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Atomic pseudopotentials simplify electronic calculations by eliminating atomic core levels and
the potentials that bind them. Outside some core radius, norm-conserving pseudopotentials pro-
duce the same scattering properties (radial logarithmic derivatives of wave functions for angular
momenta of interest) as full-atomic potentials to zeroth and first order in energy about valence-level
eigenvalues. We extend the correctness of the radial logarithmic derivative one order further in en-

ergy and present analytic and numerical results showing that this extension improves higher-order
energy derivatives as well. We also show how our change improves predictions of excited single-
particle eigenvalues in a wide variety of atoms, as well as high-energy scattering properties, with
e6ects visible in a band-structure calculation. Our potentials converge nearly as quickly in recipro-
cal space as the Vanderbilt {modified Hamann-Schluter-Chiang) potentials from which they are de-
rived, and are easily generated.

I. INTRODUCTION

Determining the electronic structure of a physical sys-
tem such as a solid is a difFicult task, since the electrons
form a many-body system of interacting fermions moving
in the strong potentials of atomic nuclei. Calculating
desired quantities such as binding and quasiparticle exci-
tation energies can be extremely demanding when such
quantities are a small fraction ( —10 —10 ) of the
system's total energy. The problem can often be greatly
reduced, however, as the difficulties associated with such
a calculation can largely be separated into two categories
and confronted individually, namely the description of
single-body and many-body aspects of the physical sys-
tem.

Single-body aspects of a system relate to the accurate
description of single electrons moving in some self-
consistent field. Deep potentials in atomic cores lead to
highly oscillatory wave functions difticult to describe in
convenient basis sets, and the very number of electrons in
a reasonably large atom makes the problem all the more
hard. It has been demonstrated, however, that except for
purposes of orthogonality to core wave functions due to
the exclusion principle, it is not essential for correct
valence properties of an atom that valence electrons ex-
perience a deep negative potential and exhibit highly os-
cillatory wave functions inside the core region. ' Furth-
ermore, deep core electrons can usually be treated as
frozen in space and independent of an atom's valence en-
vironment (the frozen-core approximation), not only be-
cause of the disparity between valence- and core-level en-
ergy scales but also due to a variational theorem in

density-functional theory. With the above features of
atoms in mind, ab initio ionic pseudopotentials simplify
the description of a physical system by removing alto-
gether the atomic core levels and the potentials which
bind them. Deep full-atomic potentials are replaced by
ones whose lowest bound states correspond to valence ei-
genvalues, and the resultant smooth pseudopotentials and
nodeless valence wave functions can be accurately de-
scribed using a variety of basis sets.

Many-body aspects of a physical system are important
for even qualitatively correct solutions of electronic prob-
lems. One method which has been widely used to deal
with many-body effects is the density-functional ap-
proach. In particular, the local-density approximation
(LDA) reduces the description of a many-electron system
to a set of local, self-consistent single-particle equations
(the Kohn-Sham equations), simplifying the treatment of
exchange/correlation effects by including such effects
only approximately. Progress beyond local-density for-
mulations of density-functional theory includes the appli-
cation of Hedin's GW approximation and quantum
Monte Carlo techniques to solids.

The above pseudopotential and many-body approxima-
tions used for describing physical systems can in principle
be made and/or improved upon independently. Due to
the sophistication of present pseudopotential techniques,
most of the physical inaccuracy made in electronic struc-
ture calculations can be attributed to the inaccurate
treatment of many-body effects rather than single-body
effects. With current advances in many-body techniques,
however, this situation could change. We shall focus
here on improvements in norm-conserving pseudopoten-

3652 1989 The American Physical Society



40 EXTENDED NORM-CONSERVING PSEUDOPOTENTIALS

tial (NCPP) techniques used in simplifying single-body
aspects of the system within the context of the LDA,
studying errors caused by using pseudopotentials by com-
paring different pseudopotential calculations to full-
atomic ones but keeping the treatment of many-body
effects unchanged.

