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Density of states and temperature dependence of the exponent
in the light-intensity behavior of a-Si:H photoconductivity
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We report experimental measurements concerning the temperature dependence of the y exponent
in the light-intensity behavior of the photoconductivity of hydrogenated amorphous silicon (a-Si:H).
We find that good agreement between experimental results and numerical calculations is achieved if
a peak in the density of states (DOS) above the dark Fermi level is assumed. Other forms suggested
for the DOS in a-Si:H are surveyed for comparison. Finally, we propose a simple relation between
DOS and measurable quantities and make estimates for some physical parameters for this material.

INTRODUCTION

Transient photoconductivity as well as steady-state
photoconductivity techniques have been used to obtain
information about the recombination of carriers with lo-
calized states in the gap, as well as the energy distribution
of those states. Experimentally, for a wide range of tem-
peratures and light intensities, the photoconductivity o.

ph
is proportional to I~, where I is the light intensity and y
a quantity dependent on temperature and light intensi-

1 —3

A good deal of theoretical work has been devoted to
this subject in order to explain the o ~h versus 1/T and
0 ph versus I behavior in amorphous semiconductors.
However, little attention has been paid to the tempera-
ture dependence of the exponent y. Rose was the first to
obtain an explicit form of the y dependence with the tem-
perature for some semiconductors. By modeling the trap
distribution with an exponential function of the energy in
the form g (E)=g, exp[ (E, E)/E, ] he —f—ound

y=E, /(E, +kT) .

In the case of hydrogenated amorphous silicon (a-Si:H)
the applicability of this result is not obvious. For exam-
ple, Bhattacharya and Narasimhan carried out numeri-
cal calculations and found the same temperature depen-
dence of y as Rose's result for different forms of density
of states. They concluded that neither the intensity
dependence of photoconductivity nor the temperature
dependence of the exponent may be used as evidence for
an exponential gap-state distribution.

Other authors ' have obtained results similar to Rose's
by modeling the conduction-band tail with an exponen-
tial function, and other simple y-T relations depending
on the approximations and the model used in their calcu-
lations. A serious problem is that the experimental re-
sults on the temperature dependence of y reported in the
present work and by other authors cannot be explained
by Rose's result. Nevertheless, many authors (see, for ex-
ample, Refs. 2, 3, and 10) use Rose's work to explain
their experimental results.

The aim of the present work is to present simple (but
complete) numerical calculations that satisfactorily ex-
plain our experimental results of the y dependence on
temperature for undoped a-Si:H as well as a simple ex-
pression relating density of states and measurable quanti-
ties.

EXPERIMENTAL DETAILS

Undoped amorphous silicon films were deposited onto
Corning 7059 glass substrates by rf glow-discharge
decomposition of silane. The characteristics of the two
samples used in the present work are as follows. Sample
1 (sample 2): silane pressure equal to 500 mTorr (150
mTorr), substrate temperature of 255 C (240 C), power
dissipation of 146 mW/cm (86 mW/cm ), sample thick-
ness of 3.6 pm (1 pm), and dark activation energy equal
to 0.81 eV (0.79 eV). Good Ohmic aluminum contacts of
1 cm length and 0.5-mm spacing were deposited by eva-
poration.

Illumination was supplied by a tungsten lamp with a
red filter centered at 620 nm. Light intensity varied from
10" to 10' photons/cm s. With this intensity of light
we are sure that the Staebler-Wronski effect never hap-
pened in the sample. "The sample was introduced into a
vacuum chamber (P -8 X 10 Torr) and the tempera-
ture was varied from 200 to 400 K. Prior to each experi-
ment the sample was annealed for 30 min at 200 C and
8X10 Torr. With a voltage bias of 50 V the photo-
current was measured with an electrometer (Keithley
619) and then the value of y was extracted from a photo-
current versus light intensity plot for each temperature.
%'e should note that at higher light intensities than those
reported in the present work a curvature appears in the
plot of log(I) versus log(o h). To avoid this curvature,
we worked in the low-light-intensity region.

MODEL

The fractional occupation f (E) of gap states of energy
Eis
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f =nb„/(nb„+a„) .

