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Lattice-dynamical calculation of the Kapitza resistance between fcc lattices
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The temperature dependence of the Kapitza resistance (thermal boundary resistance) at the inter-
face between two dissimilar solids is calculated for a model system consisting of two semi-infinite,
harmonic fcc lattices in register. The spectral density of phonon Aux transmitted across the inter-
face is obtained from a numerical calculation of the phonon transmission coefFicient and group ve-

locity and is used to calculate the Kapitza resistance. Results for .the spectral density of the
transmitted phonon Aux, the spectral dependence of the phonon transmission coe%cient, and the
temperature dependence of the thermal boundary resistance are presented. Calculation of the
thermal boundary resistance for real systems using the results of this calculation is discussed.

I. INTRODUCTION II. MODEL

New techniques have recently made possible measure-
ments' of the temperature dependence of the Kapitza
resistance at temperatures up to room temperature. It
has long been understood that the Kapitza resistance be-
tween two dissimilar materials is due to the reAection of
phonons at the interface. In the past, most investigations
of the Kapitza resistance were concerned with the inter-
face between a solid and liquid helium or with the inter-
face between two solids at low temperatures. Since
thermal phonons at low temperatures are long-
wavelength acoustic phonons, nearly all theoretica1 work
in the field ' has employed a continuum mechanical
model to calculate the reAection of these phonons at the
interface. This model, the acoustic-mismatch model,
gives the transmission coefficient at the interface for
long-wavelength acoustic phonons in terms of the acous-
tic properties of the two materials on either side of the in-
terface. Unfortunately, the acoustic-mismatch model
does not account for phonon dispersion, the cutoff in the
phonon density of states for high frequencies, or weak
bonding at the interface. To account for these effects it is
necessary to use a lattice model to describe phonon prop-
agation in the two lattices and transmission across the in-
terface between them. Lattice model calculations have
been performed for one-dimensional" ' and two-
dimensional' 1attices of masses and springs but it is
difficult to infer propagation behavior in three-
dimensional solids from these results.

In this paper we present a calculation of phonon
transmission and the Kapitza conductance at the inter-
face between two semi-infinite fcc lattices which have
different masses and spring constants. The interatomic
forces are taken to be nearest-neighbor central forces. A
description of the mode1 is given in Sec. II and equations
of motion are derived in a convenient form. Expressions
for the transmission coefficient and Kapitza conductance
are developed in Sec. III, followed by a brief outline of
the numerical algorithm used to evaluate these quantities.
In Sec. IV we present the numerical results for the
transmission coefFicient as a function of frequency and
the Kapitza conductance as a function of temperature.

The model we consider is two fcc lattices (lattice A and
lattice 8) divided by an interface between two adjacent
(001) planes of atoms. The relative position of adjacent
atoms on opposite sides of the interface preserves the fcc
structure. In lattice A, atoms of mass M are connected
to their 12 nearest neighbors by springs of stiffness K, and
in lattice B, atoms of mass M' are connected to their 12
nearest neighbors by springs of stiffness K'. Nearest-
neighbor atoms on opposite sides of the interface are con-
nected by springs of stiffness K". Atoms lying in a plane
perpendicular to the interface are shown in Fig. 1. The
spacing between nearest neighbors is a&2.

A. Equations of motion

%'e define uI „ to be the displacement from equilibri-
um of the atom with equi1ibrium position
rt „=(la, ma, na ) in the lattice. The definition of the lat-
tice constant a is indicated in Fig. 1, and /, m, n are in-
tegers whose sum is even. The equation of motion for the
atom lmn (assumed to be an atom away from the inter-
face in lattice A) is

FIG. 1. Atoms lying in a plane perpendicular to the inter-
face. Small atoms of mass M are connected to each other by
springs of stiffness K (single lines). Large atoms of mass M' are
connected by springs of stiffness K' (double lines). Atoms on
opposite sides of the interface are connected by springs of
stiffness K" (triple lines).
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The equations for u I „and iii' „are obtained by cyclic permutation of the subscripts and the superscript in Eq. (1).
Solutions to these equations are of the form

ul „=e expi(k rl „cot),— (2)

where e is the a component of the polarization vector e of the wave and k is the wave vector. Substitution of Eq. (2)
into Eq. (1) yields

