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A new, approximate method has been developed for computing total energies and forces for a
variety of applications including molecular-dynamics simulations of covalent materials. The
method is tight-binding-like and is founded on density-functional theory within the pseudopotential
scheme. Slightly excited pseudo-atomic-orbitals are used to derive the tight-binding Hamiltonian
matrix in real space. The method is used to find the electronic states and total energies for a variety
of crystalline phases of Si and the Si2 molecule. Excellent agreement is found with experiment and
other first-principles methods. As simple applications of the method, we perform a molecular-
dynamics simulated-annealing study of the Si3 molecule to determine the ground-state
configuration, and a molecular-dynamics simulation of the spectral density function of the Si2 mole-
cule at high and low excitation levels.

I. INTRODUCTION

Molecular dynamics is a technique which can be useful
for simulating vibrations of molecules and solids, the
growth of a crystal or interface, the interaction between
an adatom and surface, defect reactions in crystals, mi-
gration of atoms in solids, and a wide range of other
time-dependent phenomena. In this technique, the
many-body classical equations of motion are solved as a
function of time, and the physical process can be studied
in real time. The equations of motion are prescribed once
the instantaneous forces are given.

The forces between atoms in covalent solids is more 'in-

tricate than a sum of two-body forces because the
strength of the covalent bond is quantum-mechanically
derived and depends on the local environment. Poten-
tials have been devised' which mimic these nonlocal
many-atom effects. However, the many-body effects are
clearly rooted in the quantum electronic structure of the
material and a superior method is to obtain these forces
directly from the electronic structure.

The purpose of this paper is to develop a first-
principles electronic-structure method which approxi-
mates very closely a rigorous calculation of these forces,
yet is simple enough to be used for a wide variety of pur-
poses, including molecular-dynamics simulations of co-
valent materials. %'e have tested the static energetics
thoroughly in Si, and have performed molecular-
dynamics and molecular-dynamics simulated-annealing
studies of small Si clusters. The method is framed within
a first-principles tight-binding approximation, making it
versatile and easy to use, and is executed entirely in real
space, and so periodicity is not necessary. It can be
adapted for use in supercells, slabs, clusters, or within a
Cireen's-function technique.

Our approach is to use a number of physically motivat-
ed approximations within the framework of a well-
established first-principles theory, to retain accuracy and

transferability, yet still achieve the goal of simplifying the
computation of the total energy and atomic forces. The
theoretical foundation that we use is density-functional
theory within the local-density and pseudopotential ap-
proximations.

The outline of the paper is as follows. In Sec. II we
give a brief review of the tight-binding approximation as
it is currently used and point out its advantages and its
shortcomings. Section III develops our theory and the
three major approximations that are made which simplify
the theory without sacrificing reliability. The details of
how the one-electron Hamiltonian tight-binding matrix
elements are determined are given in Sec. IV. In Sec. V,
we discuss the application of the Hellmann-Feynman
theorem to evaluate the atomic forces. Applications and
tests of the method are given in Sec. VI, and include the
properties of bulk Si, the phase diagram of Si in five
different phases, and molecular-dynamics simulations of
small Si clusters. Finally in Sec. VII we give our con-
clusions.

II. REVIEW' OF TIGHT-BINDING MODELS

We begin by a brief review of tight-binding models as
they are typically used in current applications. Since
most tight-binding models are only loosely defined in
terms of a fundamental electronic-structure theory, there
is no unique tight-binding theory. Our discussion will try
only to give the essence of the method, and not follow
any single model. The tight-binding models which fit
into the class of models we discuss are those used, for ex-
ample, by Harrison and others. 3

The tight-binding model is an approximate method to
determine the electronic structure of the system. An
atomiclike orbital basis ~P„) is imagined in which matrix
elements of a one-electron Hamiltonian, h„, are assumed
to be known. The electronic energy eigenstates hatt; are ex-
panded as a linear combination of the atomiclike states as
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The expansion coefficients are determined from the one-
electron eigenvalue equation

g h„„a'„=E'a„' (2)

where c,
' is the electronic eigenvalue for state i.

A major advantage of the tight-binding method is that
the chemistry is taken into account in a physical and
quantum-mechanical way. The electronic states may be
relatively localized or spread throughout the system, and
bonds are formed with many-atom noncentral effects nat-
urally included. The bonds formed have a variety of
strengths and symmetries, such as ~ or o. type.

The tight-binding model per se gives no definite form
for the total energy of the system. The eigenvalues E' are
one-electron eigenvalues, and by themselves do not give
the total electronic energy. They do represent an impor-
tant contribution to the total energy, so that the total en-

ergy is usually taken to have the form

E...=2 g E'+-,' y'V~(~R, —R,. ) .
OCC

The first term is the "band-structure" energy obtained by
summing the one-electron eigenvalues over occupied
states, which are assumed doubly occupied here. The
second term is a repulsive two-body (central) potential be-
tween the atoms located at R& and R& . The band-
structure term draws the atoms together and the repul-
sive term separates them so that an equilibrium is
reached.

A number of empirical forms for Vz(R& —R& ) have
been chosen. Popular choices are an inverse power law, '

2/~RI —R&.~, or a polynomial form about equilibrium.
The parameters of the short-ranged repulsive potential
V~, as well as the tight-binding Hamiltonian matrix ele-
ments themselves, h &, are empirically fitted to experi-
ment or first-principles theories. This seriously limits the
reliability of the method and confines it to physical situa-
tions that are not too different from those in which the
parameters are fitted. For instance, small vibrational
modes might be expected to be generally well modeled,
but an interstitial impurity in an otherwise perfect crystal
ought to be treated cautiously. The interstitial impurity
finds itself in a very different bonding environment with a
different number of nearest neighbors, bond lengths, and
symmetry. In general, the tight-binding parameters are
not necessarily transferable from one structure to another
by a simply distance scaling. The on-site matrix elements
are not necessarily constant and the parameters appear to
be dissimilar for carbon in the diamond and graphite
phases. ' Used cautiously, however, the tight-binding
model has been extremely useful in a wide variety of ap-
plications.

The tight-binding method has obvious advantages, but
it suffers the following major difficulties: (i) the tight-
binding matrix elements h„ typically are between very
near neighbors only, and must be determined empirically;
(ii) the matrix elements do not contain explicitly three-

III. THEORY

A. Theoretical foundation

The theoretical foundation of our theory is density-
functional theory, within the local-density approximation
(LDA) and the nonlocal pseudopotential scheme. Within
these approximations, the total energy of the system is
written as

~i.i=2X(4; 4)
+2 + (g, ~[V;,„(r—Ri)+ VNi (r —Ri)]~/; )

I

2

+ ff, d r d r'+ f n (r)Exc(n)d r
2 r —r'

e ZlZI'+
2 -„, IRi —Ri, l

' (4)

which correspond, respectively, to the kinetic energy, the
electron interaction with the ionic and nonlocal pseudo-
potentials, the electron-electron Hartree interaction, the
exchange-correlation interaction within the LDA, and
the ion-ion interaction. We will assume a spin-
unpolarized system with doubly occupied orbitals. The
exchange-correlation (XC) functional axe(n) is a func-
tional of the electron number density n, and we use the
Ceperley-Alder form, ' as parametrized by Perdew and

Zungel .
Within the pseudopotential approximation only the

valence electrons are included, and Z& is the number of
valence electrons of the atom located at R& (four for Si).
The pseudopotential used are of the nonlocal norm-

center terms (Q„~V(r—R&)~P, ), where V is the one-
electron potential in the Hamiltonian located on atom
R, , difFerent from the positions of orbitals

~ P& ) and
~ P, );

(iii) the orbitals ~P„) and ~P ) are not orthogonal but are
treated as such; and (iv) the form of the total energy has
little fundamental basis, and must be fitted to a physical
problem whose solution is known. One can argue that,
since current tight-binding models are empirical,
unspecified transformations can be performed which
repair some of the difficulties above. For instance, the
orthogonality of the orbitals can be achieved by a
Lowdin' tansformation that transforms the overlap and
the Hamiltonian matrices. Similarly, since the Hamil-
tonian matrix elements are fitted, one could argue that in
some effective manner three-center terms are included in
the Hamiltonian matrix elements. However, these ap-
proximate repairs are only true for the system which is
fitted. Once the system is changed to the system of in-
terest, a different Lowdin transformation must be used,
and new or different three-center Hamiltonian matrix ele-
ments have emerged.

