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The dielectric function of a nonresonantly pumped semiconductor is calculated in the generalized
random-phase approximation to second order in the pump field. The effect of this "virtual screen-
ing" on the exciton ground-state energy E, and on its oscillator strength f, is then numerically
computed and compared with the Stark shift of E, and f, derived before without screening in the
Hartree-Fock approximation. It is found that for a detuning 6=(Eg —co )/E of the order of 10
(E~ is the semiconductor band-gap energy, co~ is the angular frequency of the pump field, and E is
the exciton binding energy) the modifications due to screening are small in a three-dimensional (3D)
system, but are of the same order of magnitude as the Hartree-Fock corrections in a 2D system and
cause the oscillator strength to decrease slightly with increasing pump intensities.

I. INTRODUCTION

In the last two years considerable effort has been devot-
ed to the calculation of the induced nonlinear polariza-
tion in a semiconductor under nonresonant short-pulse
excitation. In such a system, a blue shift of the exciton
absorption line (the so-called Stark shift) as well as a
modification of the corresponding oscillator strength are
observed experimentally. The behavior of this system
can be understood in terms of a many-body theory based
on the self-consistent Hartree-Fock (HF) approxima-
tion. ' An explicit treatment of the time dependence,
even in the context of the Hartree-Fock approximation,
is very dificult and has up to now relied on numerical cal-
culation. Interesting analytical results can, however, be
obtained in the special case of a constant excitation (or
pump) field E which is assumed to be adiabatically
switched on. This special situation was considered in
Refs. I and 2. Moreover, this simpler formalism has been
shown to be generalizable (to some extent) to the more in-
teresting case of short-pulse excitation. ' In Ref. 2,
corrections to the exciton energy Ei and oscillator
strength f, due to the electron-photon interaction (in-
cluding such effects as phase-space filling, Fermion ex-
change, exciton-exciton, interaction, etc. ) were derived.
These corrections have been numerically evaluated ' in
the limit of small-field intensity, i.e., to second order in

In the work presented here, we want to complete the
picture given by the above time-independent Hartree-
Fock formalism by considering explicitly the effect of
screening. Because of the applied pump field and also be-
cause we work in a nonresonant excitation regime, the
screened potential is expected to be radically different
from the well-known Thomas-Fermi or Debye potentials

of the equilibrium theory. A formal theory of the Stark
effect including screening has been reported but without
any numerical result. We want here to derive explicitly
the behavior of the potential and to compare the resulting
changes of the exciton energy and oscillator strength with
those calculated in Refs. 6 and 7. In this way, we can get
an idea of the importance of screening which was, up to
now, always neglected in numerical calculations.

This paper is organized in the following way. In Sec.
II, we summarize the results of the Hartree-Fock theory
for the dynamical Stark effect. In Sec. III, we generalize
the equations of Ref. 2 for the optical susceptibility to in-
clude screening and find explicit expressions for the
screening corrections to the exciton energy and oscillator
strength. The dielectric function of the system is worked
out in Sec. IV. Section V is devoted to a numerical evalu-
ation, using Monte Carlo integration, of the dielectric
function and of the corrections found in Sec. III. These
corrections are then compared with those calculated in
Refs. 6 and 7. We finally conclude in Sec. IV.

II. REVIE% OF THE HARTREE-FOCK
FORMALISM

We consider the simple model of a nondegenerate two-
band semiconductor interacting with homogeneous and
nonresonant pump field treated in the dipole approxima-
tion. ' We use, for the time dependence of the nonequili-
brium Green's functions, the same approximations as
those usually found in the literature on this subject.
Namely, we consider that the applied field is constant and
adiabatically switched on so that the system always
remains in its ground state. In this case, the system un-
der consideration is simply described by the usual matrix
Green's function 6;I(1,2) defined in the electron-hole pic-
ture by

G(1,2) = G, (1,2) F(1,2)

Ft(1,2) —Gh(2, 1)

—
& Ty, (1)1b,'(2) &

—i & Tq, (1)q, (2) &

—t & Tqt(1)yt(2) &
—t & Tqt(1)q (2) &

(2.1)
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There is no need to introduce nonequilibrium Green s-
function techniques in a rotating-wave approximation.