De=A) e . (3)

where the elements of the dynamical matrix D are

D» = I8 —exp[i(k +k~)a] —exp[ —i(k„+k~)a]—exp[i(k —k )a]—exp[ i(k„——k~)a]
K

—exp[i(k, +k, )a]—exp[ i(k„+—k, )a] ex—p[i(k„—k, )a]—exp[ i(k, ——k, )a]J,

D12= I exp—[i(k +k )a]—exp[ —i(k, +k )a]+exp[i(k„—k )a]+exp[ i(k ——k )a]I .K
(4)

The other elements are given by permutation. The condi-
tion that Eq. (3) have a solution is that the determinant of
the coefFicients vanish

/D co Ii =0 . — (5)

This equation, the secular determinant, is a third-
degree polynomial in co which, for a given value of the
wave vector k can be solved algebraically for the three
roots in m . On the other hand, given a value of co and
any two components of the wave-vector k, Eq. (5) in its
present form must be solved numerically for the third
component of the wave vector. Solving the equation for
the secular determinant in this situation is a necessary
part of the calculations which will follow. Since numeri-
cal solution of Eq. (5) is difficult in a significant fraction
of cases and requires a large amount of computation
time, we transform Eq. (5) to a form which can be solved
algebraically.

The desired transformation is more or less obvious if
we expand the determinant in Eq. (5) using the explicit
form of the elements D; found in Eq. (4). First we note
that this expression is unchanged when any or all com-
ponents of the wave vector k are replaced by their nega-
tive value. Next, multiplying this expression for the
determinant by exp[3ia(k +k +k, )] produces a func-

l

tion which can 'be regarded as a sixth-degree polynomial
in exp(ik, a ). Hence we may write Eq. (5) in the form

6

g [exp(ik, a ) ex p(—ik, at)]=0,
1=1

where each of the k, h
for I = 1, . . . , 6 is one of the roots

of the determinant for a particular set of values of ~, k,
and k . For each root k,&

there must be a corresponding
root k, l

= —k,l. This allows us to write Eq. (6) in the
form

3

[cos(k,a ) —cos(k, ia )]=0 .
1=1

Thus we have converted a sixth-degree polynomial into a
third-degree polynomial, each of whose roots yields two
roots of the original sixth-degree polynomial.

To carry out this transformation we de6ne

X=2cos(k„a), Y=2cos(k a), Z=2cos(k, a),
and

Q=(2M' /K) —8 .

After some algebra, Eq. (5) can then be written in the
form

[4(X+Y')]Z +[(8+3XY)Q+8XY+32 8(X + Y—)+4X Y ]Z

+[2(X+Y)Q +3XY(X+Y)Q+8XY(X+ Y)+4(X + Y ) —32(X+ Y)]Z

+[Q +2XYQ +8(X + Y 6)Q+4(X—+ Y )XY—32XY+32(X + Y ) —8X Y —128]=0 . (10)

For given k, k, and co, Eq. (10) can be solved to give
three roots for Z, and, therefore, the six solutions for the
[k,l I. In the calculations we also need to find the phonon
frequencies for given k, k, and k, . To do this we rear-

I

range Eq. (10) as a cubic polynomial in Q,

+C2+ +CiQ+Co=0 .
The coe%cients Co, C„and C2 are
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Co=4(XYZ) +4(X + Y )(XY—Z )

+4(Y +Z )( YZ —X )

+4(Z +X )(ZX —Y )+32(X + Y +Z )

—32(XY+ YZ+ZX)+8(X+ Y+Z)XYZ —128,

C, =3(X+Y+Z)XYZ+8(X + Y +Z ) —48,

C2 =2(XY+Y'Z+ZX) .

863 dZ
az dk,

sin(k, a )
Ka an,

(13)

and implicit differentiation of Eq. (11)yields

The roots of Eq. (11) for 0 can then be used to obtain the
phonon frequencies from Eq. (9). We may also derive a
simple expression for the group velocity in terms of these
transformed variables. The z component of the group ve-
locity is

Ka
Uz 2M'

, ac, ac, ac,
az az Bz

+ (30 +2CzA+C]) sin(k, a) . (14)

Analogous expressions for the x and y component of the
group velocity are obtained in the same way.