We now go on to discuss our tight-binding model,
which, to maintain the advantages of tight-binding mod-
els, is sti11 approximate, does not require any fitting to ex-
perimental data, and has none of the major difficulties of
(i)—(iv) outlined above.
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conserving Hamann-Schliiter-Chiang type. ' The pseu-
dopotential is split into a long-range core potential and a
nonlocal (angular-momentum-dependent) potential,

V, (r) = V„„(r)+VNL(r),

where

2

VNL( r) g V!( r)~l
1=0

and PI is the projector onto angular momentum /. The
core pseudopotential V„„is parametrized in the form of
Bachelet et al. , ' where the true nuclear and core elec-
tron charges are replaced by pseudonuclear Gaussian
charges to yield

150.0
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V;,„(r)= I Cierf[(ai)'~2r j+C2erf[(az)'~zr] J,

FIG. 1. The local and angular-momentum nonlocal pseudo-
potentials used for Si from Ref. 19. The local pseudopotential
goes as —4e /r asymptotically.

where C, +C2=1. For large r, i.e., outside the core re-
gion, this approaches the correct ionic limit. The nonlo-
cal pseudopotential is short ranged and is fitted to

2 —a{l)r 2
Vi( r) = g [A; (I)+r A; +3( l) ]e

The local and nonlocal pseudopotentials are shown in
Fig. 1 for Si. Values for the fitting parameters C;, a' ",
A;(1), and a(I) are tabulated in Ref. 19.

The electron density is given by the sum over occupied
one-electron states g;, (nr)=2+, „,~f;(r)~ . The one-
electron eigenstates satisfy the self-consistent Hohen-
berg-Kohn-Sham equations,

2

+ g [Vi (r RI )+ VNL(r —Ri )12m

+e f, ,
~

d r' +p xc(n(r)) g;(r)=e;f;(r),
)r —r'

(9)

where pxc(n) =(aildn)n Exc(n) is the XC potential.
The total energy [Eq. (4)j can be simplified by using the

eigenvalues of Eq. (9) to yield the well-known result

of applications with great success. The calculations are
difficult, however, and, in particular, are limited to rela-
tively small systems. To reduce the computational
demands, Car and Parrinello ' have introduced a ficti-
tious Lagrangian technique which treats both electronic
and nuclear degrees of freedom simultaneously. Their
approach, in essence, makes no approximations to Eqs.
(9) and (10), since the charge density is expanded in plane
waves (a complete set). Their method, however, still has
extremely high computing demands, but has been used on
a number of systems. Pederson et al. have suc-
cessfully introduced an all-electron density-functional
method that uses floating Gaussian orbitals to reduce the
size of the secular determinant derived from Eq. (9). In
this respect, their method is similar to ours.

Our method reduces the secular determinant and uses
Eqs. (9) and (10) in an approximate form. The major ap-
proximations are as follows: (i) substitute for the total-
energy functional [Eq. (4)] a functional that has changes
of the electron density from that of a sum of neutral-atom
densities only to first order, (ii) approximate the self-
consistent solution of Eq. (9) by a linear combination of
slightly excited pseudo-atomic-orbitals, and (iii) evaluate
approximately the single-particle Hamiltonian matrix ele-
ments necessary to solve Eq. (9). We now describe the
first two approximations and in Sec. IV describe the eval-
uation of the matrix elements.

B. The approximate energy functional

+ fn(r)[.„,(n) I „,(n))—d'r .

The second term is the difference between the repulsive
interactions of the pseud ocores and of the valence-
electron densities. The electron-electron repulsion
corrects for the double counting in the sum of eigenval-
ues. The third term is an XC correction of the electronic
eigenvalues.

The resultant self-consistent theory embodied by Eqs.
(9) and (10) has been used innumerably in a wide variety

The self-consistent electron density is written as

n (r) =no(r)+5n (r),
where no(r) is some reference density and 5n(r) is the
difference between the reference density and the true den-
sity. In this work we take no to be simply the sum of
neutral-atom spherical atomic densities,

no(r)= gn„, (r —R&) .
l

This form of the electron density is then used in the
scheme introduced by Harris and Foulkes, where it is
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assumed that 5n(r) is in some sense small. The neutral-
atom density no(r) is used in the Kohn-Sham eigenvalue
equation [Eq. (9)] to generate wave functions and hence
an approximate 5n(r) for the composite system,

EBs=2
E OCC

the "short-ranged" potential is

(14b)

h g;=E;p;

with

(12a)
8 I I2, , ~R, —R, ~

2

h = + g [V;,„(r—R, )+ V „(r—R, )]
Zm

"o(r')
+ f

~ ~

" +&XC("0) .
r —r' (12b)

no(r')—f o( )d' f i, id' '

and the XC correction is

5Uxc= f no(r)[sxc(no) pxc("0)]d i' .

(14c)

(14d)

Here, E, and g; are the eigenvalues and wave functions,
respectively, of the approximate single-particle Hamil-
tonian h . These wave functions yield an approximate
density

Equations (14a)—(14d) have the correct form of the
electron-electron interaction to first order in 5n,. This can
be seen by adding the electron-electron interaction in the
band-structure term,

n(r)=2 g ~1E;(r)~ =no(r)+5n(r) .
E QCC

(13) no(r')
2f g ~1T, (r)~ d rfe, d r'

E OCC

tot ~Bs UsR +~ Uxc

where the "band-structure" energy is

(14a)

The density change 5n(r) rejects the formation of bonds
and is the first-order approximation to the self-consistent
bond formation given by 5n(r).

The energy functional is expressed to first order in 6n.
The result is similar to the exact LDA expression [Eq.
(10)] and is

no(r')=e f [no(r)+5n(r)]f, d r d r',

to the electron-electron interaction in the short-ranged
potential,

no(r')f no(r)d r f, ,
i

d r' .0
~r —r'

The sum is

no(r') e2 [no(r)+5n(r)][no(r')+5n(r')]f [no(r)+25n(r)]d rf, d r'= ff, d r d r'+O((5n) ),
/r —r'/

where the first term on the right-hand side is the correct
electron-electron interaction for n(r)+5n(r) In a s.imi-
lar way the correct XC energy can be shown to be includ-
ed in Eqs. (14a)—(14d) if use is made of

BExc(no )
Exc(no+5n) =axe(no)+

Bn
6n

pxc(no) sxc("0)=Exc(no )+ 5n .

Our approach is to use the total-energy functional of
Eqs. (14a)—(14d), where the electron eigenvalues from
Eq. (12a) are those of h . There are two major advan-
tages of these two equations over the exact Kohn-Sham
local-density equations given by Eqs. (9) and (10). The
first is that the approximate single-particle equation [Eq.
(12a)] is a non-self-corisistent equation. The eigenvalues
need to be determined only once instead of —10 times as
in a typical self-consistent iteration cycle. The second ad-
vantage is that four-center Coulomb integrals do not ap-
pear in the single-particle Hamiltonian or total-energy
expressions. Four-center integrals only appear in the
Coulomb interaction involving (5n ), which are second
order in 5n and are not included.