Current NCPP's have the correct zeroth- and first-
energy derivatives of a wave function s radial-logarithmic
derivative at a valence eigenvalue; we extend this to be
correct one order higher in energy, which simultaneously
improves higher-energy derivatives as well. We first
present analytic results on the energy dependence of the
scattering properties of a central potential and the effects
of external perturbations thereon, thereby providing
some insight into the consequences of our extension. We
thcrj. uesci-ibe the implementation of our formal improve-
ment, extended norm conservation, and demonstrate its
effects in a wide variety of atoms. As a final test of our
improvement, we present its effects on a band-structure
calculation for silicon.

II. THEORETICAL BACKGROUND

In this section, we consider the single-particle, nonrela-
tivistic Schrodinger equation for a spherically symmetric
potential as is used in self-consistent calculations of atom-
ic structure. The atomic calculations in this paper are ac-
tually done relativistically using the Klein-Gordon or
Dirac equation, but Schrodinger s nonrelativistic equa-
tion leads to many formal relations relevant in our work.
Since relativistic effects are smal1 in the atoms we study,
the formal relations which we derive here shall remain
approximately true in our relativistic calculations. In
Hartree atomic units, the radial form of Schrodinger s
equation is

P(r)+ P(r)+[V(r)+A, U(r)]P(r)
1 B /(1+1)

Br 2 2r

=EP(r), (1)

where the A, U(r) term is included as a possible spherical
perturbation on the potential V(r), with A, = 1 when the
perturbation is at full strength. We can vary E about a

I

single-electron valence eigenvalue and X about zero to de-
scribe how the scattering properties of the atomic poten-
tial vary with energy and change under external pertur-
bations.

We shall describe the scattering properties of V(r)
through the radial-logarithmic derivative of P, i.e., P /P,
which we shall call x, and which is as informative as
partial-wave scattering phase shifts. ' We are using the
phrase "scattering properties" in a loose sense, referring
not so much to the problem of a positive energy electron
incident on an atom as to the dependence of x on E and A,

at any energy. Integrating the nonsingular solution of (1)
from zero to a given atomic core radius R, one obtains
some value of x at R. Bound states occur when this solu-
tion matches the decaying solution for r & R; scattering
states occur for E &O.

Equation (1) can be written as a first-order nonlinear
differential equation in x in the well-known form,

x'(r)+x(r) =2 V(r)+A, U(r)+ l (l +1) —E
2r

(2)

Using the relation valid for any function f (r),

f'(r)+2x(r)f(r)=
2 [P(r) f(r)],1 d

p(r)2 dr

and differentiating (2) once with respect to E or A., one
obtains after multiplying by P(r)2 and integrating,

Bx(R) 2 f&d )2
BE P(R)~ o

and

=+ f dr P(r) U(r),
P(R)2 0

which are valid for nodeless wave functions as well as for
wave functions with nodes inside R. One can continue
difFerentiation of (2) to get the following relation valid to
all higher orders in E and A, but only for nodeless wave
functions, where the prime in the sums means that we do
not include the cases a=b =0 and a =A when b =8
simultaneously:

A B
B B

aE ax A+B) 1

a
f drPr~

aE

a

x(r)B
' A —a B —b

x (r) . (6)

g R dr '
r

P(R)' o P(r)' . o

For example, the second and third energy derivatives of x are

B x(R) 2 f &d 2 Bx(r)
BE' P(R)'

96 p& dr
P(R)' o P(r) f dr'P(r')

and
B x(R) 6 iid 2 Bx(r)

aE'
B x(r)

BF.

f 2 f dr" P(r")
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Equation (6) states that any second or higher derivative
of x can be expressed as a sum of integrals of products of
P(r) times pairs of lower derivatives, and one can readily
see [e.g. , in (7) and (8)] the iterative hierarchical scheme
needed to achieve analytic expressions for all derivatives.
These equations can in principle also be generalized to be
applicable for wave functions with nodes when taking
second and higher derivatives. When integrating through
a node, however, the integrand with factor P(r), which
will always arise in second- or higher-order derivatives,
must be integrated carefully since the P(r) is related to
the derivative of a first-order pole located at the node, or
else one could use a method by Aharonov and Au. "

The above relations (4)—(8) can provide insight into the
efFects of our modification to NCPP's. Let us now brieAy
review the properties of NCPP's: We define a pseudopo-
Iential as a potential equal to the full-atomic potential
outside of R, but shallow and possibly l-dependent inside
so that the lowest single-particle bound state for each an-
gular momentum of interest has an eigenvalue equal to
that of the corresponding atomic valence level. A pseu-
dopotential, therefore, eliminates atomic core levels and
simplifies the description of valence levels. In a nonn-
conserving pseudopotential, the total charge inside R, di-
vided by P(R),

Q= I dr P(r)
P(R)'

(9)

is the same for the pseudo wave function as for the full-
atomic wave function.

