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Electronic structure of the (GaP), /(Inp), (111)strained-layer superlattice
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A first-principles all-electron band-structure calculation for (GaP), /(InP), (111)monolayer super-
lattice reveals a novel band structure with a direct energy-band gap. The state at the bottom of the
conduction band is strongly localized in the GaP layer, which is made from the states at the I and
L points in bulk zinc-blende GaP. The state at the top of the valence band is weakly localized in the
InP layer. The direct energy-band gap is smaller by 0.33 eV than the average of the gaps of bulk
GaP and InP at the I point. We elucidate the relation between the energy band and the strain
through a calculation of some auxiliary systems.

I. INTRODUCTION

Modern crystal-growth techniques such as molecular-
beam epitaxy and metalorganic vapor-phase epitaxy
(MOVPE) have made possible laboratory synthesis of
ultrathin-layer superstructure. Among a variety of the
superstructures, there is a special group of materials
which spontaneously construct the superstructure under
certain experimental conditions. One of them is the
(GaP) i/(InP) i monolayer superstructure in the [111]
direction. Gomyo et aI. ' found that this system grown
continuously by MOVPE exhibits an atomic ordering,
which has recently been revealed to be the (111) mono-
layer superlattice by transmission electron microscopy,
and for which a formation mechanism has been pro-
posed. This material has special importance if one con-
siders the following points: It consists of GaP and InP,
which have lattice constants that are very different from
one another by 7.4%. It is a typical example of the ul-
trathin strained superlattice, with which we can study the
relation between the band structure and the strain. The
band gap of this superlattice is measured to be smaller by
80 meV than that of the disordered mixture, which may
be a result of the peculiar band structure of this superlat-
tice.

We have performed a self-consistent band-structure
calculation for the (GaP), /(InP), (111)superlattice by us-

ing the all-electron full-potential linearized augmented-
plane-wave (FLAPW) method within the local-density-
functional formalism. In this paper, we will find that (i)
this superlattice has a direct band gap; (ii) the charge
density of the lowest conduction state is localized strong-
ly in the GaP layer, and this state is made from the states
at the I and L points of the bulk GaP; (iii) the highest
valence state is weakly localized in the InP layer. We will
discuss the origin of these features, and the relation be-
tween the strain and the band structure.

The organization of this paper is as follows. In Sec. II,
we determine the lattice parameters of the superlattice

with the Keating model. In Sec. III, the band structure
of the superlattice is presented. Section IV is devoted to
a discussion of the relation between the band structure
and the strain. We give a conclusion in Sec. V.

II. CRYSTAL STRUCTURE

It is important to determine the crystal structure care-
fully before starting to calculate the band structure, be-
cause the lattice parameters of bulk GaP and InP differ
by as much as 7.4%, though these compounds have the
same lattice type as zinc blende. In order to determine
the lattice constants and the stable atomic positions in
the superlattice, we employ the Keating model with two
valence force constants of bond stretching and bond
bending. The force constants have been set to fit the bulk
elastic constants to the experimental values, and they are
shown in Table I.

We start with the ideal zinc-blende lattice, and put Ga,
In, and P atoms on the lattice to make the (GaP), /(InP),
monolayer superstructure in the [111]direction: the su-
perlattice has a trigonal Bravais lattice associated with
the point group C3„with space group R3m. Then, we
change the lattice constants and the atomic positions ac-
cording to the forces provided by the Keating model. Fi-
nally, we obtained the stable structure, which is shown as
system C in Table II and Fig. 1(a). Though the superlat-

GaP
InP

r (a.u. )

4.461
4.802

o; (mRy/a. u. )

57.13
51.33

P (mRy/a. u. )

14.96
9.92

TABLE I. Parameters in the Keating model: r is the equilib-
rium interatomic distance, a the bond-stretching force constant,
and p the bond-bending force constant. The bond-bending force
constant for Ga—P—In is assumed to be the arithmetic mean of
P's in this table. (1 Ry = 13.6058 eV 1 a.u. = 0.529 177 A. )
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TABLE II. Crystal structures used for the band-structure calculations. The values are referred to the hexagonal basis set. System
C is the superlattice determined by the Keating model. 2'4 =0.041 66, 6

=0.16666, and 2'4 =0.208 33. c =a&24 for A, D, and E sys-

tems. The cubic lattice parameters for system 2 are 10.3012 a.u. for GaP and 11.0900 a.u. for InP.