Harris has used the method on homonuclear dimers

and finds that strong covalent bonds can be well de-
scribed. More recently, Polatoglou and Methfessel '

have tested the method on metals, Si, and an ionic com-
pound NaC1. They find that the Harris energy functional
gives surprisingly good agreement with self-consistent
calculations for all materials tested (six in all). In partic-
ular, ionic compounds gave good results. It might naive-
ly be expected that keeping 6n only to first order in these
materials is not sufhcient, but this appears not to be the
case.

C. Slightly excited pseudo-atomic-orbital

Our second major approximation puts the theory in
the mathematical form of the tight-binding formalism.
We form matrix elements of the single-electron Harnil-
tonian h between atorniclike orbita1s. The atomiclike
orbitals we use are slightly excited pseudo-atomic-orbitals

(r). The pseudo-atomic-orbitals (PAO's) are the
valence-electron orbitals of the neutral ground-state atom
within the pseudopotential approximation and within the
local-density approximation. These are determined using
a Herman-Skillrnan-hke program.

The use of PAO's in covalent materials has been tested
previously for ten different materials. ' They were found
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yPAO(r)
l

()
C

(15)

The limit of r, —+ ~ gives the true pseudo-atomic-orbital.
The boundary condition of Eq. (15) has the physical effect
of mixing in slight amounts of excited orbitals of the
atom inside r„ this can be seen by adding a small amount
of the 2S wave function to the hydrogen-atom 1S ground
state.

Exciting the orbital mimics the physical effect present
in solids of increased kinetic energy due to Fermi statis-

to give a simple yet reliable and accurate picture of the
total energies and electronic states in these systems. Bulk
moduli, equilibrium lattice constants, vibrational optic-
mode frequencies, charge densities, and band structures
are well reproduced within this atomic picture. This
tight-binding-like picture has also shown itself to be very
useful in describing defect states of substitutional and in-
terstitial impurity systems,

In the work of Ref. 19, the tight-binding-like matrix
elements used ground-state atomic wave functions and
were found to have a very long range. It was found that
at least sixth neighbors needed to be included in order to
obtain reasonably accurate band structures. Even
eleventh neighbors are needed in some cases. Simply
neglecting the distant matrix elements led to serious er-
rors. This is in accord with similar findings by Chen and
Sher.

We seek an approximation to the tight-binding-like
Hamiltonian matrix elements and demand that they have
a shorter range. To shorten this range, we restate the
atomic problem, and impose the boundary condition that
the atomic orbital vanish outside and at a predetermined
radius r„

ties. Also, the boundary condition of Eq. (15) is
superficially similar to the Wigner-Seitz boundary condi-
tion that the wave function have zero derivative at the
Wigner-Seitz sphere. Our boundary condition, however,
makes no reference to the condensed-rnatter state, and
applies to molecules as well.

The precise value of r, chosen is not critical as long as
it is well past the peak of the atomic wave function. In
Fig. 2 we show the slightly excited s orbital of Si for vari-
ous values of r, . The bond-center region (defined as the
half-bond-length of bulk crystalline Si) is shown. For
values of r, greater than Sa~, there is very little change of
the atomic function in the bond region; the long wave-
function tail is, however, eliminated for small values of
r, . Thus, for example, when r, =5az, the tight-binding-
like Hamiltonian matrix elements in bulk Si rigorously
form a third-neighbor model. This is the value we will
use for the remainder of this work.

IV. TIGHT-BINDING MATRIX ELEMENTS

We use an sp basis so that p=s,p„,p~,p, . The single-
electron eigenvalue equation reads

g (h )„",a, (v, l')=e; g S„"a, (v, l'), (17)
v, 1' v, 1'

with eigenvalues and eigenvectors determined from the
secular equation

detlh —ESI =o .

We write the single-particle electronic eigenstates as a
linear combination of PAO's positioned at the atomic
coordinates R1,

(16)

0.5

0.4-

Si s orbital vs.

(h')"' =(y' (r —RI )lh'ly' (r —RI, ) &, (18a)

gll' (yPAO(r R )lyPAO(r R ) &

The Hamiltonian h is a sum of terms, which we write

(18b)

The Hamiltonian matrix elements h and overlap ma-
trices are

0.2—

2

h = + g VN~(r —R, )+ g V~1 (r R ) Ip+x(nc—)o,
2m

1

(19)

BaB

0.0
D.O

I I I I I I I

1.0 2,0 3.0 4.0 5.0 6.0 7,0 8.0
r (units of a )

FIG. 2. The slightly excited pseudoatomic s orbital of Si for
various values of r, . The pseudo-wave-function with r, = 8a& is
virtually identical to the true atomic pseudo-wave-function.
The bond center is shown for crystalline Si by a vertical arrow.

corresponding, respectively, to the kinetic energy, the
Coulomb potential of a neutral atom, VN~,

n„, (r RI)—
VN~(r —R&)= V„„(r—R&)+J, d r', (20)r —r'

the nonlocal pseudopotential VNL of each atom, and the
nonlinear XC potential. The matrix elements of h are
determined by adding the matrix elements of the indivi-
dual terms.

In molecular dynamics or for problems with large
numbers of atoms, the evaluation of the large number of
integrals can place high demands on computer resources.
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We now describe the method we use to circumvent these
difficulties.

A. Kinetic-overlap matrix elements
1.0

8.0

-6.0

- 4.0
The simplest matrix elements are those of the kinetic

energy and the overlap. These are simply two-center in-
tegrals, and we illustrate by using the kinetic energy. We
use a molecular coordinate system in which the two
atoms are separated by a distance d in the z direction.
The matrix element

A

V

0.0

I I

0.0 1.0 2.0 3.0 4.0 5.0

-2.0

-0.0

-2.0
6.0

A

V

2
T (d)= y'" (r) ()'" (r —dz)l,pv p 2m

(21)

then, is nonzero only between ss, st, o.s, o.o, and mm or-
bitals. The transformation to a general coordinate sys-
tern is then easily done through the Slater-Koster
tables. Since our orbitals are zero outside r„ the matrix
element vanishes identically for d ~ 2r, . The five nonzero
matrix elements of T and S are computed on a 6ne one-
dimensional grid of distances up to 2r, . The value of the
matrix element and its derivative at any distance are easi-
ly interpolated. The calculation of the matrix elements
on the grid is done beforehand, so that calculating the
matrix element for the desired geometry is a simple
matter of looking it up in a table. A plot of the kinetic
energy and overlap between two Si s orbitals (r, =Saz ) is
shown in Fig. 3.

A technical point concerns the slightly excited PAO's.
The derivative is discontinuous at r, and the second
derivative yields a 5 function. This causes no unphysical
properties, but mathematically gives rise to an extra sur-
face integral, as can be seen in Green's theorem. The sur-
face integral is avoided by performing the integral in
momentum space. The kinetic-energy matrix element
[Eq. (21)j becomes

f ~~Pro(q)~e P (q)e iq dd3q1 g2 2

P~ (2 )3 (((
2171

The angular integral can be done analytically leaving
only a radial integral. For example, the s-s matrix ele-
ment becoIDes

f2
Ts (d) = f q Ro(q)Ro(q)j o(qd)dq

&Pl 0

where Ro(q) is the Fourier transform of the radial wave
function. The finite radius r, gives a slight ringing to
Ro(q) of the form sin(qr, )l(qr, ), so that the one-
dimensional integral must not be cutoff in momentum
space too early.

FIG. 3. The kinetic and overlap two-center tight-binding ma-
trix elements between two Si pseudoatomic s orbitals. The or-
bital cutoff r, is 5a&, and the matrix element is exactly zero past
10a (5.3 A).

