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Lifetime for resonant tunneling in a transverse magnetic field
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We present a numerical study of the time-dependent resonant tunneling of a Gaussian wave pack-
et through a double-barrier structure in a transverse magnetic field. From the decay rate of the
charge trapped in the quantum well, we obtain the field dependence of the lifetime ~0 of the resonant
level. ~0 is found to exhibit an oscillatory behavior with increasing magnetic field. This effect is ex-
plained as due to the field-induced hybridization of the resonant level with the interfacial Landau
states corresponding to the semiclassical skipping orbits at the barrier interfaces. An experiment
which should allow the observation of such effects in real heterostructures is suggested.

I. INTRODUCTION AND METHOD

The present availability of high-quality semiconductor
heterostructures and high magnetic fields has stimulated
many experimental studies of magnetotransport in low-
dimensional electronic systems. A particular topic of in-
creasing current interest concerns the effect of a trans-
verse magnetic field on the tunnel current through a po-
tential barrier separating, e.g. , two semiconductors,
where electrons are forced to execute cyclotron motion
while tunneling through the barrier in the plane perpen-
dicular to the field. ' In Refs. 1 and 5, for instance, the
tunnel current J through single-barrier semiconductor
heterostructures in a transverse field B has been studied,
and the observed weak oscillatory structures superim-
posed on an otherwise exponentially decreasing J versus
B curve have been interpreted as due to electron tunnel-
ing into the "interfacial" Landau levels corresponding to
semiclassical skipping orbit.

Similarly, one may ask what would be the effect of a
transverse magnetic field in the case of resonant tunneling
through a double-barrier (DB) structure. For instance,
the current-voltage characteristic of DB heterostructures
shows marked negative-differential-resistance (NDR)
features associated with the presence of the resonant lev-
els in the quantum well (QW) and one interesting ques-
tion in the present context could concern the effect of an
external magnetic field on these NDR characteristics.

As a "zero-order" approach to the complex problem of
transport through DB structures in a magnetic field, we
wish to consider here the much simpler problem of mave-
packet tunneling through a DB in a transverse field. As
discussed in Sec. III, qualitatively new features, such as
oscillations in the resonant-level lifetime due to the pres-
ence of the field, are found as a result of our calculations.

Our approach is described in detail in Ref. 9, where the
time-dependent tunneling of a wave packet through a
thick barrier in a transverse magnetic field was studied.
As in Ref. 9, the present calculations are based on the
direct solution of the time-dependent Schrodinger equa-
tion. The initial wavefunction II0, described by a local-
ized wave packet, is represented on a discrete spatial grid

and the Hamiltonian operation 8+0 is calculated locally
in coordinate space, using the fast-fourier-transform algo-
rithm to evaluate efficiently spatial derivatives. The solu-
tion is then propagated in time. For this purpose, we use
the Chebychev scheme, ' which is based upon a suitable
polynomial expansion of the time-evolution operator.
This scheme has proven to be more efficient and accurate
than other methods, in particular when high accuracy
and long propagation times are needed at the same time.

Our model Hamiltonian is that of a (spinless) particle,
of mass m * and charge e, subject to a constant and uni-
form transverse magnetic field B=Bz, i.e.,

H=
2

1 e
p ——A + VDB(x),2m*

where p= i AV, —A is the vector potential, and VDB(x)
represents the DB potential. In our case the latter con-
sists of two equal square barriers of width d and height
Vo separated by a distance a, as shown schematically in
the inset of Fig. 1. Resonant tunneling through this
structure occurs when the energy of the incident particle
matches that of an unoccupied discrete state in the well
between the two confining barriers. In this case, a strong
enhancement of the transmission coefficient takes place,
due to the Fabry-Perot-like interfering rejections of the
particle wave function in the DB region. This is illustrat-
ed in Fig. 1, where the transmission coefficient of the DB
shown in the inset is plotted versus the energy of the in-
cident particle. With our choice of DB parameters (given
in the caption to Fig. l) a single broad resonance occurs
at E =0.057 eV.

