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The effect of a constant and uniform electric field on a split Bloch band is studied through a
tight-binding model. We show how the Wannier-Stark ladders of the parent band are modified by a
potential in addition to that of the crystal. We examine how the frequency spectrum behaves as the
field strength varies from weak to strong. In the case that the parent band is split into a finite num-
ber of subbands, we show that there exists a set of subspaces to which the states return periodically
in time, and that the constituent states of each subspace are localized around a given unit cell. We
develop a theoretical framework which naturally exploits the symmetries of the system and which
also allows for easy and clean numerical calculations.

I. INTRODUCTION

Nearly three decades ago Wannier proposed that the
electronic Bloch states of a crystalline solid become sets
of new states, later called Wannier-Stark (WS) ladders,
when a constant and uniform electric field is applied.
This has generated an intensive research field with lasting
interest. There has been some controversy about the very
existence of such states,? but it has been made clear that
the notion of WS ladders is valid if a finite number of
Bloch bands are considered, with their couplings with the
rest of the states ignored.> The criterion for ignoring the
coupling between two bands is that they are separated by
a gap which is large, such that the process of Zener tun-
neling is sufficiently slow to be considered unimportant,
at least from a dynamical point of view.* Some of the
basic properties of the WS ladders have been observed ex-
perimentally.’

In the simple case where a given Bloch band can be re-
garded as decoupled from the others, the nature of the as-
sociated WS ladders has been known quite well.® A num-
ber of discussions have been made regarding the choice of
different gauge and boundary conditions, all revealing the
basic structure of the frequency spectrum: uniformly
spaced levels with spacing Fa /%, where F is the electric
force and a the lattice constant in the field direction. In a
static representation of the field, the eigenenergies are
found to be uniformly spaced with spacing Fa, and the
eigenenergy states are found to be localized more than ex-
ponential functions. In a vector-potential representation
of the field, where the Hamiltonian is no longer time in-
dependent, a complete set of solutions, known as Hous-
ton functions, is found for the time-dependent
Schrdodinger equation. The Houston functions are essen-
tially the Bloch functions with the crystal momentum
drifting with a constant speed F in the field direction.
The Bloch oscillation, namely the periodic recurrence of
the Houston functions when the crystal momentum
transverses the Brillouin zone, then gives rise to the uni-
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formly spaced frequency levels. In fact, it has been
shown that any initial state in a given band will return it-
self in a period of Bloch oscillation (see Luban in Ref. 6).

In this paper we study the effect of an electric field on
an isolated Bloch band which is split by a potential in ad-
dition to that of the crystal. By isolated we mean that the
spectral range under consideration is bounded by large
energy gaps, such that the splitting potential and the field
do not mix it significantly with the rest of the spectrum.
This is clearly a situation that can be realized in an exper-
iment. In particular, we think of a superlattice which
modulates the solid in one of the crystal directions, with
the electric field applied in the same direction.” As far as
the motion in the field direction is concerned, the system
can be ideally modeled by a one-dimensional tight-
binding chain. For simplicity, we will take the hopping
amplitudes to be nonzero between nearest neighbors only
and to be independent of positions. The splitting poten-
tial will be represented by a set of position-dependent site
energies.

We wish to investigate the following issues. First, we
would like to show analytically how the WS ladders of
the parent band can be modified under a weak but other-
wise arbitrary potential. From a point of view that the
pieces of the split spectrum are going to be strongly cou-
pled together by even a moderate field, the solution of
this problem should shed some light on a strongly cou-
pled multiband system. Second, when the potential is
periodic (weak or strong) but not constant, the parent
band is split into a finite number of subbands. In this
case it is known that there will be n sets of WS ladders
under a field, where »n is the number of subbands. We
would like to examine how the energy (frequency) levels
in different sets are placed relative to one another, and to
show how their positions vary as functions of the field
strength or other parameters. We would like to see the
behavior of the ladders in the extremes of weak and
strong fields, and to see how the behavior changes from
one extreme to the other. Also, we are interested to
know what can happen when a pair of subbands becomes
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degenerate. Third, concerning the time evolution of the
system, we would like to show a generalized periodic re-
currence of the states, which has been expected in a
single-band approximation. Finally, we would like to de-
velop a theoretical framework which exploits the sym-
metries of the system and allows for clean and easy nu-
merical calculations.