We will assume in all cases that outside r, ( &&r„„),V;,„
becomes identical to Ze Ir.—

The pseudonuclear charge and neutral-atom charge en-
closed inside r, cancel, so that Gauss's law requires that
VNA vanish outside r, . This greatly reduces the number
of nonzero matrix elements. For a general three-center
neutral-atom matrix element, ((I) (r —r, ) ~ VN~(r—r3)~p (r —rz)), the result is identically zero unless
the following three conditions are simultaneously
satisfied: ~r, —rz~ &2r„~r,—r3~ &2r„and ~rz

—
r3~ &2r, .

A three-center molecular coordinate system is shown in
Fig. 4. The cr (z) axis is along the axis of the bond
charge,

(r+ —,'dBco')4 (r —
—,'dBco')

and the & (x) axis is in the plane of the three centers.
The origin lies at the bond-charge center, equidistant
from the two atoms forming the bond charge. The bond
charge is nonzero only in the region of intersection of the
two spheres of radius r, . The nonzero three-center in-
tegrals are written in the following form:

K

B. Neutral-atom matrix elements

The single-particle Hamiltonian h contains a sum of
neutral-atom potentials over all atoms, QI VNA(r —RI),
where

n„, (r RI)—
VN~(r —R, )= V;,„(r—RI )+f,

~

d'r' . (23)

BC

FIG. 4. The three-center molecular coordinate system used
for the neutral-atom matrix elements. The three centers de6ne
the m-o plane. The 0. axis is the axis connecting the two orbitals

p and v forming the bond charge, and the origin is midway be-
tween the two orbitals.
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V„."(d,dBc, 8)—:(P„" (r+-,'deco )I VNp, (r —d)lg, (r —
—,'dsccr) } (24)

The problem is now one of classical electrostatics. The matrix element is the electrostatic interaction of a bond
charge with the spherically symmetric potential from the atomic valence electron and pseudonuclear charges. The
bond charge is neither spherically symmetric nor charge neutral. We therefore turn the problem around and view the
matrix elment as that of the interaction of the pseudonuclear and spherically symmetric atomic valence charges with
the electrostatic potential of the bond charge. The electrostatic potential U& of the bond charge P„P, is

(r+ ,'da—ccr)4 (r' ,'d—Bc—cJ}
(2&)r —r'

The kernel 1/~r —r'i is then expanded in associated Legendre polynomials P„(cos8) in the standard way. Only one
value of m survives for a given type of matrix element. The potential can be written in the form

sing u, sing cosP u

cosP u

&ss cosP u,

cosP u, [u +cos(2$)u„~ ]/2
sing u, +sa

sin(() cosPu cosP u

[u —cos(2$) u ~ ]/2 sing u

sing u

(26a)

where the functions u are functions of r, and P and 8' are the angles in spherical coordinates as defined by the molecular
coordinate system of Fig. 4, ~here ~ and o., play the role of x and z coordinates, respectively. The functions u„have
the form

„"0(r)u„= g P„(cos8'}, +r"B„"o(r)
n=0 I'

for (p, v) being (s,s), (cr, cr ), or (m., m ),

(26b)

P„'(cos8') Q„"((r) + r "B„"((r) (26c)

for (p, v) being (s, ~), or (o, m. ), and

oo P„(cos8')

z (n+2)(n+1)n(n —1)
„"z (r) + llBPv( )pn+1 (26d)

for (p, v) equal to (m, m'). The matrix elements for (p, v) being (cr,s), (m, s), and (n., o ) have the same form as those for
(s, cr ), (s, m), and (cr, m. ), except that the former have an extra factor of ( —1 }"+',( —1)"+',and ( —1)", respectively.

The functions Q„"'(r) and B„"'(r) depend on the bond-charge type (p, v) and have an interpretation similar to r
dependent charges, dipoles, and the like. For the special case of identical atoms forming the bond charge ( the case of
elemental Si that we treat here), the odd-n moments Q„"' and BI" vanish for (p, , v) =(s,s), (cr, o ), (m, n), and (a, n')
The exact functional form of Q and B is easily found; for our purposes we only need to know that they are functions of
r, the magnitude of the distance from the bond-charge center. The interaction of the bond-charge electrostatic poten-
tial U„with the neutral-atom valence and pseudonuclear charges gives the matrix element V„(d,dBc, 8) of Eq. (24).
Since the neutral-atom charge is spherically symmetric, the matrix element V has the same basic form as the bond-
charge electrostatic potential U. An important difference is that 8 and P are no loner integration variables, but are the
angular coordinates of the neutral atom; hence P is zero (see Fig. 4). The matrix elements have the form

Vss Vs~

(27a)

0

0 Vms

(v —v ~ )/2 0

Voo
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where the functions U are

(27c)

U„= g P„(cos8)q„" (d, dBc) (27b)

for (p, v) being (s, s), (o,o),'or (m, m ),
P„'(cos8)

( + 1) qn (d, dBC)

for (p, v) being (s, m ) or (o, rr ), and
QO P„(cos8)

pv

z (n +2)(n +1)n (n —1)
for (p, v} equal to (m, rr'). Again, the matrix elements for
(p, v) being (o,s), (m, s), and (m, o ) have the same form as
those for (s, o), (s, n) and (o, rr), except that the former
have an extra factor of ( —1)"+', ( —1)"+', and ( —1)",
respectively.

These results reAect electrostatic interactions of the
bond-charge distribution, which has monopole, dipole,
quadrupole, and higher moments, with the spherically
symmetric distribution of the neutral atom. It must be
understood that our expansions are not asymptotic ex-
pansions, but hold even for small distances. Rather, the
expansions are angular-momentum expansions. Asymp-
totically (large d or dBc), they are particularly simple-
all q„~O since either the moment of the bond-charge
goes to zero (large dBC), or the bond charge interacts
with a neutral-atom distribution that has all vanishing
moments (large d).

The significance of Eqs. (27a)—(27d) is that the matrix
elements depend on two distances, d and dzc, through
the functions q„, and the angular dependence is analytic.
The dependence on d Bc is implicit in the functions g and
8 of Eqs. (26b)—(26d). Analytic expressions involving in-
tegrals over the bond charges can be found, but we
choose an easier scheme. We truncate the series after
n =4, so for each relevant value of (p, v) we have at most
five functions, qo, q „q2, q3, and q4. For fixed d and d Bc,
0 is varied over five angles and the electrostatic interac-
tion is evaluated exactly by performing the three-
dimensional integral in Eq. (24}. This is done at the five
angles given by cos8=0, 1/&3, —1/V'3, v'3/5, and
—&3/5. The five functions q„at the chosen value of d
and dzc are determined from five equations in five un-
knowns. The process is repeated over a grid of values of
d and dac up to 2r, . Past 2r„ the matrix elements must
identically be zero. In this way, the matrix elements
V„(d,dBc, 8) are determined for any geometry by inter-

I

polating on the two-dimensional grid for d and d~c, and
analyticaHy evaluating the angular dependence. Deriva-
tives are also easily handled. The final transformation
from molecular coordinates to the fixed "crystal" coordi-
nate system is handled by a unitary transformation.
Since they are three-center integrals, the simple Koster-
Slater tables re not appropriate. The entire procedure
has been found to be very fast in practice. The only
time-consuming part is setting up the two-dimensional
grid, which may involve —1ok three-dimensional in-
tegrals. This, however, is a one-time cost.

There is a special case when the neutral atom resides
on one of the atoms forming the bond charge. These ma-
trix elements are large and are computed without approx-
imation. Since they are two-center integrals, they are
computed on a one-dimensional grid as described for the
kinetic and overlap matrix elements. Another special
case occurs when the two atoms forming the bond charge
are the same (dBc=0). These two-center integrals are
also calculated exactly on a one-dimensional grid in a
similar manner.