System

a=b (a.u. )

c (a.u. )

GaP

7.2840
35.6844

InP

7.8418
38.4169

7.5110
37.1166

7.5110
37.2640

7.5110
36.7962

GaP

7.5110
36.7962

InP

7.5110
36.7962

Ga
P(I)
In
P(II)

24

0.0
1

24

z coordinate for atomic positions
0.0 0.0
0.0282 0.0371
0.1576 0.1659
0.2131 0.2137

1

24
1

6
5

24
1

24

OP8 ln
OGa

~Z

XlO~~~~w
:D (
0

tice has a trigonal Bravais lattice, we refer to the corre-
sponding hexagonal axes as usual. The length of the c
axis corresponds to the double of the body diagonal of
the cubic cell. The length of a and b axes corresponds to
a half of the face diagonal of the cubic cell.

The determined superlattice which is referred to as sys-

tern C has the following features. (i) The lateral lattice
constant, a, shrinks by 0.7% compared with the average
one (7.5629 a.u. ) of the constituent compounds. (ii) The
c/a ratio is 4.9613, which is elongated from the ideal
value, &24=4. 8990. As a result, the volume of the unit
cell is smaller than the average one of the constituent
compounds by 0.8%. (iii) Ga—P and In—P bond lengths
in the c direction are similar to those of the constituent
compounds within 0.1%, while (iv) lateral bonds near the
superlattice plane are elongated by 2.0% for Ga—P, and
are shortened by 2.4% for In—P compared with those of
the constituent compounds, respectively.

For the purpose of further elucidating the feature of
the above superlattice determined with the Keating mod-
el, we will also treat two auxiliary superlattices: One,
which is referred to as system D, is that in which the a
and b axes are the same as those of the above s~uerlattice,
while the c/a ratio takes the ideal value (&24), and all
the bond lengths are exactly the same; the other system,
which is referred to as system 8, is that in which the a
and b axes are the same as the previous ones, awhile the
Ga—P and In—P bond lengths coincide with the bulk
values of the constituents, respectively. In Table II, we
summarize the systems treated in this paper, together
with the pure compounds. System 2 contains the pure
GaP and InP with experimental lattice parameters. Sys-
tem E contains the pure compounds with the same lattice
parameters as in system D. Table III shows the extent of
the strain of each system by presenting the deviation of
the bond length from the bulk values.

The Brillouin zone of the superlattice is shown in Fig.

FIG. 1. {a) The crystal structure of the superlattice, which
has a trigonal Bravais lattice. The crystal axes are shown for
the hexagonal lattice, which are referred to represent the posi-
tions of atoms in Table II. It has two kinds of phosphorus
atoms: one, P(I), makes the staggered honeycomb layers togeth-
er with Ga, which are called GaP layers, and the other, P(II),
makes InP layers. (b) The first Brillouin zone and the high-
symmetry points.

Ga—P(I)
Ga—P(II)
In—P(I)
In—P(II)

0.0
0.0
0.0
0.0

2.0
—0.08
—0.08
—2.4

3.1

3.1
—4.2
—4.2

3.1

3.1
—4.2
—4.2

TABLE III. Deviation of the bond length from the bulk
bond length. Ga—P(I) bonds construct the GaP layer and In-
P(II) bonds construct the InP layer. Ga—P(II) and In—P(I)
bonds have a direction parallel to the c axis of the hexagonal
coordination system.