The diagonal terms in (2.1) are nonzero because the
coherent pump field couples the two bands of the semi-
conductor. These terms are primarily responsible for the
special character of the screening which, in the non-
resonant regime that we are considering, is mediated by
the excitation of virtual electron-hole pairs. One must
have in mind that, in analogy with the case of a supercon-
ductor, the ground state of our system consists of a
coherent superposition of electron-hole pairs. It is this
pairing between electron and hole which is taken into ac-
count via the nondiagonal elements of the Green's func-
tion.

The "adiabatic" matrix Green's function defined in
(2.1) obeys the Dyson equation

6; (1,2)=6; (1,2)+ fd3d46; (1,3)X „(3,4)6„(4,2),
(2.2)

where 1,2, 3,4=(r„,t„,cr„) and o„ is the spin variable.
G (1,2) is the diagonal Green's function defined in the
absence of Coulomb interaction and pump field. In (2.2)
and throughout this paper, summation over repeated in-
dices is implied.

The self-consistent Dyson equation can be solved for-
mally in the Hartree-Fock approximation with static
screening [the so-called "screened-exchange approxima-
tion" (SEA) but with a static potential]. The formal solu-
tion is

e—:(r)p+X, 2X2, )'

~1 2p =bp —~p+

l+ v =1—u
1

2 t p p
Ep

2e

The self-energy matrix in the SEA is given by the
screened exchange and optical interband self-energies (p
is the interband dipole matrix element):

X(p)= —g V, (p-q)
q 4' h

0

(2.5)

where we have defined a density matrix 8'„by

6,=G(p, t, =t i+ ) =
nep

1(p 1 nh— (2.6)

In this equation, n„nh are the electron and hole densities
and 2+~'f =I', , is the optical polarization. In the
SEA, one finds the useful relations

2

Gz2(p, co) = . +
co+ i 5

2
Qp

co i 5 epp

2 2
Dp Up6„(p,co) = . +~+ t 5 —

E1 CO
—t 5—

E'2p

(2.3)

2
nep =nhp =Up

(2~p —I )'+4lit p
I'=I

(2.7)

G,z(p, co) =62i(p, co)

1 1=Q U
co+t 5—e o) —t 5—e1p 2p

where we have used the definitions

=ECH+ + P — +X (p),Eg 2 Np

ep = 11

Eg ~ 2 COp

E + + — —X (p)hp =
2 2m 2

pep 7hp

2

Qep + 9hp

2
(2.4)

I

As usual, all calculations are made in the rotating frame'
with the pump frequency cop. In the expression for the
electron and hole renormalized energies, we have explic-
itly included the Coulomb-hole contribution E
=(1/2)gz[V, (q) —V(q)]. This contribution is con-
tained in the dynamical Hartree-Pock self-energy and
must be retained when approximating the dynamical po-
tential by a static one as we do here. Although the dis-
cussi. on of Ref. 8 applies to an equilibrium system, one
can easily convince oneself that it goes through in the
case of a pumped system. In particular, there is no such
contribution in the nondiagonal elements of the self-
energy.

Solving the Dyson equation (2.2) with the self-energy
(2.5), one finds for 1(tp, using (2.6) and (2.7), the inhomo-
geneous integral equation

2

g+ ~ + g V (p q)[1—(1—41%pl')'"] qp=( I —411(',I')'" IJE + g V, (p —q)g'

q

(2.8)

where m =m, mh /M is the reduced mass and
M =m, +mh the total mass of the electron-hole pair. In

three dimensions, the Coulomb potential is given by
V(p) =4ne /cop, while in two dimensions it is
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V(p)=2me /cop. Here, eo is the dielectric constant of
the background material. In this work, the dipole matrix
element is assumed to be real. Since the static potential is
also real, one sees from (2.8) that, for a nonresonant
pump field, P~ can also be taken as real.

III. SCREENING CORRECTIONS
TOEi AND f/

In principle, one can derive all the correlation func-
tions of this system by functional differentiation of the
Dyson's equation (2.2). In this paper, we are interested
only in the nonlinear transverse (optical) and longitudinal
susceptibilities which are respectively given by
y, =5(P, , )/5E, and L =5(p)/5$, . E, is an external
transverse test field added to the system and which cou-

ples to the nondiagonal matrix element of G,", and P, is
an external longitudinal test field that couples to the
charge density p, i.e., to the diagonal element of G; .