The correct matching of a valence orbital's Q by a
pseudo wave function, termed norm conservation, assures
that upon normalization a pseudo wave function will be
equal to the fu11-atomic wave function outside of R rather
than merely proportional to it. Within the (relatively
minor) approximation of assuming a spherical charge dis-
tribution inside of the core radius, norm conservation
also assures that the scalar potential generated by a pseu-
do wave function will be accurate outside of R. Equation
(4), which was published originally by Liiders, ' is per-
tinent in work relating to NCPP's because it demon-
strates how Q and the first energy derivative of x will al-
ways be correctly matched at the same time. (The
zeroth-energy derivative of x is already correctly
matched at the valence eigenvalue because the real and
pseudo wave function are equal for r )R.)

We extend norm conservation one order in E about
valence eigenvalues by matching a pseudopotential's
B2x/BE as well as x and Bx/BE. While we explicitly
match only one more energy derivative of x, higher
derivatives should generally be improved as can be seen
from the form of Eq. (6). In practice, P(r) will weigh
most heavily in (6) near R, where P(r) is both largest,
and correct in value (in practice, up through its third ra-
dial derivative) so that if all derivatives of x lower than a
given one are correct at R, then also that derivative of x
at R should be close to the correct value. Later, we shall
present examples of the improved accuracy of B x/BE
which we achieved by matching 9 x /BE .

While the E dependence of x is improved in the atomic
configuration in which we generate our pseudopotentials,

the A, dependence of x remains essentially uncorrected ex-
cept when U(r) is both approximately constant inside R,
and correct. Thus, although we are improving some er-
rors in the description of single-body aspects of an
NCPP/I. DA calculation, we are by no means addressing
all of the errors present in such a calculation, nor do we
necessarily deal with the largest. Some important errors
which we do not touch on here include linearization of
the nonlinear core-valence exchange-correlation interac-
tion, which has been dealt with by Louie, Froyen, and
Cohen, ' the incorrect description of the valence-valence
direct Coulomb and overlap terms (which are particularly
apt to be numerically incorrect because of the change in
valence charge density due to the removal of nodes), '"
and the frozen-core approximation, which plays a rela-
tively minor role for reasons discussed by von Barth and
Gelatt.

III. IMPLEMENTATION OF EXTENDED NORM
CONSERVATION

We generated extended NCPP's building on a previous
method by Hamann, Schliiter, and Chiang as modified
by Vanderbilt. ' Potentials produced by this method
converge rapidly in reciprocal space, which is useful for
band-structure calculations with plane-wave basis sets
since relatively few plane waves are needed to represent
wave functions and potentials. An alternative pseudopo-
tential generating scheme by Kerker' produces pseudo-
potentials essentially equivalent to those of Hamann
et al. , except that they do not to converge as rapidly in
reciprocal space for reasons explained in Vanderbilt's pa-
per. We were able to generate extended NCPP's using
Kerker's scheme equally well, but with the particular
goal of plane-wave calculations in mind we concentrate
here on the Vanderbilt approach.

We refer the reader to Vanderbilt's paper for a more
complete description of his scheme, which he describes in
three steps. Our modification is only in the last step. In
the first two steps, one generates a preliminary pseudopo-
tential which has a lowest bound state with the correct
valence eigenvalue but which generally does not obey
norm conservation. In the third step, one modifies this
potential's lowest bound-state wave function y&(r) by mix-
ing in an envelope function f3(r /r& ) inside R in order to
achieve norm conservation (where r& is called the "cutoff
radius" for a given angular momentum and is about
R /2), and one scales the wave function by an overall con-
stant for normalization purposes. One then inverts the
Schrodinger equation to produce the binding potential as-
sociated with the resultant wave function P&(r) given by

P)(r) =y&y&(r)[I+51f3(rlr&)) .