(%) & (%) C (%) D (%) E (%)
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l(b). The correspondence of the high-symmetry points
between the superstructure and the zinc-blende structure
is as follows: I corresponds to I and I, D to L and X,
and Z to the halfway point on the line of I —L.

III. RESULTS

Figure 4 shows the charge density of the state at the
top of the valence band. It is mainly made of the 3p
states of P, as is generally seen at the valence-band top in
the III-V compounds. It has larger weight in the InP lay-
er than in the GaP layer, which implies that the potential
of the InP layer is higher than that of the GaP layer.

Self-consistent band-structure calculations have been
performed by using the all-electron FLAP%' method, in
which the linearization is done with the scheme of Take-
da and Kubler. Ga 3d and In 4d electrons are treated as
the core electrons, which are relaxed fully in the self-
consistent procedure.

The energy-band structure of system C is shown in Fig.
2. It has a direct band gap of 0.73 eV at the I point. The
band structure is drawn along the line of Z —I —D —I",
where the line I —D goes from the first Brillouin zone to
the second one through the upper hexagon in Fig. l(b),
and the last I sits at the center of the second Brillouin
zone. This line corresponds to the lines of
(I L /2) I X L— a—nd —(I L /2) L L —I— i—n the zinc-
blende (fcc) structure, where (I L/2) stands for the half-
way point on the line I —L. In order to elucidate this
correspondence, we show the band structures of bulk
GaP and InP in Fig. 3, where the states are identified in
terms of the high-symmetry points in the fcc Brillouin
zone. By comparing Fig. 2 with Fig. 3, we can often
identify the states of the superlattice approximately by
the special points in the fcc Brillouin zone. Examples of
such identification are shown in Fig. 2.

I,'a, 'I

0.5-

K

0.0

-0.5

z r D

I', 3,'I
0.5

u 0.0 F00

X

-0.5

FICi. 2. Energy-band structure for the superlattice of system
C, which has the structure determined by the Keating model.
The letters I, L, and X inside the figure show the approximate
identification in terms of the high-symmetry points of the zinc-
blende Brillouin zone.

FIG. 3. Energy-band structures for the bulk (a) GaP and (b)
InP of system A that are folded into the trigonal Brillouin zone.
The letters I, L, and X inside the figure show the identification
in terms of the high-symmetry points of the zinc-blende Bril-
louin zone.
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IV. DISCUSSION

FIG. 4. The charge density of the topmost valence state at
the I point for the superlattice of system C in units of 10
e/a. u. Contours are drawn in a plane perpendicular to the lay-
er, and are spaced in increments of 0.005 e/a. u. with the small-
est of 0.001 e/a. u. '

The lowest two states of the conduction band at the I
point has a special character. Those states cannot be
identified by a certain point in the zinc-blende Brillouin
zone; instead, they can be characterized by a strong local-
ization. The lowest state is strongly localized in the GaP
layer, while the second lowest state is strongly localized
in the InP layer. The first lowest state is a mixture of the
lowest conduction states at the I and L points of GaP.
In order to explain this point, the charge densities of
them are shown in Fig. 5. The states of bulk GaP at the
I and L points are mainly made of the s states of Ga and
P, as are shown in Figs. 5(b) and 5(c) and Table IV (a):
The state at the I point has an antibonding character at
every bond, while the state at the L point has an anti-
bonding character within a layer and has a weak bonding
character between the layers. When these two states are
superposed, the resulting state is localized in every two
layers. This superposed state becomes the lowest conduc-
tion state at the I point of the superlattice, as is shown in
Fig. 5(a). Generally speaking, the wave function at the I
point essentially has a functional form of 1, while the
wave function at the L point has the functional form of
exp(i'/d ) or exp( —imz/d) in the direction of (111) in
the fcc lattice, where z stands for the position of (111)
direction, and d is the interlayer spacing (d =c/6). The
superposed state essentially has a functional form of
1+ cos(vrz/d), which is localized in every two layers.
The second lowest conduction state at the I point has a
similar feature, which is localized in the InP layers.