If, in (2.2), the self-energy is taken in the SEA, then
functional differentiation of this equation (as usual, how-
ever, the screened interaction is not differentiated) with
respect to some external field leads to the well-known
generalized random-phase approximation (GRPA) for
the two-particle Green's functions. The detail of this
procedure is given in Refs. 10 and 11 where it was ap-
plied to a system of Bose-condensed excitons. With
L,/, „(1,2, 1',2')—= [5G,b(1, 1')]/[5W „(2',2)], where
8' „ is an external field used to generate the two-particle
Green's functions (see Ref. 11), the end result, in Fourier
space, is the following set of integral equations for the re-
tarded two-particle Green's functions:

L.b .(p, k, q;~)=2 . G. (p+q)G. b(p)5, ,~
dco

27Tl

+2 y G„(p+q)G/(p)V(q)L//, „(p',k, q;co)
dc'
2'lTl

dco
. G„(p+q)G b(p) V, (p —p')L, „(p',k, q;co),

2&l
(3.1)

where the different two-particle correlation functions
L,b „are coupled. In (3.1), (p+q)=—(p+q, co'+co) and
(p )

—= (p, co'). The transverse susceptibility corresponds
to the functio~ y, (q;co)= —p'g~ „L»»(p, k, q;co)
while the longitudinal susceptibility (the charge-
charge correlation function) corresponds to L (q, co)= g~ kL;;//(p, k, q;co). The proper part P(q, co) of this
last correlation function enters in the definition of the
longitudinal dielectric function

2

~ + 0 (p) g V(p q)4' (q) E 0 (p) .
q

(3.4)

In Ref. 2, (3.1) has been solved (for V, —+ V) to second
order in the pump field, giving a renormalized exciton en-
ergy (E„=E„+AE„") and oscillator strength
(f„=f„+bf„")in (3.3). This renormalization occurs

e(q, co)=1—V(q)P(q, co) . (3.2)

Notice that the system of Eq. (3.1) which is represented
in diagrammatic form in Fig. 1 is equivalent to the varia-
tional approach used in Ref. 2 except for the fact that we
have replaced the bare Coulomb potential by a screened
one [V, appears in the third term in the right-hand side
of (3.1). The bare potential in the second term comes
from difFerentiation of the Hartree part of the self-energy
and so is not screened]. Summation over spin variables
has been taken care of in (3.1).

Without any pump field and in the simple Elliot's ap-
proximation, the optical susceptibility is given by

II

i/ n + i +
(V

wn. wn
jIE

ann, zw
+ ~ i ~

~vvvw
ii

f.' IV/. (r =O) I'
y, (q=O, co)=2 Y " =2'V—

E„(co+i5 ) „E—„(co+i5)—
(3.3)

where P„(r) and E„are the excitonic wave functions and
eigenenergies that are solutions of the Wannier equation
(in Fourier space) FICx. 1. Diagrammatic expression of Eq. (3.1).
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because of additional many-body e6'ects such as exciton-
photon interaction, exciton-exciton interaction, phase-
space 61ling, etc. , that are neglected in the simple Elliot's
picture. For further reference, we refer to them as the
Hartree-Fock corrections. In this paper, we consider in-
stead the corrections due to the screened interaction in
(3.1), i.e., due to the replacement of V by V, . These

corrections will be denoted by b,E„' and b f„'. As in Ref.
2, we solve the system of Eq. (3.1) to second order in the
pump 6eld. This approach presents up to this order no
real difBculties although the algebra is a bit cumbersome.
We will thus only indicate the main steps of the solution.

Defining a polarization function P,& „(p,k, q; co) by

P„„(p,k, q;~)=2 G, (p+q)G„, (p)5~„—g . G., (p+q)G, ,(p)V, (p —p')P, , „(p',k, q;co),869 8co (3.5)

one can, as usual, rewrite (3.1) as

L,i, „(p,k, q;co)=P, & „(p,k, q;co)+ g P, „ik(p, k', q;co}V(q)L& i„(p',k, q;co} .
p', k'

(3.6)

With L,i, „(q;co)—=g&kL,&~„(p,k, q;co) and P,& „(q;co):g—kP(p, k, q;co), Eq. (3.6) can easily be solved in terms of
the functions P,b „.One obtains in this way the following exact results:

L(q, co) = P(q, co)

e(q, co)
(3.7a)

1211(q ~}+P1222(q ~}1 V('q)[ 1112('q ~)+ 2212(q ~) 1
L, zi2( q= Oco)=P1212(q=O, m)+ lim

q~0 E(q, co)
(3.7b)

where P(q, co) =P;;~~(q, co) is efFectively the proper part of the retarded function L (q, co) as seen from (3.7a) and (3.2). In
order to solve for L and y„one needs now only solve the simpler integral equation (3.5).