We use in (l) the symmetric gauge for the vector po-
tential, i.e., A= As ——(8/2)( —y, x, O). The motion along
z (i.e., in the direction of the magnetic field) reduces to
free-particle motion, exp(ik, z)-, which can be factorized
out. For each k„we are thus left with a two-dimensional
(2D) Hamiltonian, namely

H= (p, +p )+ —,'m*co, (x +y ) ,'to, L, + VDB(x) .——
2m
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FIG. 1. Transmission coefticient T for the double barrier
shown in the iriset vs incident energy. The barrier parameters
are Vp=0. 1 eV, d =35 A, and a =47 A. The width 4E-A/~p
of the resonance, as obtaIned from our numerical results for 7 p,

is also shown {horizontal arrow).

Here L, —=xp —yp„ is the z component of the angular
momentum and co, =eB/m *c is the cyclotron frequency.
Note that when VDii =0, (2) reduces to the Hamiltonian
of a 2D isotropic harmonic oscillator of frequency
co /2.

Because of the finite size of the 2D grid used in our
simulations, the initial wave function must be localized in
space. %'e use here a standard two-dimensional Gaussian
wave packet:

o. (k~ —ko) ~d(kyar —ko)' (4)

where kM =(2m *VO/A )'/ . In all our calculations o is
such that the above inequality is satisfied.

II. RESULTS

Consider first the case of zero magnetic field. %'e show
in the sequence of plots of Fig. 2 the time behavior of the

where R = (x,y), o is the spatial width of the packet, and
kp its initial momentum, The use of localized wave pack-
ets implies a finite-width distribution of momenta about
the average value kp. Since the Fourier components of
energy higher than the top of the barrier propagate
.through the latter as classical particles, eventually mask-
ing the efFects due to "pure" tunneling, one must require
the portion of the transmitted packet whose plane-wave
ponents have energies above the top of the barrier to be
much smaller than the under-the-barrier part. It can be
shown that a sufticient condition for the above require-
ment to be satisfied is

FIG. 2. Contour plots of the charge density ~%'(t)~', at
different times t, for the scattering of a Gaussian wave packet of
width o.=150 A by the double-barrier structure shown in the
inset of Fig. 1. At t =0 the wave packet is moving from the left
towards the DB with energy Ep=0.057 eV at resonance with
the single quasistationary state of the well. The DB edges are
shown with vertical dotted lines. The dashed-dotted line shows
the wave-packet trajectory in the absence of the DB potential.

calculated charge density ~%(R, t)~ (represented by
means of contours of equal height) for a circular wave
packet of width o.=150 A moving from the left towards
the DB (shown with dotted lines in the figure). The wave
packet has an initial momentum ko such that its energy
E& —-A kp/2m *=0.057 eV is equal to that of the quasilo-
cal level inside the well (an effective mass m*=0.067mc
is used). The energy spread of the packet is
oE =A' ko/m *o -0.025 eV, i.e. comparable with the in-
trinsic width of the DB resonance, see Fig. 1. The calcu-
lations are performed using a 256X256-point square grid
of side L =3000 A.

One sees from the sequence of Fig. 2 that a large frac-
tion of the incident wave packet is quickly trapped be-
tween the two barriers, giving rise to a high peak in the
charge density in this region. In the meantime a double-
peaked rejected wave packet is formed, moving to the
left in the figure, and a transmitted packet emerges from
the right edge of the double barrier, moving to the right.
The dash-dotted line represents the classical trajectory
that the packet would have traced in the absence of the
barrier. The barrier-induced delay of the transmitted
packet is apparent. This behavior is typical of resonant
tunneling, whereas in the case of wave-packet tunneling
through a single thick barrier the opposite situation
occurs, i.e., the transmitted packet always anticipates
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with respect to free-packet motion. '

Figure 2 shows another general feature of wave-packet
tunneling through a DB structure, i.e. the appearance of
two rejected Gaussian-like pulses which move with
slightly different velocities. This can be understood' by
noticing that the reAection of the packet is governed by
R =1—T which has a marked dip at the resonant energy.
This roughly divides the momentum distribution of the
incident wave packet into two components, each of which
gives rise to a separate pulse, as it is indeed observed. In
particular, the leftmost peak in the last panel of Fig. 2 is
the faster of the two.