The calculated direct gaps at the I point are 0.73 eV
for the superlattice, and 1.62 and 0.50 eV for bulk GaP
and InP, respectively. Therefore, the band gap of the su-
perlattice is much smaller by 0.33 eV than the average of
these bulk direct gaps. In the next section, we will show
the reason why the direct gap becomes so small.

We have performed the self-consistent band-structure
calculation also for all the other systems in Table II with
the same condition as in Sec. III. In Fig. 6, we compare
some energy levels at the I point for all the systems from
A to E. The reference energy level is taken at the aver-

age of the P 1s core levels for each system. The core lev-
els in systems A and E are assumed to coincide with
those in systems B and D, respectively. This choice for
the reference of energy has been shown to be appropriate
for the estimation of the valence-band offset in
A1As/GaAs superlattices. ' In the case of the ultrathin
superlattice, this choice is rather artificial, but it gives us
a reasonable viewpoint for the interpretation of the level
scheme. In this section, we will elucidate the effect of the
strain on the band structure and look at Fig. 6 in detail.
In the following discussion, we shall keep it in mind that
the strain of the bond length becomes larger in goirig
from system A to system E.

The valence-band top of InP is much higher in energy
than that of GaP in system A, while they are almost the
same in system E. We "define" the valence-band offset of
system B as the difference of the valence-band tops of
GaP and InP in system A, and the valence-band offset of
system D as that in system E. Then, the valence-band
offsets are 0.92 eV for system B and 0.00 eV for system D.
The valence-band offset of system C is inferred as about
0.3 eV from Fig. 6. This estimation has no strict meaning
quantitatively, but it is helpful in order to understand the
feature of the valence band. For example, this change of
the valence-band offset from system B to D coincides
with the change of the extent of the localization of the
highest valence-band state as seen in Table V. This
change is related to the change of the electron number in-
side the mufIin-tin spheres, which is shown in Fig. 7.

The conduction-band bottom is dominated by the GaP
state, as has been seen for system C in the preceding sec-
tion. This is the case for all the systems in Fig. 6; there-
fore, this fact can be true generally for the system consist-
ing of GaP and InP. However, it does not mean that the
strain is not important; instead, it is instructive to know
that the band gap of GaP in system E is much smaller
than the gap in system A, while the situation is opposite
for InP. If there was not this change of the band gap, the
lowest conduction band would be localized in the InP
layer in systems C and D.

In the previous section, we found that the band gap of
the superlattice is 0.33 eV smaller than the average of the
bulk direct gaps. By comparison, we cite several experi-
ments. The direct gaps at 300 K are 2.77 and 1.34 eV for
bulk GaP and InP, respectively, which are much ( —1

eV) larger than the calculated values. This large
discrepancy, which comes from the local-density approxi-
mation used in our calculation, is, however, resolved by
simply shifting the conduction bands rigidly upwards rel-
ative to the valence bands. For simple semiconductors
such as Si, ' Ge, ' A1As, "and GaAs, " it has been shown
by a Geld-theoretical calculation that the local-density ap-
proximation provides good wave functions for the
valence and the conduction bands, and that the self-
energy corrections primarily give rigid energy shifts of
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TABLE IV. Projected weights of the (a) lowest and (b) second lowest conduction states into the $ and

p states in the muSn-tin spheres.