C. Nonloeal pseudopotential matrix elements

In this subsection a description is given of the method
used to determine the matrix elements of the nonlocal
pseudopotential. Choosing the origin to lie at the origin
of the pseudopotential, the matrix elements are

V„(r„r2)=(P„(r—r&)~VNL(r)~P„(r —rz)} . (28)
The nonlocal pseudopotential has the form of Eq. (6),

2

VNi (r) = g Vi(r)P, .
1=0

Matrix elements of the nonlocal potential are generally a
difficult part of pseudopotential calculations, and local
pseudopotentials have been substituted in the more
difficult calculations to simplify them. ' We present
here an exact method for determining the matrix ele-
ments between localized orbitals which makes the evalua-
tion of these matrix elements one of the simpler steps in
the calculation. Our method does not depend on any par-
ticular form of the orbitals or of the form of the radial
potentials V1. It is convenient to work with angular-
momentum states (instead of Cartesian states s,p,p~,p, )
for the orbitals:

(r)=RI(r)Y( (0„) . (29)

The angular-momentum projection of the atomic orbitals
is most easily carried out in momentum space

L
i YI.M(Q. )f pi~ (q)J'L(qr)YIM(Q, ~)e 'd q .

M= —L
The matrix element of the nonlocal potential becomes

2 L

Vlppg, i'I'(rf rp}= „& & f "r' «VL, ( r) &1~(r, rt ) &I'M'(r, r..)
L =0M= —L

(30)
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The three-dimensional integrals in A are expanded as

I

AL™M(r,r')=16m (
—1)'( i)—g ( —1)" "'~ CL+k(l, m;L, M)YL+k I (Q„.)D& ' (r, r') .

k= —I

where the D's are one-dimensional integrals,

DI '"(r, r') = f R&(q)jL (qr)J'L +k(qr')q dq,
0

(31)

and R&(q) is the Fourier transform of the radial part of the PAO's. The C factors arise from expressing the product of
two spherical harmonics as a sum over spherical harmonics:

(l, l', —m, m'~l, l', K, m' m) (—1,1',0, 0~1, 1',K,O) .

I + I'

Y(' (Q) YI (0)= g Cx(l, m;1', m')Yx~ (0) .
& =

I I —I'I

These C factors are related to the Clebsch-Gordan coefficients and are given by the Gaunt formula
1/2

( 1 1
f /

) ( 1 )I ( 21 + 1 )(21' + 1 )

4m.(2K + 1)
(32)

The results are simplified by defining one-dimensional integrals J,

J&&.
"" (r&, r2)= f dr r VI(r)DI '"(r, r&)DI '" (r, r2), (33)

0

and by choosing a "molecular" coordinate system in which the cr axis is along ri and the m
' axis is perpendicular to the

plane containing r, and r2 as shown in Fig. 5. In this molecular coordinate system and using the definition of J, the ma-

trix elements become
2 I I'

Vl I (r„r~)=64 g g g ( —1) CL+k(l, m, L,O)CL+k.(l', m', L,O)
L =Ok = —I k'= —I'

x YL+k, — (+ )YL+k', — '(+ )Jll' (rl ~2) (34)

where y=(31+31'+2L —k —k')/2. No approxima-
tions were made to obtain Eq. (34), and it is not depen-
dent on the specific form used for the nonlocal pseudopo-
tential and the wave functions. Although it appears for-
midable, Eq. (34) is actually quite simple since the Gaunt
factors C, Eq. (32), are zero unless they satisfy the trian-
gle condition. ' The number of unique J integrals for Si
is 15. These integrals are added with appropriate
coefficients to give the complete 4X4 sp matrix. The
average number of terms in Eq. (34) is seven, with a max-
imum of 12. Notice that the J integrals only depend on
the two distances r& and r2, and not on their orientation.
All direction dependence is analytically contained in the
spherical harmonics. In practice, values of r& and r2 are
chosen and the one-dimensional integral in Eq. (33) is
computed. The integrand dies quickly since VL (r) is

highly localized. The results are tabulated on a two-

FIG. 5. The three-center coordinate system used for the non-
local pseudopotential matrix elements. The three centers de6ne
the m-o plane. The origin is taken to be the location of the non-
local pseudopotential, and the o. axis is in the direction of r&.

dimensional grid of r i and r2 values, and an interpolation
scheme is used during a molecular-dynamics simulation.
The method is exact and can be used efficiently in a
molecular-dynamics scheme.

D. Exchange™correlation matrix elements

Within the local-density approximation, the exchange
and correlation (XC) energy, axe(n), is a functional of the

electron number density n(r). The functional is non-

linear in n with the exchange part being

2

ex(n)= —
—,
' (3m n)'~ (35)

In principle, the matrix element of a function such as Eq.
(35) can be obtained by evaluating the density at each r
point and numerically computing the integral. However,
this would be a very time-consuming step in a procedure
such as a molecular-dynamics simulation. We therefore
seek an approximation. In what follows, we illustrate by
using the X/C energy, axe(n). The procedure is identical
for the XC potential, pxc(n) Our appr. oach is to deter-
mine an effective density n which changes in a linear way
with the atoms nearby, and to use this density in a non-
linear way in the function Exc(n ).

Let us consider a hopping matrix element where the
orbitals are separated by a distance d. The results for the
on-site matrix elements where. d is zero will be given
later. We search for the desired effective density n by ex-
panding the functional about n,
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the series converge rapidly. We choose n so that the
second term is identically zero, and the third term is min-
imized. These two conditions are met simultaneously by
the choice

I'L
FIG. 6. Schematic diagram showing the determination of the

effective density n from the bond charge at the density n(r).
The effective density n is the average of n(r) weighted by the
bond charge formed by the product of orbitals pp"opp"o.

cx(n) =sex[" +(" ")

=axe(n)+E„'c(n)(n n)+Gxc(n—) +(n n)—
2

npv' Spv/S

The effective density we choose is different for each ma-
trix element. The result of Eq. (38) is that the effective
density n is an average over the bond charge given by the
product of orbitals P„"P . The efFective density n is
the local density weighted by the structure, special ex-
tent, and geometry of the bond charge. This is shown
schematically in Fig. 6. This procedure has the feature of
importance sampling, since the density is weighted more
heavily when the bond charge is high. The denominator
of Eq. (38) is simply a normalization factor for the
weighting.

The above procedure is not defined if the overlap van-
ishes, such as, for instance, between an s and a p orbital.
A matrix element of the XC energy between two such or-
bitals is not necessarily zero in low-symmetry situations
due to three-center effects. In such cases, with the origin
of coordinates at the center of the bond charge, n is re-
placed by

(36) n(r)=n +ptri+r~ Qt r~, (39)
The matrix element of this functional is

s„,=(P„" (r)~sxc(n)~P, " (r —d) }

=Exc(n)S„+Exc(n)(n„, nS„„)—
+—,'exc(n)[(n n) ]„,+— (37)

where S„ is the overlap and n„ is the matrix element of
the density. Our choice of n is made by demanding that

where r~ is the component of the position vector perpen-
dicular (in the f.f. ' plane) to-the axis of the bond charge.
The first term is an average monopolelike density, p~ al-
lows for a dipole, and Qi is a 2X2 symmetric, traceless,
quadrupolelike tensor. We include only the first nonvan-
ishing term, and determine p~ and Qt by a similar cri-
terion as that used for n. The result is

E(n„)S„
0

0

s(n, )S,

0

e(n )S

0

0

0

0

E(n „)S„
0

s(n, )S,

0

e(n }S

0

E (n, n',

s'(n, )n,

(n n ~ ~)—
(sn )

e'(n, „)n,

e'(n )n e'(n )n

(40)

s'(n, )n,

0

e'(n )n

E'(n }n „

(n, ~ n)—
E (n )'

e'(n )n

E'(n )n,

0

The first matrix is the monopole contribution given by the procedure described concerning Eqs. (37) and (38) and exists
between orbitals with nonvanishing overlap. The second matrix is a correction which includes dipole and quadrupole
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effects. It not only exists between orbitals that have vanishing overlap, but also corrects some with nonvanishing over-
lap. The second matrix is proportional to matrix elements of the density itself, giving the matrix s„, the correct struc-
ture in low-symmetry situations. The matrix given by Eq. (40) transforms properly under a coordinate transformation.

