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Electron energy levels for a dense electron gas in parabolic GaAs/Al Ga& „As quantum wells
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Parabolic GaAs/Al„Ga& „As quantum-mell structures have been developed as a means of pro-
ducing a uniform three-dimensional electron gas. Calculations of the actual density profile and en-

ergy levels in the Hohenberg-Kohn-Sham local-density-functional approximation are presented for
several values of electron sheet density in the well. These results verify the predicted uniformity of
the electronic-charge-density distribution over the occupied portion of the mell and give more quan-
titatively correct estimates of the Fermi level and subband energy separations than available previ-
ously.

I. INTRODUCTION

Recent interest in the properties of high-mobility
three-dimensional (3D) electron gas in strong magnetic
fields' has led to the development of a novel structure,
the remotely doped parabolic quantum well. Using clas-
sical electrostatics and simple quantum-mechanical prin-
ciples, approximate properties of the electron gas in such
wells can be predicted: e.g., that the gas is roughly
uniform across a width proportional to the electron sheet
density n, in the well; that the Fermi level is roughly in-
dependent of n„once more than one subband is occu-
pied; and that the subband energy separations fall off ap-
proximately as 1/n, when a large number of electrons are
present. While experimental investigations of these
structures have been made which are consistent with
the above predictions, to date no detailed self-consistent
calculations of the electronic energy levels and wave
functions have been presented. The results presented
here verify that the behavior predicted by simple argu-
ments does occur and provide a quantitative determina-
tion of such experimentally important quantities as the
Fermi level, subband energy separations, and number of
occupied subbands, as functions of the number of elec-
trons in the well.

In Sec. II we describe the physical structure of an actu-
al parabolic well, present the model used in these calcu-
lations, and discuss the method of calculation itself,
which is similar to one used for GaAs/Al„Ga, „As
heterojunctions. Section III gives the results of our cal-
culations, and Sec. IV presents our conclusions.

II. METHOD OF CALCULATION

the donor ions from the electron gas and hence reduce
ionized-impurity scattering. The we11 itself consists of a
fine superlattice of 20-A period in which the relative
width of GaAs and A1Q 3Gap 7As layers in each period is
computer controlled to produce an average Al concentra-
tion varying quadratically from x=0 at the well center to
x=0.2 at the edge. The well is characterized by three pa-
rameters shown in Fig. 1(a): the height 5& and width to of
the parabola and the height 52 of the A1Q 3Gap 7As bar-
rier. Representative values of these parameters ' for a
wide remotely doped parabolic well are A&=15S meV,
62=7S meV, and m=4000 A.

In a semiclassical picture, where the wavelike nature of
electrons is ignored, the parabolic-well concept is based
on Poisson's law, d P(z)/dz =4am (z)e/e, where P(z) is
the electrostatic potential, n (z) is the 3D electron density
in the well, e is the electronic charge, and e is the static
dielectric constant. We choose z so that the well extends
from z=0 to z =u. The parabolic variation of the band
edge Vb(z)=46, (z —w/2) /w mimics a uniform 3D
positive charge distribution of density

n+ =2k,e/ne~w.
which the electrons in the well attempt to screen. We
speak of a well being full when the total sheet density n,
of electrons is sui5cient to completely screen the fictitious
positive charge, i.e., when n, =n+u. We expect a less
than full well with a fractional occupation f =n, /n+w
(1 will have an electronic density profile n (z) which is
roughly constant and close to n+ over a width approxi-
mately w, =fw about the center of the well, as shown in

A typical (truncated) parabolic quantum well is illus-
trated schematically in Fig. 1(a). As described by Sun-
daram et ai. the wells are made by molecular-beam epi-
taxy and consist of GaAs and Alp 3Gap 7As bufFer layers
on a CsaAs substrate, followed by a Si-doped Alp 3Gap 7As
donor layer, an Alp 3GaQ7As setback, and the 'parabolic
well proper. On the other side of the well are a symme-
trically placed setback and donor layer, an A1Q 3Gap 7As
bufFer, and a GaAs cap. The setbacks serve to separate

n(z)

(a) empty (b) partially full

FIG. 1. Schematic illustration of the conduction-band edge
in (a) an empty well and (b) a partially full well.
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Fig. 1(b). Thus the well acts to create a dense, spatially
uniform electron gas of constant density and variable
width, with a uniform positive background simulated by
the parabolic well. The absence of ionized donors from
the well results in a greatly enhanced low-temperature
electronic mobility, measured to be as high as
p =2. 5 X 10 cm /V sec.