We generalized Vanderbilt's form of f3(r/r&) to fit
Bx/BE and match B x/BE simultaneously (i.e., achieve
extended norm conseruation) To retain . rapid reciprocal-
space convergence of our pseudopotential as is present in
Vanderbilt's, we did not want to change f3(r/r&) in an
arbitrary manner, but found the following alternative
form adequate for our purposes:

n) lao —sinh (n/[1. 5+(1—ns)pl) /sinh (1)
Q
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Vanderbilt's form of the envelope function f3 ( r /r& ) is the

p =0 case of Eq. (11),

f V(0 ) 100
—sinh (u l&.5)lsinh2( i )0 (12)

The parameters m and n controlled the manner in
which varying the fitting parameter p altered the form of
f3(v Ivi). We varied m between zero and one in order to
alternatively change the scale of the radial extent of
f3(rIri) (m =0), alter the shape of f3(r/vi) particularly
at large r/ri (m =1), or perform some admixture of the
two operations (0&m &1). Flexibility of m was useful
for extending norm conservation in a wide variety of
atoms (discussed in the following section) and also pro-
vided us with additional control of the extent of the po-
tential in reciprocal space. When m&1 and thus the ex-
ponent n is used, n should neither be 1 or 3, which would,
respectively, produce a 1/r dependence of or cusp in the
potential at the origin. On the other hand, a large value
of n would prevent f3(rivi) from decaying rapidly out-
side of the cutoF radius r&, while a small value would not
qualitatively change much the shape of f3(r lri). The
value n =6 worked well for our purposes in extending
norm conservation.

By carrying out the last stage of Vanderbilt's scheme
repeatedly for diFerent values of p, once m and n have
been chosen, we were able to find a value of p which
caused the potential to have the correct B x/BE . [We
determined the energy derivatives of x by finite-diFerence
methods, integrating Schrodinger's equation from zero to
R at various values energy of over a small range, both in
the full-atomic potential and pseudopotential. We also
explicitly fitted Bx /BE rather than Q because of relativis-
tic corrections to (4).] Not wanting to alter the form of
f3( r Ir& ) very much, a small value of p was desirable, and
we usually found a solution with

Ipl &0.5 . (13)

We generated extended NCPP's with x, Bx IBE, and
B x/BE fitted as accurately as one would desire at the
valence eigenvalues, though in considerably more time
than that required to generate the original Vanderbilt
pseudopotential (on the order of 5 to 10 times longer,
which is still reasonably fast). In all cases tested (though
not with all core radii tried) an extended NCPP was
achieved. We note that it may be possible that the third-
and higher-order energy derivatives of x could also be
achieved in a pseudopotential with the additional compu-
tational efFort, in the spirit of our extension here to the
second derivative. Nonetheless, the general existence of a
pseudopotential producing an arbitrary number of
correct energy derivatives of x remains yet to be demon-
strated, and the increasing nonlinearity of (6) for higher
derivatives renders such a demonstration foreboding. In
any case, Levinson's theorem sets limitations on the ener-
gy range over which x can be correct, as pointed out by
Hamann, Schluter, and Chiang.

IV. EFFECTS OF EXTENDING NORM CONSERVATION
ON ATOMIC CALCULATIONS

Because extension of norm conservation deals primari-
ly with the E dependence'of x and not the A. dependence,
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FIG. 1. Energy dependence of the radial logarithmic deriva-
tive in a Z =3 Coulomb potential. Displayed are the cases for
the full potential (solid line), the Vanderbilt pseudopotential
(dotted line), and our extended NCPP (dashed line). The
discontinuity between —1.0 and 0.0 hartree occurs when a node
passes through the sampling radius, 2.8 a.u. When a pseudopo-
tential curve is not visible, it is superimposed on the full-
potential curve.

its e6'ects should be sought in observing the wave
mechanics of a single electron moving in the same self-
consistent field in which the pseudopotential has been
generated, but at energies diFerent from the fitted valence
eigenvalue. We present results on how extending norm
conservation improves a pseudopotential's predictions of
eigenvalues of excited states in the same self-consistent
field, and also plot some curves of x versus E in the case
of the full-atomic, norm-conserving, and extended norm-
conserving potentials. Most atomic tests in this section
were performed using the Klein-Czordon equation and the
Wigner' interpolation scheme in the LDA.