Using the results of Sec. II for the one-particle Green s functions, the frequency integrals appearing in (3.5) can readi-

ly be done and expressed as functions of the coherence factors u, uz. Since u = I+0(E&) and u~ =0(E„),Eq. (3.5)

simplifies considerably to second order in the field. After some algebra, we find (a —=m& /M and P—=m, /M)

and

P„(p)P„'(k)

( + g) (EO+ 2/2M) [ 4 ~q ~P+PQ ~k ~q ~k+Pq
p, k

(E0+ 2/2M )
[ fP —Pq 4P+cKq fk Pq 4k+clq

1

yR
y, (q=O)=2 E„(co+i5)—

(3.8)

(3.9)

where now f„"=f„+b,f„"+bf„' and E„:E„+DE„"+b,E„'.—The screening corrections are given by

ss' =sr"'+ as"'
n n

= g &V(p) —g P„(p)&V(p —k)P„'(k),
p, k

and for the oscillator strength
r

P„(p)5V(p —k)(t „' (k)P„'(p')P„(k')+ n ~~n '

»:=—~'X XX
n'%1 p, k p', k' n' n

(3.10}

(3.1 1)

In (3.10) and (3.11)

EV(p)= V, (p) —V(p)
r

= V(p)
1 —1I+b,e(p)

= —V(p)&e(p), (3.12)

since, as we will see, b,e(p) « 1 for large enough detuning
[Q=(E —co )/E0], where E =me /2@0 is the 3D exci-
tonic Rydberg. Note that the Arst correction to the exci-
ton energy in (3.10) is the Coulomb-hole contribution al-
ready discussed in Sec. II. For the special case n = 1 (the
only one of interest here), we can express the screening
corrections as a function Ae, only. We And with
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y =—qao, where ap=E'p/me is the 3D excitonic Bohr ra-
dius as follows.

In 3D,
co+i 5 (—E„+q /2M )

(3.18)

gE(1) 4= ——f dy be(y),
m o

HEI 64 be(y)
o (4+y )

In 2D,

gE(&)

o
= —2 y hey

b.e(y)= 128 dyE o (16+y )

(3.13)

(3.14)

(3.15)

(3.16)

bf s

fo

where

g b,e(p) V(p)F(p),2
ir=O (3.19)

F(p) =—fdr'e'~"P, (r')G" (r =O, r', q =0;co=0) .

(3.20)

Secondly, we need the reduced exciton Green's function
G';„(p,k, q;ro) defined as in (3.18), but with the restric-
tion n%1 in the summation. The screening corrections
to b f„' can now be simplified (with f &

=
~ pP, (r =0)

~
) to

To evaluate the corrections to f&, we need to introduce
a few more definitions. Firstly, we need the Green's func-
tion of the Wannier equation defined by

[oo+i 5 (Eg —co&+—p /2m+q /2M )]G,„(p,k, q;co)

The Fourier transform of the Green's function is given by

G,"„(r,r', q;so) =f dp dke' " '"'G,"„(p,k, q;co) .

(3.21)

+ g V(p —p')G, „(p',k, q;co) = —5

which has the explicit solution

(3.17) The reduced exciton Green's function G,"„
(r =O, r', q =0;co=0) is given' ' by (z =r'/ao and

y =0.577 216 is the Euler's constant)

e
G,"„(r=O, r', q =0;co=0)=

3 o +2.5 —y —ln(2z) —z
2+a oE 2z

e
—2z

[3—y —In(4z) —4z] in 2D .2~a~o

Equation (3.19) can finally be written as follows.
In 3D,

ln 3D,

(3.22)

bfl
fo

In 2D,

y4+24y +16 y —4 y y
o 2(4+y2)3 (4+y ) 2 (4+y )

4+y 2

4
S

(3.23)

16y cos8 y cos6
arc an

(16+y cos 0)

16—y 2cos2$ 16+y 2cos28

(16+y cos 8) 16
(3.24)

If be was a constant, then we could write y, (q =O, co) =2+„(~pP'„(r =0)
~

)/[E„' (co+i5) J, wh—ere P'„,E„' are solutions
of the Wannier equation (3.4) with V(q) ~ V, (q) = V(q)/(1+be). In this case, we would have obviously the simple re-
lations b,E, /E =2b, e (3D) or 8b,e (2D) and bf', /f, = 3be (3D) or —2be (2D—). As we will see in the next section,
these simple relations are acceptable approximations in 3D but do not apply in the 2D case.