In the quantum-mechanica1 picture, the charge density
en(—z) is built up from a superposition of wave func-

tions for the different electric subbands of the well. Ig-
noring possible collective states, ' the energy of the elec-
tron gas in a given subband i is the sum of the energy for
motion in the x-y plane and the self-consistent energy lev-
el E;. The energy levels E; are expected to be harmonic-
oscillator-like when f &&1 and approach a square-well
spectrum E; =Eoi, where Eo o-1/w, is the ground-state
energy of a square well of width w, approximately equal
to the width of the electron layer, as f approaches 1. As
the well is filled with electrons the Fermi level
Ez —EI remains relatively constant, corresponding to
constant density; the energy spacing of the subbands de-
creases with the increased width of the electron layer,
and the number of occupied subbands increases.

The dielectric constant and effective mass have a small
quadratic variation across the well from the change in Al
'concentration. For this calculation, we have taken both
to be constant and equal to their average over the well, so
that @=12.87 and m*=0.0753m„where m, is the bare
electron mass. With this choice of e and m*, and
5I =155 meV and w=4000 A as given above, the design
density is n+ =5.SX10' cm . In order to avoid the
computational diSculties associated with an abrupt
change in band-edge potential, the barrier height hz at
the edge of the well has been taken to be infinite in our
calculation. This approximation is expected to be reason-
able, because the relevant electronic energies are small
compared to Az. For example, the density n+ above cor-
responds to a 3D Fermi energy Ez —E

&

=—1.5 meV.
Moreover, the electron density falls o6' rapidly beyond a
distance m, /2 from the well center, so the requirement
that n (z) vanish in the barrier should be reasonable forf&0.8.

Following a procedure similar to those used for
GaAs/Al„Gai „As heterojunctions, the envelope func-
tion g,.(z) of electrons in the ith subband is assumed to
satisfy the Schrodinger equation:

fi d, —
i g;(z)+ V(z)g;(z) =E;g;(z),

2m ck

where E; is the energy of the bottom of the ith subband
and V(z) is the total self-consistent potential. The poten-
tial V(z) can be expressed as

v(z) = v„(z)+ v„(z)+ v„,(z),

where Vb(z) is the parabolic band-edge potential de-
scribed earlier, Vi, (z) is the electrostatic potential of the
electron gas, and V„,(z) is the exchange-correlation po-
tential in the Hohenberg-Kohn-Sham local-density-
functional approximation. The electrostatic potential is
given by

27T8
Vt, (z)= — I n(z')iz z'—idz' .

E 0

The electron-density profile in the well n (z) is

n (z)= y„n, ~ g;(z) I',

(3)

where the sheet density n; in the ith subband is

n, =m '(E~ E; )—/sruti

equi
Q

m*e (7)

The z dependence of V„,(z) lies in x =r, /21 and
r, =r, (z):—

r, (z)=[34m.(a*) n (z)]

V„, is typically =—244 meV in the electron layer for our
calculation. As is standard in these calculations, we have
identified the eigenvalues E; and envelope functions g;(z)
with the true subband energies and wave functions, even
though the local-density-functional approximation
guarantees correct results only for the many-body
ground-state energy. We have also ignored image-
potential interactions due to the dielectric discontinuity
at the well edge, since the change in dielectric constant is
small, on the order of 3%;

III. RESULTS

The computed electron density n (z) is shown in Figs.
2(a) —2(d) as a function of position in a 4000-A well with
6,=155 meV, t =12.87, and m =0.0753m, for four in-
creasing values of total sheet density n, . Also shown are
the contribution to the total density from each subband
n;~g;(z)~ when more than one subband is occupied and
the total self-consistent potential V(z) including band
edge, electrostatic, and exchange-correlation terms. For
w, 6I, e, and m* as above, the 3D design density is
n+ =5.5X10' cm, so that a full well will have the
sheet density n, =2.2X 10"cm . The four choices of n,
here correspond to fractional fillings of f =n, /n+ta
=0.11 in Fig. 2(a), f=0.26 in Fig. 2(b), f=0 465 in Fig. .
2(c), and f=0.59 in Fig. 2(d).