There have been some studies of multiband systems in
the literature, but many of them considered the case of
the weak-coupling limit.»>*%%° It is in this limit that the
notion of metastability of the WS ladders has been exten-
sively investigated.” The present work tries to go beyond
the weak-coupling limit, and to emphasize the strong-
coupling regime. Fukuyama et al.'” have studied a
tight-binding model, in which arbitrary strength of cou-
plings was taken into account, but only a pair of bands
was included. There have also been a few numerical
studies on finite-size systems,” but a clear picture has not
been obtained regarding the behavior of the WS ladders
as functions of the field strength, etc. Finally, we would
like to mention a branch of research on the localization
of the WS states,!> where the regime of strong coupling
has also been dealt with.

Having described the main scope of this work, we now
proceed to outline our theoretical approach. When deal-
ing with an electric field, one encounters the complication
that it cannot be represented by gauge potentials which
are uniform both in space and time, even if the field itself
is uniform. Thus, one has to deal with a Hamiltonian
which is either time dependent or lacks the symmetry of
spatial translation that the Hamiltonian might have in
the absence of the electric field. The difficulty has been
reflected in the earlier work on WS ladders.”> It is well
known that the WS ladders have their origin in the spa-
tial periodicity of the crystal potential, so it would be nice
to utilize this symmetry explicitly in one’s treatment.
This can be achieved by using a vector potential to
represent the field, but the Hamiltonian then becomes
time dependent. The time dependence is not a problem if
a single-band approximation is used, but it can cause
difficulty in a more accurate treatment of a multiband
system. Earlier utilization of the spatial symmetry had
been limited primarily to inferring some general structure
of the WS ladders. Therefore, when calculating the spec-
trum or the states, one often took the static representa-
tion of the field and used fixed-end boundary conditions
or similar conditions. The boundary effect could then
mix up the otherwise perfect structure of the WS ladders
and make it difficult to determine how different sets of
WS ladders place themselves.

This embarrassing situation can somehow be avoided if
it is realized that, when modified by appropriate gauge
transformations, the space-time translations can still be
symmetry operations of the Hamiltonian. In other
words, one has to replace the space-time translations by
their gauge covariant forms in order to reveal the physi-
cal symmetry associated with the uniformity of the elec-
tric field. These are the so-called electric translations
originally introduced by Ashby and Miller'* in analogy
with the symmetry of magnetic translations.'” In this
work, we will utilize the symmetry of electric translations
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to guide our general ideas. The actual formulation of our
approach will, however, be made in an elementary
fashion.

We will represent the electric field by a vector potential
which is uniform in space and linear in time. We will
take a periodic boundary condition in order to accommo-
date the symmetry of spatial translations that the system
might have. The Hamiltonian is no longer time indepen-
dent, so we will focus our attention on the evolution
operator.!® The symmetries of the electric translations
will then give us valuable information about the frequen-
cy spectrum and the time evolution of the system.

With the above choice of gauge, the electric transla-
tions in space are the bare translations in space, and those
in time are the combined time and momentum shifts [see
(2.4) and (2.17)]. As is true for the magnetic translations,
the electric translations in space in general do not com-
mute with those in time, unless the steps of spatial and
time translations satisfy the following relation:

8,8, =integer X h /F . (1.1)

Due to this restriction, only subgroups of the electric
translations can be diagonalized simultaneously with one
another and with the evolution operator. The subsequent
sections of this paper are basically organized according to
three classifications of the symmetry subgroups, each em-
phasizing a different aspect of the system. The results ob-
tained in different ways are related and complementary.

If we take the system size Na as the basic spatial step
for a subgroup, then A /(FaN) is the finest time step al-
lowable. The consequence of the symmetries of this sub-
group is the subject of study in Sec. II. When the site po-
tential is periodic with period pa, it will be advantageous
to consider a subgroup with pa as the basic spatial step.
The finest time step allowable is then 4 /(Fap). As will be
shown in Sec. III, this subgroup of symmetry operations
can yield a great deal of information about the time evo-
lution of the system, such as the existence of a set of in-
variant subspaces, in each of which the states are local-
ized (more than exponential) around a given unit cell.
The WS ladders will naturally manifest themselves
through the periodic structure of the frequency spectrum.
Section IV can be regarded as an extension of Sec. ITI. A
detailed investigation of the weak- and strong-field limits
will be given there. The weak-field limit is in fact an adi-
abatic limit, where one can see how the Berry phases'’
play their roles. Some numerical results for a discrete
cosine potential will be given to illustrate ideas and to
cover the intermediate-field strengths. In Sec. V, we will
consider yet another subgroup of electric translations.
The basic time step will be taken as & /Fa, which is the
period of Bloch oscillations of the parent band. The ex-
plicit time periodicity of the Schrédinger equation will be
exploited by the application of the Floquet theorem. It is
in this approach that weak perturbations of the WS
ladders of the parent Bloch band can be conveniently
studied. Examples will be given for a single impurity po-
tential and for some periodic potentials.
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In Sec. VI, we will summarize our results, with some
remarks regarding the generality of our approach.

