, —k ) (A, —k')

k() =2/n,

with E =Eg —R/m, F(a, b, z) being the confluent hy-
pergeometric function, p=r/u, Eg the energy gap, and R
the exciton Rydberg energy. The matrix elements corre-
sponding to a discrete-discrete transition can be written
as

XF(a,a', y, k()k() /(A, —k() )(A, —k() )), (14)

where I (z) is the gamma function and F(a, b, c,z) the hy-
pergeometric function.

From Eq. (14) it follows that
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m +n im—nQ

For the continuous states we have

%k(p)= ke "ll (1 i/—k)le '"~F(1+ilk, 2, 2ikp)
1

(~v)'"

mn '"
I„(Q )= 2 F(1—m, 1 —n, 2, —4mn /[(m —n)2+ n 2m 2Q2 ])

[(m —n)+n m Q ]

m n ——inmQ n —m ig—mn
X Im n+m iQ—mn

(16)

with Ek =E +Rk .
ko =2ik, and A, =1/n

aI k(Q )=
n V

The discrete-continuous matrix elements can also be solved using Eq. (14) with a =1+i/k,
+i (k —Q ), obtaining

4« ""Ir(1 i/k)l
Q.

F(1 n,—1+i/k, 2,z) [1 '" (k —Qa)]'" 1+in (k —Q~)
XIm

[1 in—(k —Q )][1 in(—k+Q )] [1+n2(k —Q )2]" 1 in(—k+Q )

For simplicity we replace in the continuous-continuous
case the exciton wave function by the wave function of
free electron-hole pairs,

It will be shown later that this contribution is negligible
compared with the other two.

ik p
+k(S» =

v'y '

which gives

3

Iq k, (Q~)=(2m) 5(k' —k+Q ) .

(18) B. Raman tensor

The diagonal components of the Raman tensor aF can
be obtained by introducing the calculated matrix ele-
ments into Eq. (10); then

aF =KF
D,

(g+1/n +iy„)(g—go+1/m +iy )

1 1
z

1 —e n [q —k +iy(k)](ri go+ 1 ln +iy—„) (g+1/n +iy„)[q bio k+iy(—k)]—2
+

2 . 2

where

v'ri+i y(k)+ [g go+i y(k)]—' Q, —
8(Q~ —

Qq ) Q, &g+iy(k)+[g go+i y(k—)]' +Q,

&g+i y(k)+ [g go+i y—(k)]' QI,
—

Q &g+i y(k)+ [g ri +i y(k)]' +—Q„

q = (A'co EI~ ) /R, qo =hcoo/R, y =r /R,
( —Qg) —I„(Q,)

Q' —Q~

1

(n'm')' '

vn 3 —m. /2k [I k( —
Q~ ) —I (Q )]

Ir(1 —i/k)l g2 —g2

(21)

(22)

(23)

' 1/2
2 3M* &~o

EF=—ao I RH

Q H 2 IF'I 'H RH .m mh

/~I(fg~(fg~ )~~2 3 m cz R mT
F (24)
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I I I I I I 1 laFl in the region 0(i)(0.5 is due to the transitions
among n =2, 3, . . . . These peculiarities of the exciton
states interacting with the long-wavelength longitudinal-
optical phonon explain the experimental observations for
many III-V compound semiconductors that cannot be ex-
plained within the uncor related electron-hole mod-
el. ' ' The latter can be recovered from Eq. (20) by
making the exciton Bohr radius u ~~. The correspond-
ing expression for the Raman tensor retaining only terms
proportional to Q is, in agreement with Ref. 17,

' 1/2 ' . 1/2 3
A~, -E +~r W~, -E,+irc caF =KF

flcop

(25)

0.0~-
-4 0

FIG. 1. Raman polarizability laF l2, as a function of the pa-
rameter g=(%col —E )/R for Am0/R =4.SS. Also the differentg
contributions —discrete-discrete, laF l; discrete-continuous plus
continuous-discrete,

l aF l; and continuous-continuous,
laF l

—are shown in the figure. The laFD
l curve has been mul-

tiplied by a factor of
2

and laF l by 10 .

aH and RH being the hydrogen Bohr radius and Ryd-
berg, respectively, P = (slP„lx ), and ao the lattice con-
stant. The erst term inside the second set' of large
parentheses in Eq. (20) represents the contribution of the
discrete exciton states, the second and the third terms
correspond to continuous-discrete and discrete-
continuous transitions, and the last one is due to the (un-
correlated) continuous states whose evaluation is given in
the Appendix.