When only one subband is occupied [Fig. 2(a)], the
density profile is sharply peaked. The total potential is
narrow and not noticeably Aattened, with a minimum ly-
ing at the center of the well. As the well fills and more
subbands become occupied, the profile broadens and Qat-
tens over the occupied portion of the well. The total den-

and EF is the Fermi energy. The form of the exchange-
correlation potential which we chose is one suggested by
Hedin and Lundqvist and used by Stern and Das Sarma
in an investigation of GaAs/Al Gai „As heterojunc-
tions:

V„,(z) = —[1+0.7734x ln(1+x ')](2/mar, ) Ry*, (6)

Here a = (4/9m)', and the unit of energy is the effective
Rydberg, 1 Ry':—e /2@a, where a' is the Bohr radius
in the well,
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FIG. 3. Calculated actual width Az and the nominal
electron-gas width w, vs n, . A completely full well corresponds
to N, =2.2X10"cm

FIG. 5. Theoretically calculated Fermi-leve1 EF—E& and
energy-level separations E; —E& vs n, .

the Fermi level is nearly constant, as for a 3D electron
gas, rising only from E~—E, = 1.45 meV at
n, =1.0X10" cm to E+—E&=1.50 meV at n, =1.8
X10" cm . The value near which it is Axed is the 3D
Fermi level Ez —E& =1.5 meV calculated from n+ alone,
as in the simple picture described in Sec. II. As expected
the subband separations drop rapidly with increasing n,
as the electron layer becomes wider.

In Fig. 6 we show the separations between adjacent
subbands E;+i E; plotted —versus the filling fraction f
for i =1—5. For small values of f, the separations are al-
most independent of i and f (and therefore n, ), as expect-
ed for a simple harmonic oscillator: For f=0.01,
E2 —E, =2.96 meV and E6 —E5 =2.80 meV, in excellent

agreement with the expected separation for a simple har-
monic oscillator irt(8b, i/m'w )' =2.80 meV. However,
as the filling fraction increases above f=0.10, the sub-
band separations begin to vary with index i and fall rap-
idly with f. When the well is nearly full and f ap-
proaches 1, the subband separations fall approximately as
1/f, as for the simple picture of a square well of variable
width discussed in Sec. II. For comparison, the separa-
tion of the first two energy levels E2 E, ~ 1/f —for a
square well of width equal to the nominal width of the
electron layer w, =fw is also shown in Fig. 6 as the solid
line. As shown the energy separation from this simple
model is larger and falls somewhat faster with f than the
results of the self-consistent calculations; we return to
this point below. The subband separations E;+,—E;
from the self-consistent calculation increase with i in an
approximately linear way for f)0.60, as for square-well
energy levels E, ~i /w,
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FIG. 4. Electron density and total potential for self-
consistent calculations with ( 0 ) and without ( X ) the
exchange-correlation potential for n, =0.77 X 10" cm . The
third density profile (f) was calculated for the same value of n,
assuming the subbands and energies were those of a square well
of width w, (see text).
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FIG. 6. Calculated subband separations E;+&—E; for i =1—S
vs n, . The solid line is the separation of the lowest two energy
levels in a square well of width w, .
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FICr. 8. Calculated fractional subband occupations f; vs n,
fori =1—6.

The calculated separations between occupied energy
subbands can be fit very closely by a square-well spec-
trum; this fit can be used to define an effective square-well
width w, . We made such fits using the separations
E; —E, for all E; up to and including the energy of the
first unoccupied subband, and present the results as a
function of n, in Fig. 7. For n, )0.2X10" cm the
effective well width w, is linear in n, but greater than the
nominal electron gas width w, by a fixed amount =-400
A, which is independent of n, . Thus the energy separa-
tions are smaller than one would obtain by setting
w, =w„as shown in Fig. 6 for E2 —E, . Because the ac-
tual width of the electron layer hz closely approximates
the ideal width w„ the effective square-well width w,
must be larger to provide space for the wave functions to
approach zero. The sine density profile n (z) in Fig. 4 was
calculated using an effective width w, chosen by the pro-
cedure just described; clearly a square-well model pro-
vides a good approximation to self-consistent density
profiles and energies if the effective width w, is chosen
correctly.

In Fig. 8 we show the fractional occupation of each
subband f; =n; In, as a function of the sheet density n,
As shown, for n, )0.45 X 10" cm (f)0.20) a
significant fraction of the electrons are not located in the
lowest subband. Consequently the electronic transport

properties could be controlled to an appreciable extent by
properties of the higher subbands.

IV. CONCLUSIONS

Parabolic quantum wells were conceived on the basis
of semiclassical and classical arguments. While we have
made a number of simplifying approximations in our cal-
culations, it seems clear that a full quantum-mechanical
treatment of energy levels in these wells supports the
original arguments. The wells hold an electron gas with
fixed 3D density approximately equal to the design densi-
ty n+ over a variable width proportional to the total
sheet density n, . The Fermi level is found to be approxi-
mately independent of n, and close to the 3D Fermi level.
The spacing between energy levels decreases as n, in-
creases, and the level separations come to approximate
those of a square well of variable width as the well be-
comes full.
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