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First-principles method for calculating electronic properties of layered structures
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We present a first-principles, computationally efFicient method for calculating the electronic
structure of layered systems consisting of simple metals. The method involves forming a one-
dimensional, planar-averaged potential from a three-dimensional array of ionic pseudopotentials.
As an example of its use, we have calculated the work function, electron density, and effective po-
tential for ultrathin Na, K, and Li films. The calculations, which can be performed on a worksta-
tion, show good agreement with experimental results and three-dimensional, self-consistent-field
pseudopotential calculations taking several hours of central-processing-unit time on a Cray
Research, Inc. supercomputer.

I. INTRODUCTION

Currently there is considerable interest in the proper-
ties of layered structures such as ultrathin metallic
films, ' overlayers, and superlattices. ' In particu-
lar, semiconductor superlattices have attracted consider-
able attention both because of their novel physical prop-
erties, and the possibility of tailoring their electronic
properties for specific technological applications.

A number of calculational techniques have been used
in the study of layered structures. The simplest of these
are the infinite- and finite-square-well (i.e., Sommerfeld)
models, which a number of workers have used to investi-
gate the electronic properties of metallic, ' supercon-
ducting, " and semiconducting and semimetallic' sys-
tems. These non-self-consistent models largely ignore
electron-electron interactions and offer only limited in-
sight into the physical behavior of the systems modeled.
More sophisticated calculations have been done by
Schulte, ' who applied the Hohenberg-Kohn-Sham
density-functional formalism' ' with the jellium ap-
proximation to calculate self-consistently the dependence
of the work function on film thickness in thin metallic
films. This approach includes electron-electron interac-
tions but ignores the discreteness of the crystal lattice.

Lang and Kohn partially included the effects of the
crystal lattice in density-functional calculations of surface
energies' and work functions' of bulk systems. Their
"ion-lattice" model incorporated the empty-core pseudo-
potentials of Ashcroft and Langreth, ' via perturbation
theory, into integral expressions for the surface energy'
and work function. ' This model predicts work functions
in better agreement with experimental values than does
the jellium model; it also permits calculation of the
dependence of the work function on surface orientation.
However, it takes into account the effect of the lattice on

the effective potential only, and not on the electron densi-
ty, and thus cannot yield self-consistent densities or po-
tentials which reAect the discreteness of the lattice.

The discrete lattice has been included in a fully self-
consistent way in calculations by Feibelman, " and Feibel-
man and Ham ann, who used a self-consistent-field
(SCF), linear combination of atomic orbitals (LCAO) ap-
proach to calculate electronic properties of metallic thin
films and overlayers. Ciraci, Batra, and co-workers'
have also done discrete-lattice SCF pseudopotential cal-
culations ' ' in investigations of quantum size effects in
thin metallic films. The SCF calculations of Feibelman
and Hamann and of Ciraci et al. are first-principles, fully
three-dimensional approaches which give good results
compared with experiment. However, they require very
substantial computer time and memory; a typical calcula-
tion of the electronic density and eigenvalues may require
several hours of supercomputer time and several mega-
words of memory.

In this paper, we present a computationally efficient,
first-principles, self-consistent method of calculating the
electronic properties of layered systems, i.e., systems in
which significant variation in structure and/or composi-
tion occur in one dimension only. This method is de-
scribed in Sec. II. In Sec. III the method is applied to the
problem of calculating the work function and electron
density of ultrathin alkali-metal films. The results are
presented and compared with those obtained from fully
three-dimensional SCF calculations. Concluding remarks
are presented in Sec. IV.

II. METHOD

The method presented here provides a computationally
efficient, first-principles approach for self-consistently
calculating the electronic properties of layered systems.
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It uses the density-functional approach to calculate the
one-dimensional electron density and eigenvalue spec-
trurn for such systems. In contrast with many previous
density-functional calculations, the discrete lattice is not
replaced with a uniform jellium. Instead, the ions are
represented by ion-core pseudopotentials distributed on
the crystalline lattice(s) comprising the system. The
three-dimensional potential formed by this array of ion-
core pseudopotentials is converted into a one-dimensional
ionic potential suitable for efficient one-dimensional cal-
culations. This is done by performing a two-dimensional
average of the ionic potential, over one surface unit cell
in the plane of the layers, to form a planar-averaged ionic
potential, V;,„(z). That is,