As a test case, we made a pseudopotential for the 2s
level in a Z =3 Coulomb potential, treating the 1s level
as a core state, and observed how well norm-conserving
and extended norm-conserving pseudopotentials predict-
ed the known eigenvalues of the 3s, 4s, Ss, and 6s states in
the same Coulomb potential. In Table I, we tabulate
these results as well as the excited-state eigenvalues for
all atoms tested in this way, giving the eigenvalues (when
present) in the full-atomic potentials, and the NCPP and
extended NCPP errors in the eigenvalues. We also
present the errors in the NCPP's and extended NCPP's
third energy derivatives of x, which extension of norm
conservation should improve, for reasons discussed ear-
lier. From Table I, it is clear that NCPP's already pre-
dict higher single-particle states very well, but that the
extension of norm conservation substantially reduces the
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TABLE I. {a)Excited one-electron level eigenvalues for a wide variety of atomic systems, in hartrees,
as well as the errors produced by norm-conserving and extended norm-conserving potentials. {b) Core
radii in atomic units and errors in third energy derivatives of x in hartree, for the above systems.

(a)

Si

2$ 2p

3 23

Mo
Cu

5$14d4755p0 25

3$ 3p 3d

System with
pseudopotential

Z =3 Coulomb
potential, 2s level

Excited one-
electron level

3$
4s
5s
6s
3$

3p
4s
4p
4d
6s
4s
4p

Eigenvalue
—0.500 14
—0.281 31
—0.18003
—0.125 02
—0.438 28
—0.363 42
—0.197 35
—0.13722
—0.064 80
—0.01124
—0.857 30
—0.570 78

NCPP
—0.003 94
—0.002 97
—0.001 89
—0.001 21
—0.001 44

0.000 12
—0.000 72
—0.000 18

0.000 00
—0.000 16
—0.014 78
—0.002 45

—0.00006
—0.000 06
—0.000 05
—0.00003
—0.000 23

0.000 01
—0.000 10
—0.000 02

0.000 00
—0.000 02
—0.002 98
—0.000 05

Pseudopotential error
Extended

NCPP

Z=3
C

Si

System

s

p
s

p

s

p
d
s

p
d

r~

1.4121
0.8
0.6
1.17
1.35
1.17
2.0
2.0
0.9
0.531
0.545
0.476

(b)

NCPP

14.0992
0.2920

—0.0184
1.4232
1.5856

—0.1336
32.9400
3.1888
0.1048
0.3712
0.1600

—0.0376

0.0664
0.0264

—0.0024
0.1096
0.1288

—0.0192
2.0152
0.4384
0.0088
0.0240
0.0072

—0.0002

Error in B x/BE
Extended

NCPP

NCPP errors. In Fig. 1 the E dependence of x is plotted
for the Z =3 full Coulomb, norm-conserving, and ex-
tended norm-conserving potentials. As should be expect-
ed, the extended NCPP curve is closer than the NCPP
curve to the full-potential curve.

As a case where eigenvalues over a large energy range
may be of interest, we included results for copper in
Table I. We made a pseudopotential for the deep 3s and
3p electrons along with 3d electrons, rather than follow-
ing the usual manner with 4s and 4p levels, treating
closed 3s and 3p shells as core states. This results in hav-
ing the lowest single-particle eigenvalues for each angular
momentum of interest increase with increasing angular
momentum, a condition necessary for using a pseudo-
Hamiltonian developed by Bachelet, Ceperley, and Chioc-
cetti. ' Their pseudo-Hamiltonian is in turn generated
from a norm-conserving potential such as Vanderbilt's or
ours. The enormous difT'erence in energy between the 3s
and 4s levels (about 5 hartrees) led to a substantial error
in the NCPP 4s eigenvalue ( -0.5 eV) which is improved
by our extension of norm conservation.