In lattice 8 the displacement of the atom (I, m, n) in
direction e is

B. Boundary conditions

6

]]]] „=g A e'~]expi(k'~'r] „tot) .—
p ——4

(16)

To calculate the phonon transmission coeScients we
have to apply boundary conditions at the interface be-
tween the two lattices. We consider an incident phonon
of wave-vector k' ', frequency co, polarization e' ', and
amplitude Ao. The rejected phonons have wave-vectors
k"', k' ', k' ', and the transmitted phonons have wave-
vectors k' ', k' ', k' '. The displacements of atoms in lat-
tice A are then given by

3

X Apea e"p'(k r]mn'
p=0

fhe boundary conditions are obtained by considering the
equations of motion of the atoms in lattices A and B im-
mediately adjacent to the interface. Because of the
translational invariance parallel to the interface, it is
sufBcient to consider the motion of just one atom on each
side of the boundary. For convenience, we choose the
origin of coordinates to be at the position of an atom in
lattice A which is next to the interface. The equation of
motion for the x component of the displacement of this
atom is similar to Eq. (I), except for the replacement of
some springs of strength K by K",

pop=(&/2)(u] ] o+u ] ] p+u] p ] +u] ] p+u ] ] p+u

1 lp ] —]o+u —1 —]p —] ]p u]p ]+u ]p ] 6uppp)

+(K"/2)(u, o ]+u] p, , "—,o, +"] o ] 2u~) . (17)

The equation for the other two components of uooo, and
the equations of motion for an atom next to the interface
in lattice B follow in a similar way.

Substitution of Eqs. (15) and (16) into Eq. (17) yields
one of the six boundary conditions for the amplitudes A;
the other Ave are obtained from the equations for uooo,
u ooo, and for the atom in lattice B. The six equations are
expressed in matrix form as

6

X M„A, =M,oAo
q=1

The coe%cients Mp are given in the Appendix.

III. CALCULATIONS

The analysis of heat Aow across the interface in our
model system and the connection with real systems re-
quires information about the density of states and the De-
bye temperature. The density of phonon states D(a]) per

- unit volume is given by

(19)

C)

0
0 1 2

FREQUENCY

FICx. 2. Density of states per volume a for a fcc lattice with
masses M = 1, spring constants K = 1.

where V is the volume, and the sum is over all wave-
vectors k in the first Brillouin zone and over all polariza-
tions j. The histogram in Fig. 2 is an approximation of
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D(co) obtained by summing over one million random uni-
formly distributed wave vectors in the first Brillouin
zone. The density of states histogram in Fig. 2 is for
spring constant %=1 and mass M=1. For a different
spring constant E' and mass M' the density of states ex-
tends over a frequency range &K'/M' times as large and
accordingly has &K'/M' times fewer states in a unit fre-
quency range. The lattice model with nearest-neighbor
central forces that we have used gives a phonon density
of states qualitatively similar to the density of states
determined experimentally for several fcc metals, e.g.,
aluminum' and copper. '

We now relate the phonon spectrum of the model to
the Debye phonon spectrum. This will provide means by
which we can associate the properties of real solids with
the lattices used in this model. Each branch of the pho-
non spectrum is replaced by the same linear dispersion
relation co=kc, with a maximum value of the magnitude
of the wave vector k =ka for each branch. Equating the

I

volume 4(m/a ) of the first Brillouin zone for our model
crystal to the equivalent reciprocal space volume 4mkD /3
in the Debye model we obtain coD =(3m )'~ acD. The ve-
locity cD is given by

c =((c, +c +c &/3)' (2O)

where c, , c2, c3 are the sound velocities of the three polar-
izations and ( ) denotes an angular average. We obtain
cD =0.9584(Ka /M)'~, and therefore a Debye frequen-
cy coD =2.965&K/M, and a Debye temperature
SD =2.965(A'/k~ )&K/M.