V;,„(z)—= (I/A) f f V;,„(x,y, z)dx dy, (I)
A

where z is the direction perpendicular to the layers, and
A is the surface area of the unit cell. In this expression,
V;,„(x,y, z) is the sum of the contributions from the indi-
vidual ion-core pseudopotentials located at all the lattice
sites in the system; it is calculated by Fourier transform,
as described below. Note that the unit cell is not restrict-
ed to that of a standard crystal structure, such as a bcc
lattice, but may be a much larger cell (i.e., "supercell")
which contains many atoms.

The planar-averaged ionic potential V;,„(z) is one con-
tribution to the potential V,~, used in the effective one-
electron Schrodinger equation of the density-functional
method. A second contribution is the electrostatic term,
V„, which describes the electrostatic interactions of the
conduction electrons among themselves. The third term
is the exchange-correlation potential, V„, which ac-
counts for the many-body interactions between the con-
duction electrons. Thus, the effective potential is

V,fr(z) = V;,„(z)+V„(z)+V„,(z) .

In the formalism presented here, V;,„(z) is computed
only once, at the beginning of the calculation, since the
ions are not allowed to move. In contrast, V„(z) and

V„,(z) are computed self-consistently, as follows. An ini-
tial trial electron density, n (z), is chosen, and V„(z) and

V„,(z) are computed. The resulting effective potential is
then used in the one-dimensional effective Schrodinger
equation,

[—(fi /2m)d /dz + V,tr(z)]P„(z)=E„P„(z),

which is solved self-consistently (using the Numerov
method ) to obtain the eigenvalues and eigenfunctions of
the system. Successive energy states, or levels in the po-
tential well of V,tr(z), are calculated until there are
enough levels to accommodate all the electrons in the
unit cell. A new density n (z) is formed from the normal-
ized sum of squares of the wave functions. The process is
repeated until successive densities (or effective potentials)
are deemed sufficiently self-consistent by some suitable
criterion.

The planar-averaged ionic pseudopotential, V;,„(z), is
derived [see Eq. (I)] from the three-dimensional ionic po-
tential V;,„(x,y, z), which is given by

V;,„(x,y, z) = g V „„d,(r —R—r, ) .
R, ~.

In the last expression, we have included only the nonlocal
s contribution, which is a reasonable approximation for
the alkali metals.

The three-dimensional ionic potential, V;,„(x,y, z), is
most easily constructed by Fourier transformation:

V;,„(x,y, z) = g V;,„(G)e'
G

where

(2)

V;,„(G)=—fe ' ' Q V„„d,(r R r) d—r, —
R, v.

or

V;,„(G)=—f e

+ V„)(r R rj)] d—r —.

Performing the integration, it follows that

V;,„(G)= g e '[ V„„,(G)+ V„,(G)],

where

4~Z ck
V)„„(G)= —g, , e

&, IGI

—
I Gt'/4a,

(4)

and

A;
V„((G)= g

i=1 c

lGI'A;+3

40,a; 20,a;
' +

3/2

—/G/ /4a, .
Xe

\

In these equations Q is the crystal volume, Q, is the
unit-cell volume, and Zz, ck, A;, A;+3, a;, and o,'k are pa-
rameters defined by Bachelet et a/. To calculate the

In this expression V „„d,(r) is the ionic pseudopotential
of the ion at r, and the sum is over all the lattice sites R
in the system, and over all the basis vectors ~ in the unit
cell.

The pseudopotentials of Bachelet, Hamann, and
Schluter were used in this work. These pseudopoten-
tials are represented by a sum of local and nonlocal parts:

V „„d,(r)= V&„,&(r)+ V„,(r) .

The local and nonlocal contributions are given by
2

V/„, /(r) = (Z/r) —y ckerf(ak r)
k=1

and

3

V„&(r)= g l Yoo)(A;+ A;+3r )exp( —a;r )( Yool .
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value of V;,„(x,y, z), Eqs. (3)—(5) are inserted into Eq. (2),
with enough terms being included in the summation in
Eq. (2) to give convergence.