Here n is the electron concentration, a„ is the transition
rate from gap states to the conduction band, and b„ is a
trapping coe%cient. In this model we suppose
a„=a„,+a„„where a„,=Ncb„exp[ (E—, E—)/kTJ is
the thermal excitation rate [Nc=kTg(E, )], and a„, is
the optical transition rate, which we assumed to be pro-
portional to the light intensity I in the form a„,=o.*I
with cr* the optical cross section. The neutrality condi-
tion is

(n n—o)+ f ' f (E)g (E)dE= f [1 f(E)—]g (E)dE,

bination coefficient. Expression (6) is valid if recombina-
tion is dominated by carriers in transport states. At low
light intensities —which is the case in the present
work —and not very high temperatures, the distribution
function f (E) is given by Eq. (2) cut off' at the quasi-
Fermi-level Ez„given by

Ez„=E,—kT in(jV, /n),
hence, the upper limit in Eq. (6) can be approximated by
EF„. If we suppose n -G~ then d [ln(n)]/d [ln(G)] =y.
Extracting this logarithmic derivative from Eq. (6) at
constant temperature we have finally

(3) g(E„„)=', (G/b—,n)[(y ' —1)/kT] . (8)

where no is the dark value of n and g (E) is the density of
states. In amorphous semiconductors the trapped con-
centration will normally exceed the free concentration
and the term n no can b—e neglected. Equation (3) be-
co111es

nb„g (E) EF a„,g (E)dE= dE,
F nb„+a„,+ano „nb„+a„,

where a„, is neglected for E & EF. We suppose that b„ is
independent of energy and takes the value found in tran-
sient experiments' of -4X10 cm s '. Finally, we as-
surne that ano is independent of the energy.

After rearranging Eq. (4) becomes

nb„(1+nb„/a„, )f dE
n nt +ano

=f g (E)dE =const=—K . (5)

jV

G=b„n f f(E)g(E)dE, (6)

where 6 is the optical generation rate and b, is a recom-

Supposing a specific model of the density of states g (E),
we plot log(a„, ) versus log(n) and compute the slope (y)
for various temperatures. The values of a„were selected
in order to make no negligible compared with n, and,
from this point, ano was varied 4 orders of magnitude up-
wards. Typically, ano varied from 10 to 1 s '; the
upper limit in ano was chosen to avoid the curvature in
the log(a„, ) versus log(n) graph. This kind of curvature
has been found experimentally in a-Si:H for high light in-
tensities. " Using the optical cross-section value found in
the present work of —10 ' crn, the equivalent values of
the light intensities are from 10' to 10' photons/cln s,
which are much less than -3 X 10' photons/cm s (100
mW/cm of red light) used as a minimum light intensity
to produce the Staebler-%'ronski effect. "

Note that details in the form of g (E) below EF are ir-
relevant in the present model [see Eq. (5)] and the value
of the constant E will generally depend on the form of
g(E) near the valence-band edge. For instance, if we
model g (E) near E„as g (E, )exp( E/E2 ) then-
K�=E2(E,). On the other hand, in order to obtain an
explicit expression for the density of states, we use the re-
lation

As 6 =eqI, where a is the absorption coefficient and q
the quantum efficiency, then Eq. (8) becomes

g, (E)=g3exp( E/E3 )+g2—exp[ —(E E~) /E2)—
+g&exp[ —(E, E)/E& ], — (10)

where g& =g3=10 ' eV 'cm, g2=10' eV 'cm
E] =25 meV, Ez = 140 meV, E3 =45 meV, and E4 =0.8
eV. In this work the zero in energy was taken at the
valence-band edge, i.e., E, —0 eV and E, = 1.8 eV.

(b) Exponential valence tail, Gaussian distribution in
the middle of the gap, and Gaussian distribution for the
conduction tail,

gb(E) =g3exp( E/E3 )+gzexp—[—(E E~ ) /Ez ]—
+g, exp[ (E, E) /Ef—], —

where all the parameters are the same as in model (a), al-
though in this case we worked with two values for E&. 65
and 100 meV. The Gaussian form for the DOS near E,
has been used in Ref. 7.