The Kapitza conductance cr( T) at temperature T is the
ratio of the heat Row across the interface per unit area
per unit time to the temperature difference across the in-
terface. We may calculate this quantity by first consider-
ing the heat Aow across the interface per unit time
Q(T, T') when the temperatures of the two lattices are T
and T'. This is given by

S
Q(T, T') = g %co(kj )n(co(k j), T)v, (k, j)t(k j)+g Aco(k', j')n(co(k', j'), T')u, (k', j')t(k', j')

k,j k', j'
(21)

u, (k', j')t(k', j')5(co —co(k', j')) .
k', j'

(22)

These sums are over wave-vectors k and polarizations j
which correspond to a wave trave1ing toward the inter-
face. We call F(co) the transmission spectral density.

It is useful to define an average value of the z com-
ponent of the velocity (v, (co) ) for phonons of frequency
CO.

(,( ))= g, (k,j)6( — (k,j)) .
k,j

(23)

The factor of 2 is included because the sum g+ includes
only half of the wave vectors in the Brillouin zone. Simi-
larly we define ( t(co) ), the average transmission
coeScient for incident phonons of frequency co,

The first sum g+ is over phonons incident on the inter-
face from lattice 2 and the second sum g is over pho-
nons which are incident on the interface from lattice 8,
i.e., in each lattice only phonons with group velocity
directed towards the interface are to be included in the
sum. S0 is the area of the interface. Each term in the
sums is the product of the energy Am of the incident pho-
non, the transmission coe%cient t, the component of the
velocity normal to the interface U„and the Bose-Einstein
number density n.

If both lattices are at the same temperature there can
be no net Aow of heat across the interface. Therefore, the
two sums in Eq. (21) must be equal for T=T', and this
must be true for all temperatures T=T'. We conclude
that there can be no net Aow of heat due to phonons of a
given frequency cu, and hence,

F(co)=—g u, (k,j)t(k, j)&(co—co(k,j))1

k,j

(t{co))= 1

VD(co)( v, (co) &

Xg u, (k, j)t(k, j)5(co—co(k,j)),
k, j

(24)

Q(T, T+b, T)
S06T

= f ' ficoF(co)dco .
c}n(co, T)

0
(26)

The Kapitza conductance o ( T) can be written in a more
illuminating form using the definitions of (u, (co)) and
(t(co)). We find

~(T)=,' f "C(~,T)(u, (co))(t(co))des,
0

where C(co, T) =D (co)hco dn (co, T )/c}T is the specific heat
per unit volume of the phonons of frequency cu.

A brief outline of the calculation of F(co), which is
used in Eq. (26) to calculate cr(T), is as follows. We ap-
proximate the sum for F(co) using a large number of ran-
dom, uniformly distributed wave vectors in the first Bril-
louin zone. For each wave vector k and each polariza-
tion j in the sum, we use the secular determinant [Eq.
(11)] to determine the frequency co(k,j) for the incident
wave and hence for the rejected and transmitted waves.
The six wave vectors (three each for the reflected and

where the sum is over wave vectors k and polarizations j
which correspond to a wave traveling toward the inter-
face.

Using the definition of F(co), Eq. (21) can be written in
the form

Q(T, T')=So f [n(co, T) n(co, T')]%co—F(co)dco
0

and, hence, the Kapitza conductance is
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transmitted waves) needed to calculate the transmission
coefficient t(k, j ) are determined by solving the secular
determinant [Eq. (10)] subject to two requirements. First,
the component of each wave vector parallel to the inter-
face (k and k~) must be equal to the component of the
incident-wave wave vector parallel to the interface. This
requirement allows six rejected-wave wave vectors and
six transmitted-wave wave vectors. Using Eq. (14) to cal-
culate the velocity for these waves, the six allowed wave
vectors in each case are reduced to three by choosing
those wave vectors which correspond to waves propaga-
ting away from the interface or which are exponentially
small far from the interface. Having determined the al-
lowed wave vectors for the reflected and transmitted
waves, the polarization vector is calculated for each wave
using Eq. (3) and then the boundary conditions are ap-
plied to determine the relative amplitude of each wave.
From the amplitude and velocity of each wave we obtain
the energy Aux and thus the transmission coeScient t,
which is the ratio of the transmitted energy Aux to the in-
cident energy flux. For each wave vector, the calculation
is checked for accuracy by summing the total amount of
Aux leaving the surface in the form of rejected and
transmitted waves and comparing it to the total amount
of Aux incident on the surface in the form of the incident
wave.