Figure 1 shows the normalized laF l
Raman polariza-

bility as a function of the reduced laser photon energy g
for the case iiiaio/R =4.55. The following empirical
relation is used for the lifetime broadenings,
y„ =y(k) —[y(k) —y, ]/n, with y(k)= 1 and y, =0.54.
The squared magnitudes of the different contributions—
discrete-discrete,

l aF l; discrete-continuous plus
continuous-discrete, laF l; and continuous-continuous,
laF l

—are also shown. laF l has been multiplied by a
factor of —' and the l aF l by a factor of 10 . As can be

2 - F
seen in Fig. 1, the la/i is several orders of magmtude
lower than the others. The most important contributions
to the Raman tensor comes from the discrete-continuous
p lus continuous-discrete excitonic states. However, this
is only true when the phonon wave vector has a small
value, in our case x.&+a, . The laF l presents an outgo-
ing resonance stronger than the incoming one. This is
due to the fact that the second term inside the second set
of large parentheses in Eq. (20) is doubly resonant for
laser frequencies near Eg +A'coo —R. Both

l az I and
l a l show well-defined peaks in ri i

= —1 andaF
D D-C

g =%cop/R —1. Nevertheless, the sum aF +aF inter-CC)p

feres destructively, and a pronounced slope in the square
polarizability for g=g, is produced. However, the out-
going resonance remains well de6ned. The behavior of

with
2

I Fl 1 3,)]/2aopM
'ricop Qji ( +pi Q) )

Elle Pl hx-,'lp'l
mT

(26)

It is important to analyze the range of application of the
uncorrelated pair theory. This analysis can be done in
terms of the Bohr radius a, a parameter easily evaluable
from the knowledge of the exciton Rydberg or the
effective masses corresponding to the different CP's. ig-
ure 2 shows the Raman tensor in units of KF as a func-
tion of (A'ai E)/ficta. —This plot is practically universal.

CO) g
The only ad hoc parameter is the ratio between the pho-
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FIG. 2. Raman polarizability laFl given by Eq. (20) in units
of Kz as a function of (%col Eg)/'66)0 for different excitonF as a
Bohr radii. The ~~00 curve corresponds to uncorrelated
electron-hole pairs, Eq. {2S). For the calculation a value of
I /Ac@ =

~
was taken. The nonmonotonic behavior for a =2000

and 300 A, and ~ seems to be an artifact of having used un-
correlated states for the continuous-continuous contribution in
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1
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1 1+4: —.,+"

n [q +1/n +sy(k)][ri
1

+1/n +iy„) '„, n( +1/n +iy)(ri —go
' „' nn

~ 1/21n + o
Ip V
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FIG. 4. Comparison with experimental data for GaP (Ref.
12). The circ1es represent the experimental points whi1e the
solid line was calculated with Eq. (20).

culation are given in Table I. The set of parameters used
is the same as in Ref. 1, except that here we took the
same Bohr radius (50 A) for the Eo and for the ED+ b,o
CP's. With this Bohr radius the same profile for ~aDp ~

is
obtained. As discussed in Ref. 1, that is a good approxi-
mation in III-V compound semiconductors. Sell and
Lawaetz found an exciton Bohr radios of 56 A for GaP,
which agrees well with the 50 A used by us in the fit for
laDp I'.

The theoretical curve shown in Fig. 4 reproduces well
the maximum measured value without any fit. It also
reproduces the main characteristic of the resonance
profile: the outgoing resonance is about 2 times higher
than the incoming one. The peak corresponding to the 1s
exciton is, however, absent for the present set of parame-
ters because of the interference between the discrete-
discrete and the discrete-continuous excitonic states, as
was already stated. The region close to the ED+40 is
reproduced qualitatively, although the interference be-
tween the outgoing resonance at Eo and the incoming
one at Eo+ Ao is more pronounced in the calculation.

TABLE I. Numerical values of the parameters used for the
theoretical fit of Fig. 4.

Parameters Values Reference

R

ho
o

ao

)a')/m
I lh

I, ,
a
b-

Pie
~hh
~lh
Pls 0

11 meV
2.873 eV
80 meV
50 meV
5.45 A
21.45 amu
40
1.19X10 2 A
11.11
9.11
0.299 eV A
10.63 eV
5 meV
5 meV
10 meV
50 A
55 A
0.12m
0.45m
0.16m
0.24m

24
12
26
12
27
28
29'
b

30
30

1

12
31
12
12

'Mean value in the region of 2.7—3.1 eV (Ref. 31).
q =~n/c)(~I+~. )

'This value was calculated from the k p expression
~P2~/m = 2(m/m, —1)[EO(EO+60)/(80+ 360)] for

rn, =0.12m.
Among the values in the literature, we selected that which

gives the best fit to experimental data.
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APPENDIX

The term corresponding to the continuous-continuous
transition can be written, by using the definitions given
by Eqs. (18) and (19), as
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1
C =

(2m) cz R

x d k

5(k' —k —
Qt, ) —5(k' —k+Q, )x jd'k'

[ri+i y(k) k—][ti r—io+i y(k') —k' ]

One of the integrals can be performed automatically by
making use of the properties of the 5 function. Integrat-
ing the angular part of the second integral with y(k) con-
stant yields

with

g =ri —rio+iy and g =ri+iy . (A4)

( ) I+ dk
k g+k+x

g+k —x (A5)

The branch cut in the logarithm is in the lower half-
plane. We can avoid its contribution by closing the con-
tour in the upper half-plane. The result is

The integral (A3) can be separated into two integrals
by expanding the squared terms in the logarithm. If k is
changed by —k in the second one, we obtain

C =

where

+(Qt, ) — +(Q, )
1 1 1

SmuR
(A2) +8+xF(x)=xi ln

g+g
—x

F( ) I ~dk k
I g

—(k+x)
o k —g g

—(k —x)
(A3)

Inserting the values of g and g into (A6) and substitut-
ing in (A2), the final expression contained in Eq. (20) is
obtained.
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