The subsequent decay of the peak trapped between the
two barriers is quite slow with respect to the time scale
required for the separation of the incident packet into
well-defined transmitted and reflected parts. The way in
which an incoming packet of width a splits into rejected
and transmitted parts depends mainly on 0.. However,
the decay of the charge Q trapped into the quasistation-
ary state in the well is determined by the DB parameters
only, and follows the law' '

t ~ Q.12 p8

0.24

0.18

—t /~oQ(t)=Qoe

where

(5)
0.36 0.4 2

ro —tri/b, E

and AE is the intrinsic width of the resonance in the DB
transmission coeScierit. AE depends on the "transparen-
cy" of the confining barriers through a factor
=exp( —2Ed), where K =[2m *(Vo Eo)/A ]' —and Eo
is the resonant energy. ' We have fitted our numerical
values for Q(t), for the sequence of Fig. 2, using the ex-
ponential law (5), thus obtaining!t!'/ro. Our estimate for
this quantity is compared in Fig. 1 with the natural width
of the peak in the DB transmission coeScient.

The effect of a magnetic field 8 =2.5 T on the scatter-
ing process of Fig. 2 is shown in the sequence of
snapshots of Fig. 3. As at B =0, a rather large fraction
of the tunneling packet builds up quickly between the two
barriers and subsequently decays outside. The reflected
and transmitted packets, both largely distorted from their
zero-field counterparts, evolve with opposite curvatures,
as required by their oppositely directed velocity. In par-
ticular, far from the barrier their average trajectory is cir-
cular, as expected from semiclassical reasoning, the radii
of curvature depending on the average momenta of the
two packets. Note again the appearance of a double-
peaked reflected packet, similarly to the zero-field case of
Fig. 2. The spatial oscillations in the charge density asso-
ciated with the rejected wave packet in the last panel of
Fig. 3 are due to the interference of the wave function
with its own periodically repeated tail, and are thus un-
physical.

We are interested here in the effect of the magnetic
field on the lifetime ~0 of the resonant level in the quan-
tum well. We found that the decay of the trapped peak
in Fig. 3 follows strictly the exponential law (5) also in
the presence of the magnetic field, from which the life-
time of the resonant level as a function of B, wo(B), can be
extracted. The values of ro(B) as calculated from our
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FIG. 4. Lifetime ~0 of the resonance as a function of the mag-
netic field strength. The dots are the results from our simula-
tions, while the dashed line is only to guide the eye. The arrows
are drawn at field values where a crossing between interfacial
Landau levels ("skipping orbit" levels) and the quasilocal level
inside the well occurs (see Fig. 6).

FICr. 3. Contour plots of the charge density ~%(t)~ (same
barrier and packet parameters as in Fig. 2), in a magnetic field
8 =2.5 T perpendicular to the plane of the figure. The dashed-
dotted line shows the wave-packet trajectory in the absence of
the DB potential: the center of the wave-packet orbit coincides
with the center of the barrier.
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time-dependent simulations are shown in Fig. 4 for
several values o, up ol f 8 to 5 T. A nonmonotonic behavior
with the field 8 is apparent.