In Fig. 2 the E dependence of x in silicon is plotted for
the pseudopotentials used in a solid-state calculation in
the following section. We made the pseudopotential for

TABLE II. Excitation energies for atomic silicon. The ener-
gies are in hartrees and are relative to s p . These were calcu-
lated using the Dirac equation and the Ceperley-Alder formula
for exchange/correlation.

E(sp ) E(s p) E(s p d ) E(sp)

All electron
Vanderbilt
This work

0.2498
0.2506
0.2504

0.2878
0.2882
0.2882

0.4385
0.4389
0.4388

1.1748
1.1752
1.1748

silicon in the s p d configuration which was used by
Vanderbilt to compare the reciprocal-space convergence
of Hamann, Schliiter, and Chiang's potentials before and
after his modification. ' We present our silicon potentials
and his in both direct and reciprocal space in Fig. 3.
Ours are slightly more extended than Vanderbilt's in re-
ciprocal space, but are comparable to those of Hamann,
Schliiter, and Chiang as presented by Vanderbilt. (To in-
voke extended norm conservation in silicon, we used
m =0.75, n =6.)

In Table II we present the excitation energies for atom-
ic silicon in the all-electron NCPP and extended NCPP
cases as a test of the intercon6gurational transferrability
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E (hartrees)
FIG. 2. Energy dependence of the radial logarithmic derivative in silicon for s, p, and d waves. Displayed are the cases for the

full-atomic potential (solid line), the Vanderbilt pseudopotential (dotted line), our extended NCPP (dashed line). The discontinuities
occur when a node passes through the sampling radius, 3.0 a.u. When a pseudopotential curve is not visible, it is superimposed on
the full-potential curve.

of our pseudopotential. All of the atoms listed in Table I
demonstrated our extended NCPP's to be comparable to
Vanderbilt s potential in these regards, i.e., in terms of
the accuracy of Kohn-Sham eigenvalue and total-energy
shifts which occur upon changes of valence configuration.
We point out, however, that inaccuracies in
interconfigurational transferability relate mainly to the A,

and not the E dependence of x, so we are not directly ad-
dressing such efFects here.

lattice constant (a =5.35 A). The potentials generated
for the solid-state calculation were made using the full
Dirac equation for atomic calculations and the Ceperley-
Alder formula for exchange/correlation as param-
etrized by Perdew and Zunger. Desiring a highly con-
verged comparison of the band structures produced using

V. EFFECTS OF EXTENDING NORM CONSERVATION
ON BAND-STRUCTURE CALCULATIONS

A large number of coxnplicating factors enter into the
determination of the electronic structure of a solid froxn
the atomic potentials once the appropriate NCPP's have
been generated. Despite this, we have been able to ob-
serve the effects of our improvement on the atomic sil-
icon pseudopotentials in the band structure of silicon. As
discussed by Hamann, Schluter, and Chiang and in the
spirit of Korringa-Kohn-Rostoker' (KKR) arguments, a
pseudopotential's ability to accurately emulate the
correct single-electron aspects of a band structure (such
as band widths and bonding-antibonding hybridization
splittings ) depends on the energy range over which x is
accurately predicted. A model problem showing how the
energies of bands in a one-dimensional lattice are com-
pletely determined by the scattering properties of the
constituent atoms is discussed by Heine. In the case of a
silicon lattice, the manner in which band energies are
determined by the scattering properties of the atoxnic po-
tentials is formally done using the KKR method. '

We determined silicon's band structure using a plane-
wave basis set with Vanderbilt's NCPP and our extended
NCPP generated in the s p d configuration. We also
carried out the calculations presented here with an
NCPP and extended NCPP generated in the s'p d
configuration and achieved results essentially identical to
those presented here, except for a smaller equilibrium

O
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FIG. 3. Vanderbilt and extended NCPP pseudopotentials in
direct and reciprocal space. Displayed are the potentials for
l =0 (solid line), l = 1 (dotted line), and l =2 (dashed line).
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0
TABLE III. Pressure P at a =5.43 A, the corresponding lattice constant based on the experimental

bulk modulus B=0.988X10' ergcm ' and a,q=a[1+P(a)I3B], lattice constant and bulk modulus
from an E, , vs a curve, and the cohesive energy, calculated using the NCPP and extended NCPP for
silicon, with experimental values for comparison. The overestimate of the theoretical cohesive energies
is a systematic error because of the LDA. Atomic spin-polarization effects and zero-point energy,
which we have not included in our calculation, are taken from Ref. 26.