(a)
8

System

P(I)

P(II)

4$
4P

3$

3p

5$

Sp

3$

3p

GaI (r)

0.340
0.0

0.406
0.0

GaP(L)

0.260
0.038

0.172
0.044

0.244
0.021

0.211
0.049

0.030
0.003

0.062
0.041

(b)

0.271
0.008

0.262
0.002

0.045
0.002

0.075
0.009

0.284
0.004

0.272
0.009

0.027
0.006

0.056
0.005

GaP(I )

0.368
0.0

0.386
0.0

Gap(L)

0.258
0.044

0.158
0.058

System

P(I)

P(II)

4$

4P

3$

3p

5$

Sp

3$

3p

InP( I )

0.294
0.0

0.360
0.0

InP(L)

0.240
0.042

0.152
0.048

0.017
0.067

0.000
0.013

0.202
0.002

0.181
0.079

0.031
0.036

0.004
0.013

0.198
0.003

0.190
0.047

0.017
0.012

0.001
0.019

0.223
0.016

0.221
0.013

InP(l )

0.244
0.0

0.382
0.0

InP(L)

0.238
0.032

0.170
0.032

TABLE U. Projected weight of the three highest valence states [(a) the twofold highest valence state
and (b) the second-highest valence state] into the s and p states in the muffin-tin spheres.

(a)
8

System

P(I)

In

P(II)

4$

4P

3$

3p

5$

5P

3$

3p

GaP

0.0
0.086

0.0
0.544

InP

0.0
0.056

0.0
0.532

0.0
0.002

0.0
0.077

0.0
0.053

0.0
0.464

(b)

0.0
0.018

0.0
0.184

0.0
0.045

0.0
0.362

0.0
0.034

0.0
0.254

0.0
0.035

0.0
0.290

GaP

0.0
0.078

0.0
0.530

InP

0.0
0.062

0.0
0.556

In

System

4$

4P

3$

3p

5$

5P

GaP

0.0
0.086

0.0
0.544

InP

0.0
0.056

0.060
0.006

0.072
0.238

0.001
0.042

0.006
0.027

0.009
0.280

0.001
0.042

0.000
0.038

0.000
0.264

0.000
0.032

GaP

0.0
0.078

0.0
0.530

InP

0.0
0.062

P(II) 3$

3p
0.0
0.532

0.002
0.184

0.002
0.238

0.000
0.279

0.0
0.556
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InP

GaP

Inp
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due to the superlattice ordering is measured recently as
0.08 eV by photoluminescence. Thus, the band gap of
the superlattice is smaller than the average of the bulk
direct gaps experimentally by 0.27 eV, which should be
compared with our value of 0.33 eV. The agreement
should be considered to be very good considering the un-
certainty of quantities involved. Experimentally, the ex-
tent of the ordering has not been measured, and the
recombination processes in luminescence are not clear
yet. On the other hand, the theory uses the local-density
approximation, and contains some uncertainty in
crystal-structure parameters. In the context of the loca1-
density approximation, the self-energy correction should
be considered in the future for the definite conclusion
about the band gaps and the details of the band structure.

e c 0 E
system

FIG. 6. Energy levels at the I point for systems 3 —E. The
averages of the 1s core levels of P for each system are lined up.
The 1s core levels of P for systems A and E are assumed to coin-
cide with the corresponding levels for systems B and D. The
topmost level of the valence band is twofold for the superlattices
(8—D ) and is threefold for the pure systems ( A and E).

V. CONCLUSION

A first-principles band-structure calculation by the
FLAPW method has been done for the (GaP)

&
/( InP ),

(111) superlattice and related systems. We have found
that (i) the superlattice has a direct band gap, which is
smaller by 0.33 eV than the average gap of the constitu-
ent bulk compounds at the I point; (ii) the charge density
of the lowest conduction state is localized strongly in the
GaP layer; (iii) the lowest conduction state is made from
the states at the I and I. points of the bulk GaP; (iv) the
highest valence state is weakly localized in the InP layer.
We have also found that the valence-band offset and the
band gap change very much with strain. We have deter-
mined the stable structure of the superlattice by using the
Keating model, which is expected to be sufFiciently near
to fact. The above qualitative conclusion does not
change within reasonable changes in the structure param-
eters.
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