Histograms of the function F(co) are produced by di-
viding the interval between zero and the maximum fre-
quency supported in the lattice into 100 equal size bins.
As we sum over wave vectors, the results for
U, (k, j)t(k, j) in each case are accumulated in the ap-
propriate bins.

IV. RESULTS AND DISCUSSION

A. Transmission spectral density

We have calculated the transmission spectral density
F(ni) [Eq. (22)] for a broad range of combinations of

I—
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FIG. 4. Transmission spectral density as in Fig. 3 but with
M'= 1.

springs and masses in the two lattices. ' Histograms of
these results, which were obtained by approximating the
sum for F(co) using at least 10000 random, uniformly dis-
tributed wave vectors in the first Brillouin zone, are
shown in Figs. 3—5. In these calculations the lattice pa-
rameter a is equal to 1. For each of these histograms, lat-
tice A has springs K and masses M equal to 1. The
spring constant E' in lattice B ranges from 0.5 to 16.0 as
indicated in the figures, while the masses M' in lattice B
are 0.5, 1.0, and 2.0 in Figs. 3, 4, and 5, respectively. The
interface spring constant K" is (K+K')/2 in all cases.

We have verified by direct calculation that detailed bal-
ance holds, i.e., that the alternative expressions for F(co)
in Eqs. (22) (involving sums over k,j and k', j') give the
same' results. Equation (22) lead to a further symmetry
property of F(co). Since F has dimensions length we
must be able to write it in the form

0. 1

0
0.04

0
0.0Z -K

0
0.01C3
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CJ3

0
0.003
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0 04 - K'=0. 5
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0
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Cf3
U)

0
0.006

CLI— 0

FIG. 3. Transmission spectral density F(co) [Eq. (22)] across
the interface between a lattice with K =1,M = 1 and several lat-
tices with M'=0. 5. The interface springs K" are in each case
equal to (K +K')/2, and the lattice parameter a = 1.

FREQUENCY

FIG. 5. Transmission spectral density as in Fig. 3 but with
M'=2.
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F(ro)=f M' K' co

M E coD
(28)

K'=0. 5

involving the dimensionless function f of three dimen-
sionless variables. Thus, from Eq. (22) we have the sym-
metry condition

t

(29)M' K coD

M E co

M' ' E''

The transmission spectral density between two lattices
with the same masses and spring constants is included in
Fig 4(.histogram with K'=1). Of course, for all frequen-
cies this F(co) is larger than the F(co) between any pair of
lattices in which either or both the masses or springs are
different. For a given ratio M'/M of the masses the max-
imum transmission across the interface occurs when the
ratio of the spring constants is approximately

C3

CG
CA

CA

CLI—

0
0.6 .

0
0.3

0
0.2

0
0.04

K'=5

FREQUENCY

K' M'
K M

(30)

B. Phonon transmission coef5cient

Using Eq. (24), we have calculated (t(co)) for phonons
going from a lattice with K =1 and M=1 into other lat-
tices. Results for M'=0. 5, 1, and 2 are shown in Figs. 6,
7, and 8, respectively. The springs E' are as indicated in
the figures and the interface springs K" are (K +K')/2.
From these figures we see that for most combinations of
springs and masses in the two lattices the transmission
coefficient is approximately independent of frequency.
(The large Iluctuations in the transmission coefficient that

For this ratio of spring constants the maximum phonon
frequency and the phonon density of states in the two lat-
tices is the same, and so this condition is not surprising.
The significance of the density of states is confirmed by
looking at further details in Figs. 3—5. Consider, for ex-
ample, the results for K' = 1,M' =0.5 (Fig. 3),
K'=2, M'=1 (Fig. 4), and K'=4, M'=2 (Fig. 5). In each
of these three cases lattice B has the same phonon density
of states, and the transmission spectral densities are very
similar both in magnitude and frequency-dependence.
The set K'=0. 5,M'=0. 5 (Fig. 3), K'=1,M'=1 (Fig. 4),
and K'=2, M'=2 (Fig. 5) also have the same density of
states. The frequency dependence of F(r0) is very similar
for these three sets of parameters, but the magnitude of
F(co) is much larger for the case K'=1,M'= 1 since then
the lattices are perfectly matched. Note that the pair
K'=0. 5,M'=0. 5 and K'=2, M'=2 should have exactly
the same F(co) [see Eqs. (28) and (29)], and this is indeed
the case to within the statistical accuracy of the calcula-
tion.