Pressure (kbar)
0

Lattice constant (A)
Based on pressure
Based on minimum energy

Cohesive energy (eV/atom)
Spin-polarized atom,
zero-point motion included
Spin-unpolarized atom,
zero-point motion ignored

Bulk modulus (10' erg/cm )

'Reference 26.
Reference 27.

NCPP

—30.821

5.376
5.373

5.14

6.00
0.998

Potential
Extended NCPP

—31.801

5.374
5.377

5.08

5.94
0.984

Experiment

0.000

5.429'
5.429'

4 63'

0.988

the respective pseudopotentials, we used a 24 Ry (about
540 plane wave) cutoff and 10 special points. Since (as is
evident from Fig. 3) both Vanderbilt's and our potential
are essentially converged after about 5 a.u. ', this calcu-
lation should be adequate to account for most features in
the potentials.

From Fig. 2 we see that the NCPP and extended
NCPP for silicon exhibit essentially identical scattering
properties until energies well above the valence-level ei-
genvalues (

—0.7452, —0.4712, and —0. 1633 hartrees for
I =0, 1,2, respectively). Because all occupied bands in a
self-consistent band-structure calculation are close to the
atomic valence energies, values of physical quantities
such as cohesive energy, equilibrium lattice constant,
bulk modulus, and stresses should be similar using either
a NCPP or extended NCPP. We see from Table III that
the NCPP and extended NCPP are indeed equivalent re-
garding such quantities.

On the other hand, differences between a NCPP and
extended NCPP should be visible when one deals with
unoccupied states well above atomic valence levels, at
which energies the pseudopotentials have noticeably
different scattering properties. We note that high-energy
bands are not superAuous in studying the physics of vari-
ous systems. These bands are used, for example, in calcu-
lating the dielectric response of semiconductors which
is important for GW calculations, and they are interest-
ing in themselves because of many-body effects on their
quasiparticle properties which have been observed experi-
mentally. The curves in Fig. 2 suggest that when using
our extended NCPP to calculate such high-energy bands,
those with atomic s- and p-like symmetry should be
raised in energy, and d-like bands lowered, with respect
to the corresponding bands derived from a NCPP calcu-
lation.

To examine the differences between the NCPP and ex-
tended NCPP band structures, we calculated the first 47
band energies at the zone center with both pseudopoten-
tials. In diamond-structure silicon, Bloch functions at
the zone center are either symmetric or antisyrnrnetric

%(r)=S+P,x+P y+P, z

+D~,yz+D, „zx+D ~xy+D, ,(x —y )

+D 2, (3z —r )+
3z T

(14)

and formulated a criterion regarding the T2 D and I'
coeScients to assign mostly p-like or mostly d-like atomic
symmetry to the Bloch functions based on the ratio,

IP. I'+ IP, I'+ IP, I'

ID„I'+ ID,.I'+ ID., I'
(15)

By calling the four sets of threefold degenerate bands
with the smallest a mostly d-like and the rest mostly p-
like, the significant relative shifts of s-, p-, and d-like
bands which occurred due to extending norm conserva-

about bond centers, and, if we choose the center of an
atom as our origin, the Bloch functions then belong to
representations of the tetrahedral group Td. s-like
functions belong to the one-dimensional A

&
representa-

tion p~-, p„-, and pz, and dyz de p and d&y like functions
belong to the three-dimensional T2 representation, and
d 2 2- and d & 2-like functions belong to the two-x —g 3z —1'

dimensional E representation. Singly-degenerate bands
(not counting spin degeneracies) can therefore be
identified as exhibiting chieAy s symmetry, twofold de-
generate bands can be identified as exhibiting chieAy d
symmetry, and threefold degenerate bands have a rnix-
ture of p and d symmetry, in which case investigation of
the wave functions near the center of the atom is required
to determine which symmetry is dominant. f-like states
and states of higher angular momentum are not irnpor-
tant in bands in silicon until at very high energy, and we
have ignored them.