IV. DIEI.ECTRIC FUNCTION IN THE GRPA

To evaluate the corrections of Sec. III, we need a numerically computable expression for the change in the dielectric
function b,e(q)= —V(q)P(q) with P(q) given by (3.8). First of all, we need an expression for g„ to order E . From
(2.8), we easily see that, to this order,

P„(p)P„(r=0)
gz=pE& g o

=pE fdr e't"G,„(r,r'=O, q =0;co=0) .
n n COp

(4.1)
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So, using (4.1), (3.18), and (3.21), we get from (3.8)

P(q) = 4—(pE~ ) fdr dr'G, „(r, r',—q;co=0)G,„(r,r'=O, q =0;co=0)G,„(r=O, r', q =0;co=0)

X[cos(aq R)+cos(Pq R) —cos(q Ro) —cos(q.Roo)],

where R:—Ir+r'I Ro=—lar —Pr'I, Roo =—IPr ar'I.
We use for the function G,„(r,r', q;co=0) in 3D the integral representation'

exp( —5fa z /2 ) 5a, az(g+ f )
G,„(r,r', q;co=0)= f dz f (1—t')exp(5ga, /2) 1+

2naoE 8(cr) o (1—z')~ 2a, —a,

(4.2)

(4.3)

where we have defined

5—= [(E co )/E ]'

5=[(Eg —co +q /2M)/E ]'~
(4.4)

(4.5)

f—: , g—:(2t' —1),1+z'
1 —z'

aoa, —= r+r' —lr —r'I, aoai =r+r'+ lr —r'I,
B(a)=f dt(1 —t')'

0

(4.6)

(4.7)

(4.8)

Setting a =1 in (4.3) gives the noninteracting Green's
function G,„(r,r', q;co=0) defined by (3.17) with V=O.
The other Green's function appearing in (4.2), i.e.,
G,„(r,r' =0,q =0;co =0) can be obtained from (4.3)
by the substitution a~a and r'=0. G,„(r,r'=O, q
=0;co=0) is then obtained from this last function by set-
ting a =1.

Equation (4.2) defines the generalized random-phase
approximation (GRPA) to P(q). Its diagrammatic ex-
pression is depicted in Fig. 2(a). The random-phase ap-
proximation (RPA) depicted in Fig. 2(b) is easily obtained
from (4.2) by replacing the first Green's function in-this
equation by its noninteracting counterpart (i.e., setting
a = 1 in the 3D integral representation as discussed

exp( 5rf /ao)—
dz

2m.aoE o 1 —z'

where (4.4) is unchanged, but

25
5 —2

1+z
1 —z'

(4.9)

(4.10)

(4.11)

The noninteracting Green's function G,„(r,r', q;co=0) is
found from (4.9) by the substitution a =2, 5~5 and
r~lr —r'I.

Combining the results of this section, we finally get for
the change in the dielectric function as follows.

In 3D,

above). A third approximation to the polarization is ob-
tained by replacing all Green's functions in (4.2) by their
noninteracting counterpart (i.e., setting a =1 and a =1).
This last approximation is depicted in Fig. 2(c) where g is
defined by (2.2) but with V=O. We will refer to this ap-
proximation as the noninteracting approximation (NIA).
These different approximations will be discussed later.

The analysis is essentially the same in 2D. Due to
some computational problems, we will, however, consider
only the RPA in this case. For this case, we use for the
integral representation of the Green's function
G,„(r,r'=O, q =0;co=0)

G,„(r,r' =0,q =0;co =0)

AeoapA(y) =32 f dR f dR ' f dz f dz' f dz" f ds f dt
y~g(a) o o o o o —i o

5a, az(g+f )
X(1 t')'" 1+—

2 az —ai

R R' exp
5fz, „, 5gi

2
5f 'x 5f"x'+— —

2

(1—R) (1—R') (1—z') (1—z") (1—z"')

sin(ay lx+x'I) sin(py lx+x'I ) sin(y lax —px'I ) sin(y Ipx —ax'I )

ay lx+x'I Py lx+x'I y lax —Px'I y IPx —ax'I (4.12)

where, in this formula,

a, —=x+x' —lx+x'I, a, —:x+x'+ lx+x'I,R, R'
1 —R' 1 —R'