II. ELECTRIC TRANSLATION IN TIME
AS A DYNAMICAL SYMMETRY

In the simplest form, a Bloch band is described by the
tight-binding Schrédinger equation

iY== R [gn + 1,090 —1,0], @.1)
with a periodic boundary condition
P(n +N,t)=e'*Nyj(n,1) , (2.2)

where R is the bandwidth, and N the total number of
sites. A constant phase factor has been inserted in the
boundary condition for generality and for later reference.
If the system is perturbed by a site potential ¥, and an
electric field, Eq. (2.1) is modified to the following form:

7 _a_ =_£ iFat /%,
if Y P(n,t) ) [e Yin +1,1)

+e et/ fy(n —1,8)]
+V,¥(n,t), (2.3)

where F is the electrical force and a the lattice constant.
The electric field has been represented by a time-
dependent vector potential. This introduces a time
dependence in the Hamiltonian, and therefore renders
useless the convenient characterization of the system by
energy eigenvalues and eigenstates. It is known that the
time dependence cannot be removed by any choice of
gauge which conforms with the boundary condition (2.2).
(Had we used a fixed-end boundary condition [see (2.22)],
the time dependence can be removed by a gauge transfor-
mation ¥'(n,t)=exp(iFant /#i){(n,t). In the new gauge,
the field is represented by a static potential —Fan.) The
motivation of insisting on a periodic boundary condition
is, of course, to accommodate the symmetry of spatial
translation that the system may have. It will be seen in
the next section that the WS ladders can be presented
most cleanly this way. Another advantage of using a
periodic boundary condition is its convenience in dealing
with transport problems. We would like to explore what
kind of dynamical symmetries still remain in the system,
assuming at the moment a general static potential.

One obvious symmetry is the time periodicity in the
Hamiltonian, which is associated with the Bloch oscilla-
tion of the parent band. A number of useful results can
be obtained by utilizing the Floquet theorem applicable
to linear differential equations with periodic coefficients.
We will look into this in Sec. V.

What is not so obvious is the symmetry of the follow-
ing type. Suppose ¥(n,t;a) is a solution of (2.3) and (2.2),

J

e T (t;a)e! = 2™ /N{](t +r+#a /F, t +#Ha/F;0)
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then

g/nt;a)=e?™/Ny(n, t +Ir;a), [=integers (2.4)

are also solutions, where 7=h /(FaN). This is the sym-
metry of a subgroup of electric translations that we dis-
cussed in the Introduction. Because of the boundary con-
dition (2.2), the basic time step cannot be smaller than
h/(FaN). In other words, the boundary condition im-
plies a largest possible spatial step Na, the system size,
such that the sizes of the time steps have to be bounded
from zero according to (1.1).

It is convenient to introduce the evolution operator
o (t,t";a) for Eq. (2.3) with the boundary condition (2.2).
By definition, if ¥(n,¢) is an arbitrary solution of (2.3) and
(2.2), then

Wn)=3 0, (t,t;a)p(n',t") . 2.5)

The symmetry (2.4) implies that
g (n,t;a)=e?™Ng (n, t +71;a)

=e2™M/NS Ot +7, t;a)g(n,t;a) .
<

(2.6)

It is then clear that a state ¥(n,¢;a) in the first time in-
terval 0 <7 <r is carried over to the subsequent intervals
by repeated application of the operator U(t;a), where

U, (t;a)=e?™/NO (t+7,1;a) . 2.7

As a result, the system is completely described by
0(1,0;a) and U(t;a) for 0<¢ <.