Attempting to identify the dominant symmetries in the
Bloch functions of the threefold degenerate bands, we
Taylor-expanded their wave functions in real space about
the center of the atom which we have chosen as our ori-
gin,
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NCPP band-energy (eV)

TABLE IV. Zone-center band energies of the first 47 bands in diamond-structure silicon, the shift in
energy due to extending norm conservation, and the assignment of the dominant atomic symmetry to
the Bloch function based on the degree of degeneracy, or according to the criterion discussed in the
text, for which cases we have given a as determined from the self-consistent calculation.

Degeneracy CX Shift (eV) Symmetry

1.0
0.88

0.14

0.007

0.57
0.008
0.0007

3.4
164

0.81
0.55

—11.981
0.000
2.621
3.111
7.664
7.836

11.175
15.080
22.947
24.116
25.127
29.438
34.608
37.394
38.420
40.523
41.349
43.879
44.248
44.950
45.209

0.043
0.000

—0.004
0.054
0.039
0.010

—0.001
0.029
0.015
0.006
0.242
0.006

—0.034
0.510

—0.044
—0.055

0.387
0.113
0.361
0.076
0.009

S

d
d
S

d
d

d
d

S

tion can be said to have been predictable from the curves
in Fig. 2, and we have equal numbers of sets of threefold
degenerate Tz mostly d-like bands and twofold degen-
erate E d-like bands. At high energies, the A, s-like
bands have the largest positive shift, the E d-like bands
have the largest negative shift, and the mixed p-like/a-
like T2 bands —understandably more ambiguous as to
how extending norm conservation shifts them, due to
their mixed symmetry —tend to shift more positively the
more p-like they are.

In Table IV, we present our assignments of the atomic
symmetries of the first 47 bands, as well as the band ener-
gies, degeneracies, and shifts in the band energies due to
extending norm conservation. In Fig. 4 we plot as a func-
tion of energy the shift in band energy due to extending
norm conservation for singly degenerate, doubly degen-
erate, triply degenerate mostly p-like, and triply degen-
erate mostly d-like bands. All band energies are taken
relative to the valence-band edge. We conclude that the
effects of extending norm conservation could be revelant
in solid-state calculations. Presumably these effects are
beneficial since, inasmuch as certain single-body aspects
are concerned, extended NCPP's produce single-particle
behavior closer to that of full-atomic potentials than do
NCPP's.

VI. SUMMARY AND CONCLUSIONS

We have generated extended norm-conserving pseudo-
potentials and demonstrated improvements in the
description of single-body aspects of atomic and solid-
state applications due to our modification. Generally, the
corrections achieved by extending norm conservation one

order in energy wi11 be small, and are not comparable to
other errors in present calculational techniques.
Nonetheless, they are unambiguous corrections to the
description of certain single-body aspects of physical sys-
tems.

Our potentials are generated without much difficulty,

0.6

0.4-

0 pp

~ 02-

O. I—

-O. I
I I

0 20
I

40 60
Band-Energy (eV)

FIG. 4. Shifts in band energies due to extending norm con-
servation, as a function of band energy for singly degenerate
(filled squares, solid line), doubly degenerate (filled circles, large
dash line), triply degenerate mostly p-like (hollow square, dotted
line), and threefold-degenerate mostly d-like (hollow circle,
small dash line) bands. The lines are included to guide the eye.



3660 SHIRLEY, ALLAN, MARTIN, AND JOANNOPOULOS

though at the expense of being slightly harder than those
previously developed. From the analytic viewpoint, our
modification should present very few adverse side effects,
but usually some dividends, such as the improvement of
some terms of higher order than those which we explicit-
ly correct. Nonetheless, because the equations defining
the properties of extended norm conservation are non-
linear and have not been solved, we cannot guarantee the
existence of an extended norm-conserving pseudopoten-
tial for all atomic systems and core radii.

Note added in proof. O. K. Andersen has pointed out
that linearized band-structure methods [see, e.g. , O. K.
Andersen, Phys. Rev. B 12, 3060 (1975) and H. L.
Skriver, The LMTO Method (Springer, Berlin, 1984)]
have scattering properties correct to 1 order higher in en-

ergy differences than in our scheme, but this requires re-
taining full atomic potentials and the accompanying core
states.
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