To convert the three-dimensional potential V~,„(x,y, z)
into the one-dimensional potential V;,„(z), the integral in
Eq. (1) is replaced by a double summation over the sur-
face unit cell in the plane of the layers, i.e.,

N Ã

V;,„(z)=(1/X„N~) g g V;,„(x,y, z),
x. y.

where X and X are the number of divisions of the x and

y unit-cell lattice parameters. The number of divisions
depends on the strength of the ionic pseudopotential,
Vp d typical ly the points were spaced about 0.1 A
apart.

In a similar way, the electrostatic potential, V„, is ob-
tained from the Fourier-transformed one-dimensional
Poisson equation

0

l(
I—
CL 2

-4-I

-6
0

I

6

x (A)

I

12

V„(G)=4men (G)/IGI (6)

The planar-averaged pseudopotential, density-
functional (PAPDF) method described above has been
used to calculate the electron density and work functions
of a variety of ultrathin (one to seven layer) K, Na, and
Li films. The films were modeled by superlattices consist-
ing of repeating filrn-vacuum structures, with the vacuum
having a thickness of eight atomic layers in all cases. The
correlation potential was calculated using the Wigner

In this equation the 6 are the components of the
reciprocal-lattice vectors normal to the layers, and
V„(G) and n (G) are the Fourier transforms of V„(z) and
n (z), respectively. Thus, to obtain V„(z) one Fourier
transforms n (z), uses Eq. (6) to determine V„(G), and
then inverse Fourier transform to get V„(z).

Note that the divergences that appear when V„(z) and

V;,„(z) are calculated separately are avoided, in the usual

way, by discarding the zeroth-order Fourier components
in the Fourier transforms of these quantities.

The exchange-correlation potential, V„, is calculated
from the (one-dimensional) electron density, using the
Kohn-Sham local-density approximation. '

I

III. RESULTS

FIG. 1. The effective potential obtained for a five-layer
Na(100) film by the one-dimensional method (solid line) and the
three-dimensional SCF pseudopotential method (dashed line).
The left edge of the plot corresponds to the center of the film,
and the right edge indicates the center of the vacuum region
separating two adjacent films. The arrows indicate the location
of the three atomic layers in the half of the film shown. (Note
that the zero level for the potential in this figure is arbitrary. )

correlation formula. ' Self-consistency of the potential to
a minimum of six significant figures was obtained. For
comparison, we have also carried out calculations (simi-
lar to those of Ciraci et al. ' ) using the fully three-
dimensional SCF pseudopotential method, employing
the Hohenberg-Kohn local-density approximation, '

with Wigner correlation, ' applied in the momentum-
space formalism. ' (For simplicity, hereafter we refer to
the method presented here as the "one-dimensional
method, "and the three-dimensional SCF pseudopotential
approach as the "three-dimensional method. ")

Figure 1 shows the self-consistent potential obtained by
the one- and three-dimensional methods for a five-layer
Na film with (100) crystal surfaces. (The potential shown
for the three-dimensional method is obtained by perform-

TABLE I. Work functions (in eV) for Li, Na, and K five-layer (100) films, computed by the one- and
three-dimensional methods (1D and 3D), are compared with bulk theoretical and experimental values.
The bulk theoretical values are from the "ion-lattice" and jellium density-functional calculations of
Lang and Kohn (Ref. 18), the former being for (100) surfaces. The experimental results are taken from
the selected work function values reported by Michaelson (Ref. 25), and are for polycrystalline samples.

Element
Five layer

1D 3D Ion-lattice
Bulk

Jellium Experimental

Li
Na
K

3.15
2.81
2.45

2.83
2.56
2.24

2.75
2.40

3.3
3.06
2,74

2.9b

2.75
2.30

'Lang and Kohn (Ref. 18) calculated two values of the work function of Li (2.40 eV and 3.30 eV) with

the ion-lattice model, using two different empty-core pseudopotentials.
Michaelson (Ref. 25) indicates that the value for the work function of Li is of unknown reliability.
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FIG. 2. The electron density for a five-layer Na(100) film, as
calculated by the one-dimensional method. The box indicates
the magnitude and width of the corresponding jellium which
might have been used.

ing a planar average of the potential after the completion
of the self-consistency calculation. ) It is seen that the
one-dimensional method yields a potential that agrees
well with that obtained with the three-dimensional SCF
approach. The potentials generated by the two methods
difFer by no more than 0.5 eV. %"e note that, compared
to the three-dimensional method, the one-dimensional
method gives a somewhat smaller potential within the
film, and a larger potential in the vacuum region.