The phonon density of states D(co) contains van Hove
singularities at critical frequencies co, (Fig. 2). These
arise from phonons whose group velocity is zero. F(co)
shows ~eaker singularities. Clearly, this is because rela-
tive to D(co) it contains in the summation over k the
component U, (k,j) of the group velocity normal to the
surface which vanishes for those phonons that give rise to
the singularities.

FIG. 6. Average phonon transmission coefficient ( t(co) ) as a
function of frequency for phonons incident on an interface be-
tween a lattice with K=1,M=1 and several lattices with
M'=0. 5. The interface springs E" are in. each case equal to
(K +IC') /2.

I—

LLj
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LLj
C3

0
2

K'=0. 5

K'=2

0
0. 4

0
0.06 K'=16
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FIG. 7. Average phonon transmission coefficient (t(co)) as
in Fig. 6 but with M'=1.

occur at low frequencies are not significant„and arise be-
cause of the relatively small number of low-frequency
phonons which leads to poor statistical averaging at these
frequencies. ) This approximate constancy of (t(co)) is
particularly remarkable when one considers that the in-
cident Aux is predominantly from transverse phonons at
low frequencies, and entirely from longitudinal phonons
at the highest frequencies.

The transmission coefficient has a large frequency
dependence when the maximum frequency in lattice B is
less than that in lattice A, i.e., when K'/M'(K/M. In
these cases (t(ni)) is zero above the cutoff frequency
co,„=&8K'/M', and below this frequency is a rapidly
decreasing functions of co.



LATTICE-DYNAMICAL CALCULATION OF THE KAPITZA. . . 3691
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FIG. 8. Average phonon transmission coeIIicient (t(co)) as
in Fig. 6 but with M'=2.

FIG. 10. Average phonon transmission coefficient (t(co) ) as
in Fig. 9. The interface springs are as indicated.

C. KS'ect of varying the interface spring constant

The results presented so far have all been obtained us-
ing an interface spring constant K" equal to the average
value of the spring constant in either lattice. Calculating
the transmission spectral density for other values of K",
we 6nd no appreciable difference in the results provided
that K" lies in the range between K and K'. This is
demonstrated in Fig. 9 where we show (t(co)) for the
values K = 1, M = 1, K'=4, M'= 1, with K" taking five
values between K and K'.

If K" is outside this range there can be a significant
reduction in the transmission spectral density and the
phonon transmission coefficient. If the interface spring is

much stronger than the springs in either lattice we find
that the transmission is reduced only slightly, with the
greatest reduction at high frequencies. An example of
this is shown in Fig. 10 (K = 1, M = 1, E'=4, M'= 1) for
K"=16. One can understand the reason for the fairly
small reduction for large K" by considering the limiting
case of K"~~. Then, at least for phonons at normal in-
cidence to the interface, it is straightforward to see that
the effect of the change in the interface springs results, in
effect, in a plane of atoms at the interface each with mass
equal to the sum of the masses in the two lattices. This
plane of atoms is connected to atoms in lattices 3 and 8
by springs of strength K and K', respectively. The reduc-
tion in Aux due to this plane of heavier atoms is not large.

For K" less than the smaller of K and K' the transmis-
sion is also reduced, and clearly as K"~0 the transmis-

0.4 K"=4

UJ

LLj
C3

0
0

0
0

K"=1.4

K"=2

0
0 ~ 4

0
0

K"=2.8

K"=4
0.5

FREQUENCY

FIG. 9. Average phonon transmission coefficient ( t(co) ) as a
function of frequency for phonons incident on an interface be-
tween a lattice with %=1,M=1 and a lattice with IC'=4,
M'= 1. The interface springs are as indicated.

I

10 '

T/8,

FICx. 11. Kapitza conductance o divided by o.o as a function
of T/OD at an interface between a lattice with K = 1, M = 1 and
several lattices with M'=O. 5.
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FIG. 12. Kapitza conductance cr divided by cro as a function
of T/0D at an interface between a lattice with E = 1,M= 1 and
several lattices with M'= 1.