III. DISCUSSION

rdin to the simplified approach described in Ref.Accor ing o e
o be confined

of (8) i
7, h th magnetic field was assumed to
' h' h DB region, a monotonic increase o 7O

e with in-ex ected, due to the narrowing of the resonance wi in-expecte , ue o
i . 1 in Ref. 17). The abovecreasing magnetic field (see Fig. 1 in e .

approximation mig ei ht be expected to hold in the case o
real DB heterostructures, if electrons are injecte an

d from a heavily doped semiconductor emittercollecte rom a e
and collector, respectively, where the Landau eve s
expected to be smeared out by disorder. However, if the
carrier mean ree paf - th outside the barrier could be made

t en theble or longer than a few Larmor radii, t en t ecompara e or
DB re ion be-full magnetic level structure outside the DB reg'

come important, an e red th results of Ref. 17 should then be
revised.

In order to explain the oscillations of ro(B) in Fig. 4
(i.e., the appearance of minima in the lifetime for certain
values of the magnetic fields) we consider first the
stationary-state solutions associated with the Hamiltoni-
an (1). These states are more conveniently calculated by
using eth Landau gauge for the vector potentia,

theA= AI ——(0,8x,O). In this case the motion in e y
direction is free-particle-like, -exp i y, and the wave
function @(x)describing the motion along the x direction
satisfies a one-dimensional Schrodinger equation wit a
potentia eff 2 ~ ~c 0

Xo —= ttI'k~c/e8 is interpreted, as usual, as the center of the
cyclotron orbit associated with the nth Landau level.

harmonic-oscillator Hamiltonian whose solutions are
equidistant Landau levels having the same energy
Itt'co, (n +—,

'
) for all values of k: in a semiclassical picture,

these states correspond to closed circular orbits in the x-y
plane. In the presence of the barrier potential VDtt(x,
however, the translational invariance along x is bro en
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and the eigenvalues of (1) depend on Xo. In this case, the
stationary states are just the quantized version of the
semiclassical "skipping orbits" at a potential step, '
where electrons with energy less than the step height are
repeatedly reflected at the interface, thus moving parallel
to the barrier edge.

In the two left panels of Fig. 5 we show the calculated
stationary states in a magnetic field of 3 and 4 T respec-
tively, as a function of the cyclotron orbit center Xp. The
value B-4 T is one of the special values of the magnetic
field at which a minimum in the lifetime vp is observed
(see Fig. 4). The resonant level is clearly visible in the
two left panels of Fig. 5 as the flat level at about 60 meV
(the arrows show where the resonant level lies at B =0).
In the right part of Fig. 5 we show the square moduli of
the wave functions @(x) for this particular level, for
Xo =0 (i.e., the cyclotron orbit center is right in the mid-
dle of the well). From Fig. 5 one sees that, although at
8 =3 T a large fraction of the charge is localized in the
well region, at 8 =4 T the electron is essentially localized
outside the DB region.

Roughly speaking, one can think of the level structures
of Fig. 5 as obtained by coupling the set of Landau levels,
modified into "skipping orbit" levels by the presence of
the two confining barriers, with the localized state inside
the well. We show in the upper part of Fig. 6 how the
effective potential V,s= —,'m co,x + VDB(x), which gen-
erates the eigenvalues at Xp =0 in Fig. 5, can be approxi-
mately decomposed into two parts, one giving rise to the
interfacial Landau levels associated with skipping orbits
outside the barriers (solid lines), and the other giving rise

60-
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FIG. 6. B dependence of the interfacial "skipping orbits"
Landau levels (solid lines) and of the resonant level in the quan-
tum well (dashed line). The two sets of levels, which are as-
sumed to be uncoupled, arise from the efFective potential
profiles sketched in the upper part of the figure, as described in
the text. The three values of 8 where a crossing between solid
lines and the dashed line occurs are reported in Fig. 4 with ar-
rows. At these values of 8, the skipping orbit frequency and the
resonance frequency resonate, and enhanced tunneling between
them is to be expected.