Shown in Fig. 2 is the self-consistent electron density
of the five-layer Na(100) film as obtained with the one-
dimensional method. The well-known Friedel oscilla-
tions are evident in this plot. Furthermore, modulations
in the electron density produced by the atomic layers are
clearly seen.

The work functions obtained for five-layer K, Na, and
Li films with (100) crystal surfaces are shown in Table I.
They are compared with bulk polycrystalline experimen-
tal values, and also with the bulk theoretical results of
Lang and Kohn' (for both the jellium and "ion-lattice"
models). Several observations can be made. First, the
one- and three-dimensional results agree fairly well,
differing by about 10%. Second, the values from the
one-dimensional approach are in excellent agreement
(within a few percent) with those produced by the (bulk)
"ion-lattice" model. Third, for all but the one-layer film,
the one-dimensional results are within 10% of the poly-
crystalline bulk results. Finally, we note that the one-
dimensional method gives the correct qualitative varia-
tion in the work function among the three elements Li,
Na, and K.

Table II shows the work function of Na (100) films
with thickness of one, three, five, and seven layers, as
computed by the one- and three-dimensional methods.
The values agree fairly well, typically within 10%. We
note that the variation in the work function of Na, deter-
mined by the one-dimensional method, as the thickness

TABLE II. Comparison of work functions (in eV) of one- to
seven-layer Na(100) films as computed by the one- and three-
dimensional methods (ID and 3D).

Layers ID

3.09
2.77
2.81
2.89

3D

2.83
2.52
2.56
2.42

increases from one to seven layers, is qualitatively in close
agreement with that found by Ciraci and Batra, ' using a
three-dimensional SCF approach, for one- to seven-layer
Al films.

The one-dimensional results for the work function are
in general about 0.25 eV higher than those obtained with
the three-dimensional approach (with the exception of Li,
for which the difference is 0.32 eV). Part of this
difference can be traced to the fact that the one-
dimensional calculations did not include hybridization of
the wave functions, while the three-dimensional calcula-
tions did. This is related to the way in which the pseudo-
potentials were utilized. The pseudopotentials in both
the one- and three-dimensional calculations are the non-
local, norm-conserving ionic pseudopotentials given by
Bachelet, Hamann, and Schliiter. The three-
dimensional SCF calculations included the s, p, and d
parts of these potentials to allow for hybridization. By
contrast, the one-dimensional calculations used only the s
part, since the Schrodinger equation was solved in real
space, necessitating the use of a local potential. (The use
of only the s potential is reasonable for the alkali metals
considered. ) Therefore the one-dimensional calculations
do not permit hybridization of the wave functions. By
doing additional three-dimensional SCF calculations us-
ing only the s potential, it was found that the hybridiza-
tion of the wave functions accounted for approximately
half of the difference in the work functions computed
with the two methods. The use of /ocal pseudopotentials
which take into account wave-function hybridization
may thus improve the results of the one-dimensional
method.

IV. CQNCI, USIQNS

The planar-averaged pseudopotential, density-
functional (PAPDF) method presented here is a major
improvement over density-functional calculations that
use jellium to represent the ion cores. The method is a
first-principles, self-consistent approach that can be used
in studies of the electronic properties of various types of
layered systems. Although the method is not expected to
give results as accurate as those obtained with fully
three-dimensional SCF calculations (or other three-
dimensional, first-principles methods), it yields results in
good agreement with those calculations, but with a small
fraction of the computational effort. It can be applied in
first-principles investigations of the electronic properties
of metallic superlattices, metal overlayers, film-vacuum
interface structures, and other interesting systems. Final-
ly, the computational eKciency of the one-dimensional
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method suggests that it can be applied to systems consid-
erably larger than those that currently can be handled
with three-dimensional methods.
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