(4.13)

(4.14)
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1+z"
la

1 —z'
1+z"'
1 —z

(4.15)

In 2D,

RR'exp( —6f ~x+x'~ of 'x— 5f"x—')
(1—R ) (1 —R') (1—z )(1—z")(1—z'")

X [cos(ayx cos8+ ayx 'cos8') +cos(Pyx cos8+Pyx 'cos8')

—cos(ayx cos8 —Pyx'cos8') —cos(Pyx cos8 —ayx'cos8') j, (4.16)

where x,x',f,f ' are defined as in (4.14) and (4.15) and

s —=cos(R, R'),
cos8 =cos(R, q),
cos8' =—cos(R', q),

(4.17)

1+a
1 Q

(4.18)

GRPA
+ ~ ~ ~

RPA

(c)
NIA

g/

/

g

FIG. 2. Diagrammatic expansion of P(q) in the (a) GRPA,
(b} RPA, and (c) NIA. G and g are defined in the text.

In this paper, E and ao are always taken as the 30 exci-
tonic Rydberg and Bohr radius, respectively.

Although the final expressions for he look rather com-
plicated, they are easily evaluated by using a Monte Car-
lo integration routine. In this case, the number of dimen-
sions is not a problem if the integrand is a smooth enough
function. This is the case for the integrals in (4.12) and
(4.16). These integrands include sin and cos functions
that oscillate, but these oscillations are cut off by the rap-
idly decreasing exponential function. We have verified
that the Monte Carlo routine efFectively gives a rapidly
convergent result for a root-mean-square relative disper-
sion cr of the order of 10%. The screening corrections to
the energy and oscillator strength are also evaluated by
Monte Carlo integration. For them, we need only one
more integration over the variable y (two for the special

case off, in 2D).
In concluding this section, we wish to discuss the result

(3.8) for P(q). The diagrammatic expression of this func-
tion was given in Fig. 2(a). To order Ez, as we have seen,
all terms in Fig. 2(a) contribute to the sum. Of course,
this approximation for P(q) does not contain all terms of
this order since we have only summed up here a definite
set of diagrams known as the GRPA. The GRPA has,
however, the advantage to be a well-known approxima-
tion giving reasonable results in exciton systems (see Ref.
12 and references given therein). In the language of
Baym and Kadanoff, ' it is a "conserving approxima-
tion, " meaning that the usual sum rules are satisfied by
P(q). The GRPA has already been considered in a for-
mal theory for the Stark efFect in Ref. 8 (in this paper,
however, no result for the screening corrections were de-
rived).

As can be seen from the denominators of P(q) in (3.8),
this function includes only single-pair processes involving
the creation or destruction of virtual excitons in state n, q
(with the energy measured with respect to co„ in the rotat-
ing frame). This P(q) should not be confused with exci-
tonic screening which implies the more general scattering
processes (n, q)~(n', q) involving two pairs. To get ex-
citonic screening, one needs to sum a more important set
of diagrams than the one represented in Fig. 2(a). As we
already mentioned in Sec. II, the ground state of the sys-
tem considered here consists of a coherent superposition
of electron-hole pairs. This is reAected by the fact that
the poles of the frequency sums Ide'G; (co')G„J(co+~')
appearing in (3.1) contain only the pair processes
+(eI —e2), i.e., there are no processes involving the
scattering of single particles. In the pumped system con-
sidered in this paper, P(q) is thus completely diff'erent
from the usual screening found in an equilibrium plasma
system and which is mostly due to the motion of free car-
riers. Here, the screening is of insulating character and
disappears when E =0, since then there is no virtual po-
larization in the system.