(c) Exponential band tails and two Gaussian distribu-
tions in the middle of the gap, '"'

g, (E)=g3exp( E/E3)+g2exp[ ——(E E4) /E2]—
+gzexp[ (E E~ ) /Ez]——

+g, exp[ (E, E)/E, ], —— (12)

where all the parameters take the same values as before,
except the following: E

&

=25 rneV, E3 =50 meV,
E~ =0.8 eV, E~ = 1.2 eV, and two cases for E2 (E2 =60
and 100 meV). In all the situations the dark Fermi level
was taken 1 eV from the valence-band edge.

g (EF„)=go(a„, /n)[(y ' —1)/kT],

where go =2aq/3o. *b„. Note that the validity of relation
(8) is limited by the approximation of the upper limit in
the integral of Eq. (6).

We worked three different models of the gap density of
states (DOS) frequently used in the literature for a-Si:H,
namely the following.

(a) Exponential band tails and a Gaussian distribution
in the middle of the gap (see, for example, Ref. 13),
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RESULTS AND DISCUSSION
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Figure 1 displays the experimental results of y
against T for the two samples used in the present work
[dots (sample 1) and crosses (sample 2)]. We first note
that these results cannot be explained with Rose's result
(dashed line). The solid line corresponds to calculations
based on model (c) described above for the DOS with
Ez =60 meV [see Eq. (12)].

In Fig. 2 we show the behavior of y
' versus T for

model (a) given by Eq. (10). In the inset, a graph of the
DOS is shown. We note that Eq. (1) is obtained as an
asymptotic approximation at low temperatures (dashed
line). Also shown in the inset is a solid line which shows
the region in the DOS swept by EF„when the light inten-
sity is varied by 4 orders of magnitude at a Axed tempera-
ture. The conversion into an energy scale is done by us-
ing the definition of the quasi-Fermi-level EF„[Eq.(7)].

From Fig. 2 it is clear that, in the low-temperature re-
gion, EF„moves in the exponential band tail and then y
behaves as Eq. (1); but in the high-temperature region the
result obtained with our model differs from Rose's result
(dashed line) because EF„moves in a region of the DOS
which is not a simple exponential. With this model of
DOS we cannot reproduce the experimental results (see
Fig. 1).

In Fig. 3 the behavior of the temperature dependence
of y

' is shown when we model the DOS by gb(E)
represented by Eq. (11) with Ei =65 meV (curve A) and

E, =100 meV (curve B), as shown in the inset. Again,
the solid line in the DOS represents the region in which
EF„moves at fixed temperature and changing light inten-

sity.
An important feature of that result is that when the

conduction tail is modeled by a Gaussian distribution we
cannot obtain a Rose-type behavior; i.e., the results
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shown in Fig. 3 cannot be approximated in any region by
y '=1+kT/E]. We should note that this result is op-
posed to Bhattacharya and Narasimhan's numerical pre-
diction. Again, with this model of the DOS we cannot
reproduce the experimental results obtained in the
present work (see Fig. 1).

In Fig. 4 we show y
' versus T when the DOS is

modeled by two Gaussians in the middle of the gap [Eq.
(12)] with Ez = 100 meV as shown in the inset. The main
features of this result are (1) at very low temperatures we
recover asymptotically Eq. (1) which corresponds to the
region in energy where E~„moves into the exponential
conduction-band tail; (2) around room temperature, the
Gaussian peak located above EF becomes very important
in the form of y( T); and (3) there is some similarity be-

FIG. 2. Numerical calculations of y
' vs T using the density

of states that is shown in the inset; the dashed line corresponds
to Rose's result. The solid line in the density of states corre-
sponds to the region where the quasi-Fermi-level moves at the
shown temperature.
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FIG. 1. Graph for experimental values of y
' vs T. Dots

(sample 1), crosses (sample 2), and theoretical calculations (solid
line) assuming a Gaussian peak in the density of states centered
at 1.2 eV above the valence-band edge and a width of 60 meV.
Dashed line corresponds to the Rose-type approximation.