FIG. 13. Kapitza conductance o divided by o.o as a function
of T/0D at an interface between a lattice with E = 1,M = 1 and
several lattices with M'=2.

sion must tend to zero, presumably as E" . As can be
seen from Fig. 10 the reduction in {t(co)) is largest at
high frequencies.

D. Kayitza resistance

The Kapitza conductance o.(T) is obtained from the
transmission spectral density by numerical integration of
Eq. (26). Results of these calculations are shown in Figs.
11—13. In all of these calculations the interface spring
constant has the value K"=(K+E')/2. We have plot-
ted the Kapitza conductance divided by o.o, defined by

k~ ~ 0.337k~ 0" D
o (31)a' ~ gaia'

as a function of TISD
The conductivity is in all cases proportional to T at

low temperatures and independent of T for T) OD. (We
believe that some small deviations from T dependence
that can be seen in Figs. 11—13 are an artifact arising
from poor statistical averaging at low frequencies. ) The
temperature dependence of o is thus similar to that of the
specific heat. A more detailed comparison shows that as
T is raised o ( T) increases less rapidly than does C( T).
This is due to the increase in the number of high-
frequency phonons which have low group velocity and
transmission coefticient. The efFect is most marked when

OD &OD, since then the phonon transmission coefBcient
is zero above a certain frequency. As an example of this

effect, see the results for K'/K =O. S,M'/M =2.0 in Fig.
13.

To apply these model calculations to estimate the con-
ductance between two real solids one can use the relation

E' M' OD

K M OD

o.(K,M, K', M', T ) =o (K', M', E,M, T), (33)

i.e., must be the same when the two lattices are inter-
changed. Thus, one can always choose the 1attices so
that K /K is larger than 1, i.e., in the range included in
Figs. 11—13.

We have recently completed'a series of measurements
of the temperature dependence of the Kapitza resistance
for several different interfaces. In a subsequent paper we
plan to compare these and other' data with the calcula-
tions described in this paper.
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The conductance can then be estimated from Figs.
11—13, provided that the ratio of the masses is no more
than 2:1. Notice that the conductance must have the
symmetry

APPENDIX

The coefficients M for the incident wave (q =0) and the three rejected waves (q =1,2, 3) are

Mi~ =[(1—K"/K') —exp( ik,'~'a )cos(k„a—)]K'e„'~'+ [i exp( ik,' 'a )sin(k —a )]K'e,'q',

M2q =[(1—K"/E') —exp( —ik,' a)cos(k a)]K'e ~'+[i exp( —ik,' 'a)sin(k a)]K'e, ',
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M3q =[i exp( —ik,' 'a )sin(k a )]K'e„' '+[i exp( —ik,'q'a )sin(k~a )]K'e~q'

+ I2(1—K"/K') —exp( —ik,'q'a )[cos(k a )+cos(k~a )]I K'e,'q',

M4 =[cos(k a )]K"e„'q'a+[i sin(k„a )]K"e,'q',

Mqq =[cos(k a )]K"e' 'a+(i sin(k a )]K"e~q',

M6q=[i sin(k a)]K"e„'q'a+[i sin(kza)]K"e~q'+[(cos(k a)+cos(k a)]K"e~q' .

The coefficients M for the three transmitted waves (q =4, 5, 6) are

M, =[cos(k, a )]K"e,'q'a —[i sin(k„a )]K"e,'q',

Mzq =[cos(k a )]K"ez'q'a —[isin(k a )]K"e~q

M3 = —[i sin(k„a)]K"e' 'a —[i sin(k a)]K"e'q'+[cos(k a)+cos(k a)]K"e,'q',

M4q =[(1—K"/K) ex—p(ik,'q a)cos(k a)]Ke~ i —[i exp(ik, ' a)sin(k a)]Ke~q',

M~ =[(1 K"/K—) —exp(ik, ' 'a)cos(k a)]Ke'q' —[i exp(ik, 'q'a)sin(k a )]Ke,'q',

M6 = —[i exp(ik, ' 'a )sin(k„a )]Ke„'q' —[i exp(ik, 'q'a )sin(kra )]Ke' '

+ I2(1 —K"/K') —exp(ik, 'q'a )[cos(k„a )+cos(k a )] I Ke,'q' .
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