The form of the result for terms involving c is unique, but the precise value of n is not. We have chosen values of n
for these e terms which coincide with those of Eq. (38) as much as possible, and have taken on-site averages in other
cases. Our results for n are

n„/S„

ng

ng

n +n ~ ~

2S „
n „+n ~ ~

2S

n„+n ~ ~

2S

n +n ~ ~

2S

n, /S,

ng
(41)

n, /S, ng n(, u /Sa~

+ (yPAO(r d)~n~yPAO(r d)) ] (42)

We find that the XC matrix elements for the
condensed-matter phases of Si in diamond, simple-cubic
(sc), fcc, bcc, and P-tin phases are accurately given by Eq.
(40). Comparing with the exact matrix elements comput-
ed near the volumes of minimum energy for each of these
phases, we find errors which are -2%. Although we do
not generally anticipate a need to correct for these small
errors, they can largely be corrected if necessary. The er-
ror comes predominantly from neglecting the third term
of Eq. (37) involving (n n), w—hich are fiuctuations of
the density about n. This quantity is positive definite, so
that the third term acts to oppose the first. This occurs
because s"(n) has a sign opposite to e (n). The first
term thus tends to overestimate the matrix element. A
measure of the Auctuation of the density is the quantity
R,

n „being an on-site average over sp orbitals and over the
two atoms,

PAO r n PAO r

l

below it. Although there is scatter, the general trend is
that the correction is about 2.5%%uo in the low-density dia-
mond phase (large fiuctuations), and goes toward zero in
the higher-density phases as R approaches unity. The
effect of this approximation on the energetics of these sys-
tems will be considered in Sec. V. We have found this
correction to have only a minor effect and generally feel it
unnecessary. In particular, C has been obtained empir-
ically by performing an exact calculation, which may not
always be possible.

The on-site matrix elements are obtained in a way simi-
lar to that of the hopping matrix elements, but with two
important differences. The first difference is that a cr axis
cannot uniquely be defined, and all three directions must
be treated equally. The second difference is that the over-
lap matrix elements are either zero or one. With these
two differences taken into account, the on-site matrix ele-
ments are

3.0
00

(43)R =n„/n,
where n „ is the average density inside the atomic volume
without the additional weighting of the bond charge,

n„=J n(r)d r/0, ,
C

and 0,=—3mr, is the atomic volume. For a constant den-

sity, the fj.uctuations vanish and R is unity. The fluctua-
tion correction to the XC matrix elements can be incor-
porated empirically as

2.0-

8

1.0-
diamond
sc
Q-tin

~ bcc0 fcc

I

0.7
I 1

0.8 0.9 1.0

„(correcte.d)=[1—C (R„,)]s&,(uncorrected), (44)

where the uncorrected matrix elements are those de6ned
by Eq. (40). The function C (R) was determined empir-
ically by comparing with exact matrix elements for five Si
phases and is shown in Fig. 7. We show C„at different
volumes (and hence R values). The chosen volumes for
each phase correspond to the volume that minimizes the
energy per atom, and a volume about S%%uo above and

FIG. 7. The empirically determined exchange-correlation
correction function C„vs R for the largest hopping matrix ele-

ment pp in five condensed-matter phases of Si at di6'erent

volumes. The quantity R is a dimensionless measure of density
fluctuations and ideally C„should approach zero as R ap-
proaches 1 from above or below. The three points for each
crystal structure shows C„at three difterent volumes. The
vertical line is to highlight the expected symmetry about R = 1.
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0

0

s(n )

0

s e(n ) 0 0 0

0 0

0

0 0 0 e(n )

0

e'(n, )n,„e'(n )

e'(n, )n,

s'(n, )n,„
2' l1 tl

e'(n )n„

e'(n, )n,

s'(n )n

27lyy zlzz zlzz

E'(n, )n„

E'(n )n,

s'(n )n,

(45)

E'(n,~ )n„ e'(n )n„, E'(n~ )n,
2&zz +xx &yy

e'(n~ )

where n, =n„, n~ =(n„„+n~~+n„)I3, and n,~ =(n,
+n~)/2. The quantities n„are on-site matrix elements
of the density,

n„,=(P„(r)~n(r)~P, (r)) .

Any coordinate system can be used to compute Eq. (45),
as the result transforms properly under a unitary trans-
formation. As for the hopping matrix elements, the 4 X 4
matrix of Eq. (45) can be constructed by adding in the
contributions to n„, from different atoms in a linear way,
and then using this linear result in the nonlinear func-
tions c and e.'. %'e have not attempted to add a C
correction for the on-site matrix elements since they are
more "atomiclike" and play a less important role in the
bonding.

V. Hellmann-Feynman forces

= —2 g a;*(p, l, )a;(v, l2 )
l~p, V~ l) ~ l2

g(ho) 1 2

Pv gR
(47)

where a; are the linear combination of atomic orbitals
(LCAG) coeKcients of Eq. (I). In the last form we used a
density matrix and an energy density matrix de6ned as

l ) l2
p„', '=2 g a;*(p, l()a, (v, l2)

The forces acting on an atom at position Rl are deter-
mined by taking the derivative of the total energy with
respect to Rl,

and

E„' ' =2 g E, a,*(p, l, )a, (v, l~) . (48)

dE~.~

I gR
acBs 8UsR a5Uxc
BRI BRI BR(

+

All of these derivatives can be taken easily in the current
method, and the forces obtained are exact. This is to be
contrasted with standard self-consistent calculations,
which must be converged to a very high degree before the
forces are truly correct, since the forces they are not
determined by a variational principle. The short-ranged
force gives a two-body central potential. The noncentral
non-two-body forces are contained mainly in the band-
structure force, although we show that the XC term also
contains forces of this type.

The band-structure force is evaluated using a variation
of the Hellmann-Feynman theorem,

OCC

With the exception of the XC potential, the Hamiltoni-
an h is a sum of contributions from isolated atoms, so
that the derivative of h is a sum of derivatives coming
from one-, two-, and three-center terms. These deriva-
tives, as well as the overlap derivatives, are easily evalu-
ated using the grids described in Sec. IV. It should be
noted that the derivatives we take are of the matrix ele-
ments themselves; we do not take matrix elements of
derivatives as is done in the conventional Hellmann-
Feynman theorem. Thus the Pulay corrections are in-
cluded exactly without additional effort. The size of the
density matrices which are needed to compute the forces
is determined by the orbital cutoff r, . The density ma-
trices can be evaluated by k-space techniques in periodic
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systems, by direct summation of the eigenvalues and
eigenvectors in finite systems such as molecules or clus-
ters, or by Green's-function techniques for the defect sub-
space or other hybrid technique. The derivatives of the
XC matrix elements are not simply a sum of contribu-
tions from individual atoms. This causes no serious com-
plication as we show for the XC correction 5 Uxc.