In the RPA introduced earlier, P(q) is approximated
by retaining only the first bubble in the ladder diagrams
of Fig. 2(a). In our pumped system, we expect this ap-
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proximation to give a smaller Ae since by doing this we
take into account only the virtually excited free states in
the summation over n [the denominator for the free states
is bigger than for the bound states and so the resulting
P(q) is smaller]. In the RPA, P (q) includes only process-
es involving the creation or destruction of excitons in
some free state. The e6'ect of the ladder diagrams in Fig.
2(a) is to bring in the bound states in (3.8), giving to the
gas a bigger polarizability than in the RPA. As we men-
tioned above, with the integral representations used here,

Ee'oapA(a —.l, a )~heRpA(a) in 3D.
The NIA introduced above is a lowest-order approxi-

mation which takes into account no bound states. It is
calculated from the RPA with the help of the relation
kERpp'[a ~ 1 (3D) or 2 (2D)]—+ b, eN, &. This last approxi-
mation is useful because in this simple case, the dielectric
functions can be reduced to the following much simpler
expressions.

In 30,

In 2D,

f co Z' 1 X
dz dx

(1+z +y /4) 0 (u x —1)(1—g u x )

64y P p z ~n cos8E 3 2

m5 E o (1+z +y /4) o (u cos 8—1) (1—g u cos 8)

(4.19)

(4.20)

where g =(mz —m, )/M, u =yz(1+z +y /4), and
y

—=qao/6. To evaluate these expressions, one need only
use a simple Riemann integration routine. We will thus
be able to compare the result of the Monte Carlo routine
for this NIA with that of the Riemann integration. This
gives us a way to judge the validity of our Monte Carlo
approach for the RPA and GRPA approximations.

103 I I I I l I I I

0.8

(a)

V. NUMERICAL RESULTS

We now give the results of the numerical integration
for the dielectric function and the corrections to E& and

f, . -We first show, in Fig. 3, the result of the comparison
between the Riemann and the Monte Carlo integrations
for the NIA, as explained in Sec. IV. We see that at least
in this case, the Monte Carlo approach gives a very good
result. We expect that this is also true for the other two
approximations (RPA and GRPA) since they are ob-
tained from the same integrand by modifying only one or
two parameters.

In Fig. 4, b, e(y) in the GRPA and in 3D is evaluated
for dift'erent values of the mass ratio, showing that this
factor has indeed little inAuence. The same trend persists
for the other two approximations and in 2D. Note that
when q~o, P(q) depends only on the reduced mass m.
The influence of the detuning parameter is also shown in
the range 6 & 10. As we see, the screening is very sensi-
tive to this parameter. When the detuning is increased by
a factor of 2, he is decreased by at least a factor 10 (and
even more in 2D). In this range, however, the condition
b,e ((1 is satisfied if we take F=(pE~ )/E = 1. In 3D or
2D GaAs and assuming the same (3D) effective mass for
both structures for simplicity, this value of the 6eld corre-
sponds to an intensity of approximately 30 MW/cm .
According to Ref. 6, this value of the intensity also corre-
sponds to the region where the linear theory is expected
to be valid. For b, (10 (not shown), b,e increases even
faster when the detuning is decreased. In this last range,

0.2—
I I I I I

0 1 2 3 4 5 6 7 8 9 10

-3
1.6 10— (bj

04

I I I I I I I I

0 1 2 3 4 5 6 7 8 9 l0

qa,

FIG. 3. (a) Comparison between Riemann (solid line) and
Monte Carlo integrations (+) for Ae(q) in the NIA for 30. Pa-
rameters: b =10, P=0. 1, a=0.9, and F=1. The error bars
represent a relative root-mean-square deviation o.= 10% for the
Monte Carlo integration. (b) Comparison between Riemann
(solid line) and Monte Carlo integrations (+) for Ae(q) in the
NIA for 2D. Parameters: 6=10, p=0. 1, a=0.9, and F= l.
The error bars represent a o.=10% for the Monte Carlo in-
tegration.
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FIG. 4. he(q) in the GRPA for different values of the mass
ratios and detuning for 3D (o.=10%) and with F= 1. Parame-
ters: +, 6=10, P=O. I, a=0.9; 0, b =10, P=0.45, a=0.55;
6, 6=20, P=O. I, a=0.9.

0.030—

0.025

I

(b3

Ae can become very big for a given Geld strength. But in
order to fulfill still the condition Ae &( 1 the Geld
strengths for which the results are valid become smaller
and smaller for decreasing detuning. Comparing the re-
sults for GRPA with those for NIA (see Fig. 5), we see
that b,e(GRPA) —+b,e(NIA) for large detunings as it
should be since for large values of the detuning parame-
ter, the excitonic Green's function tends toward the
noninteracting function.