to the quantized level in the well (dashed line). The
dispersion with the field of these levels is shown in Fig. 6.
Note that the position of the resonant level is almost field
independent. When the resonant level does not match
any of the "skipping orbit" levels outside the barrier, its
associated wave function is largely localized within the
barriers (as it happens, e.g. , at B =3 T in Fig. 5). On the
other hand, for those particular values of the field for
which a crossing occurs (as, e.g., at B-4 T), the hybridi-
zation between the two levels gives rise to a state charac-
terized by the electron charge being localized mostly out-
side the barrier region. This corresponds to fast escape of
the particle from the quasibound level by resonant tun-
neling into the skipping orbits. According to the above
picture, at each crossing a reduction in the lifetime of the
resonant level is to be expected. In Fig. 6, three values of
8 for which a crossing takes place are visible. As shown
in Fig. 4, these values do indeed roughly coincide with
the observed dips in ~o(B).

To substantiate our results, we propose an experiment,
which could be easily implemented within the existing
GaAs/A1As heterojunction technology, and which
should be capable of allowing a direct observation of the
above effect. The experiment, based on time-resolved
photoluminescence spectroscopy, would be simply a
reedition of that presented in Ref. 19, where the lifetime
of a resonant state inside a GaAs/Gai Al„As DB struc-
ture was measured. In these experiments subpicosecond
light pulses are used to selectively excite electron—
heavy-hole pairs localized in the QW, by tuning of the en-
ergy of the light source. The subsequent temporal decay
of the photoluminescence intensity from the quantum
well is monitored, allowing to measure directly the reso-
nance lifetime. By turning on a transverse magnetic field,
the resonance lifetime should exhibit very similar oscilla-
tions to those shown in Fig. 4, with minima directly cor-
responding to tunneling out of the resonant level into the
skipping orbits outside the well.

Of course a sufficiently long mean-free-path for elec-
trons A, ) le�—= (A'c/~e~B)'~ must be attained outside the
barrier, allowing for the electron to execute several cyclo-
tron or skipping orbits before being scattered: this im-
plies the use of high-quality samples with smooth inter-
faces. Moreover, the coherence of the electron wave
function must be preserved during tunneling, i.e., one
must have ~p(&r„, where ~„ is the lifetime for scattering
in the direction parallel to the QW layer. The latter con-
dition implies relatively broad resonances, i.e., the trans-
parency -exp( —2Kd) of the confining barriers should
not be. too small. For instance, using the same DB pa-
rameters as in our calculations, ro-0 04 ps (see Fig.. 4),
while for state-of-the-art GaAs/A1As heterostructures

sc ~~ 1 ps.
In summary, we have calculated the lifetime ~p of a

quasilocal level in an ideal double-barrier structure
placed in a transverse magnetic field 8, using a direct nu-
merical solution of the 2D time-dependent Schrodinger
equation for wave-packet tunneling. We show that
the observed oscillatory behavior of 7 p versus 8 can be
explained in terms of resonant couplings of the quasi-
stationary state in the well with the interfacial Landau
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levels corresponding to the semiclassical skipping orbits
at the barrier interfaces. We also propose a possible ex-
perimental setup which should allow a direct observation
of this effect in real heterostructure systems.

We finally stress again that the problem of transport of
electrons through a DB in a magnetic field under realistic
conditions requires a much more complex treatment than
the simple, single wave-packet approach described here.
Among others, two major effects should be taken into ac-
count. First, for a tunnel current to be established, a bias
must be applied across the DB structure. This makes the
structure asymmetric, and may in part destroy the simple

matching conditions described in this paper (see Fig. 6).
The second effect is related to the buildup of space charge
both in the emitter and/or collector electrodes and inside
the well region when an appreciable steady-state current
Bows through the DB device. ' In particular, under
steady-state conditions the effect of the space-charge
buildup inside the well is roughly to make both barriers
more transparent. ' The efFect on rp(B) should in princi-
ple be obtained through a self-consistent calculation.
Qualitatively, we may expect that the overall result will
be a slight reduction of the 7 p versus 8 structures of Fig.
4
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