The force from the short-range term UsR gives a sum
of two-body central potentials. The short-ranged poten-
tial can be written as a self-term and a two-body term,

6.0

5.0-

4.0-

gg 3.0-

2.0-

1.0-

NN2 NN3

USR= X U (Ri)+ 2 g VSR(lRr RI l)

where

(49) 00 i i ~ '
& s

0.0 1.0 2.0 3.0 4.0 5.0 6.0

d (A)
n„, (r R—I)n„, (r —Ri)

(50)

is the one-body, neutral-atom, Hartree self-energy of the
charge density of the atom at R1, and

PIG. 8. The central two-body short-ranged repulsive poten-
tial VsR vs separation between two Si atoms. Notice the strong
potential at short distances (ultimately 1/r), and the very fast
decay. The first-, second-, and third-neighbor distances in crys-
talline Si are shown.

Z, Zi n„, (r —R, )n„, (r —Ri)
( lRt

1 1'
(51)

is a repulsive potential that is the difference between the nuclear and electron Coulomb repulsions between the two neu-
tral atoms at R& and Ri. VsR is short ranged, vanishing identically for lRi —Ri, l

)2r, . The short-ranged potential
VsR( lRl ) between two Si atoms is shown in Fig. 8. At small distances, the potential is singular. Notice that the poten-

0
tial only has a range of about 3.5 A. This justifies the use of a first-neighbor model for the repulsive potential in calcula-
tions of others. The derivative of the one-body term vanishes, so that the short-ranged force becomesaU„, aV„(IR,—R, , l)

BR, ~ BR,

which is a simple sum of two-body central potentials.
The final force term is from the XC correction 5Uxc. This force is nearly a two-body force, but we show that the

strength of the two-body force depends on the local environment. The XC energy from Eq. (14d) can be written in
terms of on-site matrix elements,

n (I)
&Uxc = X n, (I)(sxc—Vxc)-+ '

I:(Exc—Vxc)..+(Exc—Vxc)yy+(exc —uxc):]
where n, (l) [n~(l)] are the number of electrons in the s (p) states of the neutral atom, e.g. , n, =2 and n~ =2 for Si, and

(sxc pxc)1 ~= & 4~ (r Ri)ll sxc("o) pxc(no)]l0„' '(r —RI) & (52b)

To differentiate Eq. (52a) involves difFerentiating Eq. (45). We will illustrate the result by considering the first term of
Eq. (45) for E„, the (s, s) matrix element of Exc,

Bc Bn

BR " 81 RI

where n„ is the matrix element of the density. The density is a sum of densities on nearby atoms, so

(53)

Bc„
BR1

&PP'(r Ri)ln„, (r —
R&

—)lP, (r —Ri) & .
1

(54)=Exc(n-) X'—
R, ,

This is a sum of two-body-like terms, but the coeflicient, sxc(n„), depends on all the atoms in the vicinity since n„does.
In any case, derivatives of terms such as those in Eq. (54) offer no particular difficulty as they are simple two-center in-
tegrals and are handled like the kinetic and overlap elements of Sec. IV A. Newton s third law is automatically satisfied
for these matrix elements since

+ & y,'~o(r —Ri) ln... (r —Ri )ly.'~o(r —RI )& =0 .
1 1'
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TABLE I. Bulk properties of Si computed with PAO's of ra-
dius r, =5az and without the C„correction of the exchange-
correlation energy (see text) compared with experiment. The
cohesive energy was computed using the exact LDA energy of
the atom (r, ~~ ). For the cohesive energy only, we also give
the result with the C„correction (in parentheses).

Bulk modulus (GPa)
Optic-mode frequency (10' /s)

0
Cubic lattice constant (A)
Cohesive energy (eV)

Theory

90.9
0.98
5.50
5.03 (4.50)

Experiment

98.8
0.99
5.43
4.63

VI. TESTS AND APPLICATION

A. Tests of the method

50.0

g 25.0

We have tested the method in bulk Si (diamond phase),
on other phases of crystalline Si, and on small Si clusters.
In the work reported here we use sp pseudo-atomic-
orbitals of radius 5a~ (a third-neighbor model for bulk
Si), the Ceperley-Alder exchange-correlation function-
al, ' ' and Hamann-Schliiter-Chiang (HSC) prescribed
pseudopotentials. ' The calculations are all spin unpolar-
ized; the theory, however, is not limited to this, nor is it
limited to only sp orbitals. Unless otherwise stated, we
do not include the C correction to the exchange-
correlation matrix elements.

In Table I are shown the computed bulk properties of
Si compared with experiment. We find good agreement
with experiment for the bulk modulus, optic-mode fre-
quency, and lattice constant. Also shown is the cohesive
energy, which is the energy difference between the
ground states of the solid and of the atom. Errors in the

cohesive energy are usually attributed mainly to errors in
the atomic energy and not the solid. This is especially
true here since the energy of the free atom is raised con-
siderably ( -2.7 eV) by confining the electrons to a radius
of r, =5a~. This error is virtually nonexistent in the solid
( —0.2 eV) since the kinetic energy of confinement is
released by electron hopping. We show in Table I the
cohesive energy calculated using the correct energy of the
atom (computed exactly in the self-consistent LDA and
pseudopotential approximations with r, ~ ~ ). The solid,
however, is computed using the techniques described in
this work with r, =5a~. The values in the table reAect a
0.07-eV (Ref. 48) correction from the zero-point motion
of the solid, and a 0.65-eV (Ref. 48) correction of the
atomic energy due to spin-polarization efFects. The
cohesive energy is shown with and without the C
correction to the XC hopping matrix elements. The
agreement with experiment is quite good, indicating that
the ground-state energy of the solid is well described.

In Fig. 9 we show a plot of the contributions to the to-
tal energy (band-structure energy, short-range energy,
and exchange-correlation correction energy) versus cubic
lattice constant a. Also included in this figure is the total
energy for Si in the diamond structure. The energies on
an absolute scale are obtained by adding —34.4, —84. 8,
9.98, and —107.97 eV to cBs, UsR, 5Uxc, and E„„re-
spectively. Note that no one contribution to the total en-
ergy dominates, and so all contributions must be deter-
mined accurately in order to get satisfactory results for
the bulk modulus, equilibrium lattice constant, and so on.

The band structure of bulk Si is shown in Fig. 10.
These bands are on an absolute energy scale. As in most
tight-binding models, the valence bands are well de-
scribed, but the conduction bands are not as accurately
given. The conduction-band errors have little to do,
however, with the energetics of the system. We find an
indirect gap in the direction toward X, in agreement with
experiment. However it is at -60% of L instead of the
experimental value of -80—85%. The band gap we find
is 1.74 eV compared with the experimental value of 1.17
eV. The LDA tends to underestimate the gap, but by us-

10.0

0.0

0.0-
4k

$.0-

4P

0.5-

N)

c -10.0-

O.O
5 40 5 44 5 48 5.52 5.56 5.60

FIG. 9. The three separate components (cBs, 6Uxc, and UsR)
to the total energy, and the total energy E„, in Si vs cubic lat-
tice constant a. A di8'erent constant was subtracted from each
of the energies to get them on the same scale (see text). Notice
the change in scale from the top and bottom parts of the 6gure.