In Fig. 5, the three di6'erent approximations to he dis-
cussed earlier are compared. From these curves, we see
that the strength of the screening depends much on the
approximation considered. Inclusion of more and more
correlations leads to an increase in the dielectric function
as expected. Notice that the behavior of Ae is quite
diFerent in 3D and 2D. This is normal since (for q~0)
P(q) ~q in both dimensions while V(q) ccq (3D) and
V(q) ~ q

' (2D).
Table I lists the screening corrections to the exciton en-

ergy and oscillator strength. These are compared with
the HF corrections to Ref. 6 calculated for 3D and 2D
GaAs structures (note that in Ref. 6, the detuning param-

0.020

~ 0.015

0.005

0 1 2 3 4 5 6 7 8 9 10

q~o

FIG. 5. Comparison of the three approximations (see text) to
Ae(q) in 3D (o =10%) with I'=1. 6=10; +, GRPA; C)

RPA; ( ), NIA. (b) Comparison of the two approximations
(see text) to Ae{q) in 2D (o.=10%), E=l, 4=10; o, RPA;
( ), NIA.

eter is defined with respect to the exciton level E, ). We
have taken the values P=0. 1,a=0.9 appropriate for 3D
GaAs in both 3D and 2D results. From this comparison,
we see that the screening corrections in 3D and in the
GRPA are small compared with the HF corrections for5) 10. One can thus neglect them in this range of detun-
ing. For 6=5, however, they are already important, in-

TABLE I. Screening and HF corrections to E, and f, . The HF corrections are in parentheses. All energy corrections are to be
multiplied by (pEp/E ) . Parameters are given in the text.

(2D)
8

14

{3D)

21

AE(,"/E'

—1.90+0.09

—0.20+0.01

—0.037+0.005

—0.51+0.03

—0.036+0.002

—0.0056+0.0006

hE' '/E

0.470+0.020

0.033+0.002

0.0038+0.0002

0.18+0.02

0.0082+0.0005

0;000 94+0.000 08

AE) /E

—1.43+0.11
(2.00)

—0. 17+0.01
(0.66)

—0.033+0.005
(0.25)

—0.33+0.05
(1.28)

—0.028+0.003
(0.47)

—0.0047+0.0007
(0.185)

Qf S /fo

—0. 110+0.010
( —0.16)

—0.010+0.001
(0.002)

—0.0013+0.0001
(0.002)

—0. 16+0.01
(0.27)

—0.0090+0.0005
(0.062)

—0.0011+0.0001
(0.015)
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creasing much faster than the HF corrections with de-
creasing h. In 2D the screening corrections are of the
same order as the HF corrections already in the RPA
and, for 6= 10, one can expect somewhat larger correc-
tions in the GRPA. For the oscillator strength, the
correction is even bigger than the HF one, leading to a
change in the sign of this quantity. The resulting 2D os-
cillator strength thus decreases always slightly with in-
creasing pump intensity. For large detunings (b, =21)
this correction gets smaller than in the HF case and the
correction to the energy is then negligible. Notice, how-
ever, that the HF corrections to the oscillator strength
are quite singular in 2D since they change sign around
b, =14. For pE /E =1 (which corresponds approxi-
mately to a field intensity of 30 MW/cm as we men-
tioned earlier), the corrections (HF and screening) to the
oscillator strength are, however, very small (of the order
of 2%). At the moment, it is not clear how these correc-
tions can be compared with experimental values. The
aim of this paper was indeed to compare the effect of
screening on previous corrections, not with experimental
values.

Finally, we note that, in 3D, the potential can reason-
ably be approximated by a constant in the calculation of
hE, and hf', . With b,e(q=0)=0.004 for 6=11,we see
that the simple expressions hE

&
/E =2hz and

b f', /f, = 3b,e given —in Sec. III are not too wrong. Be-

cause of the behavior of the potential in 2D, this type of
approximation is, of course, not possible.

UI. CONCLUSION

%'e have evaluated the screened potential in the GRPA
and RPA approximations for the case of a semiconductor
submitted to an applied pump Geld. In the limit of low
intensity (second order in the pump field) and large de-
tuning b & 10, the resulting screening corrections to the
exciton energy and oscillator strength in 3D are small. In
2D, screening effects are more pronounced and result in a
slowly decreasing oscillator strength with increasing
pump intensity. Only for very large detuning do the 2D
screening corrections also become negligible with respect
to previous corrections.
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