FIG. 3. Numerical calculations of y
' vs T using the density

of states shown in the inset. Curves 3 and 8 correspond to a
Gaussian conduction tail width of 65 and 100 meV, respectively.
The solid line in the density of states corresponds to the region
where the quasi-Fermi-level moves at the shown temperature.
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FIG. 4. Numerical calculations of y vs T using the density
of states shown in the inset. Dashed line corresponds to the re-
sults of Rose. The solid line in the density of states corresponds
to the region where the quasi-Fermi-level moves at a fixed tem-
perature,

and we have b„lb„-4X10 i) which means, as i) ~1,
that b, &b„. In the multiple trapping theory we have
the weak recombination regime when b„&b„and strong
recombination regime in the opposite case. Hence the
material studied in the present work falls within the weak
recombination regime and it is consistent with previous
experiments on transient photoconductivity. '

The constant g0 in Eq. (9) takes the value
g0=2K/3b„-8. 3X10 cm s; a graph of the original
density of states and g (E) calculated with Eq. (9) appears
in Fig. 5(a). The quantities a„, and n are solutions of Eq.
(5), and the value of y is extracted from these values. We
note that the general form of the original g(E) is repro-
duced but there is disagreement at low energies which
correspond to high temperatures in the energy scale given
by Eq. (7). Let us now make some estimates of the densi-
ty of states for sample 1. At T =300 K, the experimental
values are I=6.86X10' photons/cm s, cr=9.4X10
(Qcm) ', and y '=1.2. Now using a„,=cr I and
n =o/qp with p, =5 cm V 's ' and o*—10 '4 cm2 we
have a„,-0.7 s ' and n —1.17X10"cm . With these
values and Eq. (7) the energy scale at T =300 K is

tween this result and the experimental form of y '(T).
We have, therefore, worked with the Gaussian width. A
good fit to the experimental results is observed when
E2=60 meV for sample 1. This result is plotted as a
solid line in Fig. 1.

The peak above EF corresponds to doubly occupied
negatively charged dangling bonds which are unoccupied
in intrinsic a-Si:H at 6 =0, but are highly occupied for
values of 6%0.' On the other hand, the energy location
of the dangling-bond levels, neutral (D ), and doubly oc-
cupied (D ) dangling bonds, has been classified into two
groups. ' Cxroup A placed D at 0.8—0.9 eV and D at
1.2-1.3 eV below E„and group 8 placed D at
0.5-0.65 eV and D at 0.9—1.1 eV below E, .' In the
present case we choose the energy levels of 1 eV for D
and 0.6 eV for D below E, as in Kocka's model' for
undoped a-Si:H (group 8). Additionally we assume an
efFective correlation energy of U =0.4 eV (Ref. 16) and
that the dark Fermi level is pinned between the D and
D levels. '

At this stage we are able to estimate some parameters.
For sample 1 and using model (c) for the DOS, at T =300
K the value of the optical cross section (o *) is obtained
as follows: We select a„,=1 s ' and solving Eq. (5) for n
we obtain n =1.2X10" cm, using the expression for
the conductivity (o =quan) with p taken arbitrarily as 5
cm V 's ', ' we see that the value measured for I
which corresponds to that value of the conductivity (and
consequently n) is 6.8X10' photons/cm s; so the value
of o' =a„,/I is —1.4 X 10 '" cm .

Using the equivalence between Eqs. (5) and (6) we have
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b„/b„-ag/Kcr*, (13)

with u(2 eV)-2X10 cm ', o*—10 ' cm, and
K =5X10' cm [here K =E3g(E, ) with E3=50 meV
and g(E„)=10 ' eV 'cm for model (c) of the DOS],

FIG. 5. (a) Original density of states (solid line) and calculat-
ed DOS using an inversion formula (dotted line). See text. (b)
Gap density of states against energy for sample 1. These values
were deduced using the measured quantities T, I, o., and y, and
Eq. (9). See text.
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EF„—1.32 eV. Finally with go=8. 3X10 cm s and
Eq. (9) we have g(1.32 eV)-4. 2X10'6 cm 3eV '. Fig-
ure 5(b) shows a more complete graph of the density of
states versus energy in the gap for sample 1.

CONCLUSION

Using a very simple model we are able to reproduce
satisfactorily experimental results of the temperature
dependence of y. Our experimental results cannot be ex-
plained by Rose's result. However, with our model we
confirm it as an asymptotic behavior at very low tempera-
tures when the quasi-Fermi-level moves into an exponen-
tial band tail of the density of states near the conduction-
band edge.

We have deduced a very simple expression for the den-
sity of states which is more accurate at low temperatures.
This result can be generalized to any amorphous semi-
conductor.

The material studied in the present work falls within
the weak recombination regime, i.e., b, &b„and if we
take the quantum e%ciency as unity then b„—1.6X10
cm's

Finally, we think that in a better approximation it
would be necessary to consider the energy dependence of
b„.
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