-20.0

~g(100)

FIG. 10. The band structure of crystalline Si.
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ing an sp basis our method overestimates the gap.
A more stringent test of the theory is the phase dia-

gram. We have investigated the total energy of the dia-
mond, sc, P-tin, fcc, and bcc lattices as a function of
volume. This range of phases gives both semiconductors
and metals, and a variety of coordination numbers from 4
to 12. The axial ratio for P-tin was kept fixed at the ex-
perimental value. %'e show the results in Fig. 11 as a
function of reduced volume V/Vo, where Vo is the exper-
imental zero-pressure (diamond) volume. The density-
dependent C correction factor in the XC (see Sec. IV D)
for the hopping matrix elements has been included. For
comparison, also shown in Fig. 11 are the theoretical re-
sults for the minimum-energy positions found by Yin and
Cohen rigidly shifted slightly vertically so that the
minimum energies in the diamond phases agree. The
Yin-Cohen calculations are self-consistent and were car-
ried out using a rigorous expansion in a complete set
(plane waves) of basis states. The agreement of our ap-
proximate method with the accurate calculations of Yin
and Cohen is outstanding. All the major features are
correct; the ordering is correct, the volumes of minimum
energy are in good agreement, and the energy differences
are in good agreement. This is particularly satisfying
since the energy scale for these differences is -0.01 Ry.
These results contrast markedly with empirical tight-
binding results, which give energy differences far too
large, and completely unstable fcc and bcc lattices.

In Fig. 12 we show the phase diagram for Si without
the correction factor C used to produce Fig. 11. Note
that all energies are lower in this 6gure because the XC
energy has been slightly overestimated. The most
significant feature is that the diamond structure is
brought down the farthest since the overestimate is larg-
est in this phase (see Fig. 7). Although the relative posi-
tions of the minimum energies have shifted slightly, the
physics is still much the same. In particular, we find that
the diamond structure is indeed the minimum-energy

-7.84

CC -7.86-

-7.84

-7.86-

-7.SS-
O
CO

-7.90-

-7.92-

-7.94 I I I I I

0.6 0.7 0.8 0.9 1.0 1.1 1.2
V/VG

FIG. 12. Same as Fig. 11,but without the C„correction.

configuration and P-tin the next-lowest-energy, high-
pressure phase.

The method has also been tested on a "low-density
phase, " the Si2 molecule. Here the density variation is
much greater than in the solid phases and is a more
stringent test of our approximate form of the XC.

We have determined the total energy of the Si2 mole-
cule versus separation and obtain a minimum-energy

0
configuration at d =2.27 A and a vibrational mode at
co=531 cm ' using the uncorrected effective density for
XC. These values compare well with experimental values
of d=2. 24 A and co=511 cm '. ' Correcting the XC
energy by the density-dependent correction factor C re-

0

suits in a minimum-energy configuration at d =2.29 A
and a vibrational mode at co=513 cm '. The large
reduction of distance between nearest neighbors, in going
from bulk Si to the molecule is extremely well reproduced
[0.11 A experiment, O. ll A theory (uncorrected XC),
and 11 A theory (corrected XC)]. In Fig. 13 we show the
eigenvalues of the one-electron Hamiltonian for Siz as a

0

function of separation. In equilibrium (2.27 A), the le.„
level is four-fold degenerate (including spin) and contains
two electrons. This figure is in excellent agreement with
other calculations such as the spin-polarized results of
Northrup et al. , who And that the doubly degenerate

-7.88-O

-7.90-
diamond

10.0

0.0 2'
1m'—
Jw„

-7.92 I I l I I I

0.6 0.7 O. S 0.9 1.0 1.1 1.2

VlVG

C4

~ -10.0.
—Ie„

1gg

FIG. 11. Total energy of Si in diamond, P-tin, sc, bcc, and fcc
crystalline phases as a function of reduced volume. The trian-
gles indicate the minimum-energy configuration determined by
Yin and Cohen. The triangles are not labeled, but have the
same energy ordering as the minimum energy of each of oui
phases. The C„correction has been added to the exchange
correlation hopping matrix elements.

-20.0 I ' I ' I ' I ' I ' I

4.8 2.0 2.2 2.4 2.6 2.8 3.0
d (A.)

FIG. 13. One-electron eigenvalues for the Si2 molecule as a
function of intramolecular separation.
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lm.„ level crosses the singly degenerate 2o. level at about
4.Oaz (2.12 A ), resulting in a new ground-state
configuration at smaller separations. We find the 1m„

0
level crossing the 2o. level at d =2. 12 A.

B. Molecular-dynamics simulations
I=30 K

A simulated annealing study of the Si3 molecule has
been performed in order to determine the minimum-
energy configuration. The simulated annealing was per-
formed with 150 time steps of length 3.2 fs each. On
each time step the Hellmann-Feynman forces on the
atoms were calculated and the equations of motion,

T=3600 K

expt.

I T I I S

300 600 900 1200

d 1;
2

were solved to compute updated positions of the three
atoms. To force the system to settle down to equilibrium,
it was quenched by setting the velocities equal to zero on
every other time step. The whole simulation takes a few
CPU seconds on a convex C220.

The results of the ca1culation are shown in Fig. 14. We
find Si3 to form an isosceles triangle with the two equal
sides of length 2.189 A and an opening angle of 78.8'.
Notice that it is quite far from the tetrahedral angle of
bulk Si. These results are in very good agreement with
much more rigorous calculations, such as those of Di-
ercksen et al. , who find d =2. 196 A and 8=80.6', or
Grev et a/. , who find d =2. 160 A and 8=78. 1 . .

A molecular-dynamics simulation of the simple vibra-
tional spectrum of Si2 at high and low "temperature" has
also been performed. The motion of the atoms in the
molecule was constrained so that the center of mass was
stationary and the molecule had no angular momentum.
The temperature" is defined so that the thermal energy
—,kz T is the average kinetic energy of the relative coordi-
nate. The Verlet ' algorithm was used with a time step
of 0.52 fs. The positions and velocities of the atoms were
computed as a function of time from the quantum-
mechanically derived forces, and the velocity autocorre-
lation function,

d = 2.189A
8 = 78.8'

FICi. 14. The ground-state configuration found by simulated
annealing of the Si3 molecule.

FIG. 1S. Spectral density of Si~ at low and high excitation
levels. The frequency softens at high excitation and develops a
small overtone feature. The experimental lowest-energy (quan-
tized) excitation frequency is also shown for comparison.

( v„(t) v„(0)).
g(t)= g

, (v„(0) v„(0)) (55)

was determined. Here, n is the atom index and the ( )
indicate an ensemble average. The ensemble average is
defined by

where t, is the time at step i Ii =0, 1, . . . , X I.
The Fourier cosine transform of the autocorrelation

function gives the spectral density g(co),

1 Tg(~)=Q I g(t)8'(t)cos(cot)dt,2' 0
(56)

where T is the total length of the simulation, A=2m/T,
and W(t) is the Blackman window function used to
reduce finite-time sampling oscillations.

In Fig. 15 we present results for Si2 for two tempera-
tures, T =30 and 3600 K. We have used -4000 times
steps, so that the spectral density is broadened by a width
of Q-20 cm '. Figure 15 clearly shows the anharmonic
effects of the mode softening at high excitation levels.
Also note that a harmonic of the fundamental frequency
begins to appear at high excitation levels. The intensity
of the harmonics up to ninth (not shown) are comparable
to those of the first harmonic. The frequency at the peak
at low temperature from the molecular-dynamics simula-
tion is the same as that obtained from the harmonic
analysis of Sec. VIA. This simple simulation opens the
door to straightforward first-principles simulations of the
vibrational modes of more complex clusters and the in-
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teraction and collision between clusters. This work is
currently in progress and will be I'eported separately.

VII. CONCLUSIONS

The approximate electronic-structure method we have
developed is physically motivated, fast and easy to use,
and is entirely first principles. It requires no experimen-
tal input, and avoids complexities. of more rigorous
methods. It is executed in real space and requires no
periodicity, and has been developed with applications to
simulations, such as molecular dynamics, in mind. The
method has been successfully tested on the physical prop-
erties of bulk material such as lattice constants, bulk

moduli, optical-phonon frequencies, and phase stability,
and on small Si clusters.
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