We now proceed with a general analysis of the opera-
tors U and U. Being the evolution operator of a
Schrodinger equation with a Hermitian Hamiltonian, O

is unitary and satisfies the following relations:
Ot,t50)=0(1,1";0) 01", 1";a) ,
t (2.8)
0(t,t’;a)=ﬁ (t',t;a) ,

where ¢, t’, and ¢ are arbitrary time instants. The «
periodicity of the boundary condition (2.2) implies that

O, ta+2m/(Na)=0(1,1';a) . (2.9)
Moreover, it can be shown that
O(t,t";a)=e'*"0(t +#a/F, t'+#a/F;0)e "o
(2.10)

which is true for any Hamiltonian that is independent of
time in the absence of the electric field, where 7 is the site
position operator. Using these general relations and the
definition in (2.7), we can now show that

=e2™/NQ (¢ +7+4#a/F, 1;0)0(7,0,0)0(0, t +#a /F;0)
=0(t +#%a/F, 0;27 /(Na))e'™/N{ (7,0;0)0(0, t +#a /F;0)

=0(t +#a/F, 0;0)T(0;0)0 T(t +%a/F, 0,0) .

(2.11)
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In other words, U(t;a) is unitarily similar to U(0;0), and
therefore has a set of eigenvalues independent of both ¢
and a.

We now claim that the characteristic frequencies of the
system are of the form

{a)j+277nj/7', n;=integers, j=1,2,.. (2.12)

J '!N17

where {e e T} are the eigenvalues of U, and it is under-
stood that w; is defined modulo 277 /7. To show this, we
make an expansion

go(n,to;a)= 3 a;(tg;a)u;(n,tp;a) , (2.13)

J

where uj(n,to;a) is the jth eigenstate of (7(to;a). Then

Eq. (2.6) yields

gi(n,tg;a)= 2 a;(tg;a)e _iwjﬂuj(n,to;a) . (2.14)
J

In terms of the wave function 4, this is

i —iw, 7l
WYn, to+Ir)=e 2N g (1g;a)e “"uj(n,tga)
J

(2.15)

The overall factor e ~"2™/N is a gauge factor, and will be

canceled out in the expectation value of any physical ob-
servable. - It is easy to see that this is true for an operator
that is diagonal in n. To demonstrate that this is also
true for one with off diagonals, consider the probability
current from site n to site n +1,

=_R._ iFat/#,)*
Jn,n+l(t) 2i% [e ¢' (n,t)¢(n +1,1)

__e—iFat/ﬁl/}(n’t)lp*(n +1,n]. (2.16)

When ¢ is increased from ¢, to ¢, +I7, the gauge factors
of the ¢’s in the above expression are canceled by the fac-
tors produced by e ¥ /% and its conjugate. The phase fac-
tors containing the @’s are the only ones left which de-
pend on the time shift /7. In fact, the physical and
gauge-invariant time-shifting operator should be

e 2™/N (1 7) (2.17)
instead of T(/ 7), where T(17) makes a pure time shift of
I7 on a state. Therefore, the possible frequencies of the
system are indeed of the form in (2.12).

The actual procedure for determining the eigenfre-
quencies is very simple. First, we determine o (7,0;0) by

iﬁ%ﬁ(l,0;0)=ﬁ(t)0(t,0;0) ,

(2.18)
0(0,0;0)=1,

where the boundary condition (2.2) with a=0 is used.
The matrix e2™/N{(r,0;0) is just U(t;a) with zero ¢
and a. The eigenfrequencies, being independent of ¢ and
a, are then obtained by diagonalizing U(0;0). Here, we
would like to point out that the above procedure may be
carried out in any representation which is convenient.
The upper time limit 7 of the time-dependent problem
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(2.18) is usually small, being inversely proportional to the
system size N. Therefore, U(7,0) can be solved with ease
and high precision. When N is very large, U(7,0) can be
obtained perturbatively. To first order in 7, we have

Oror~exp [~(i/h) [ ar A |

~exp[—(ir/A)H(0)] . (2.19)
In this limit we have from (2.7) that
T(0;0) ~exp ?%[ﬁ(o)—Faﬁ] . (2.20)

Thus, the eigenfreqyencies of U are closely related to the
eigenenergies of [H(0)—Fafi], the Hamiltonian in the
static representation of the field. Our approach offers the
convenience of eliminating the boundary effects for sys-
tems of finite size.

The eigenstates of U(¢;a) can also be easily found. We
first look for the eigenstates {u;} of U(0;0). Then, ac-
cording to the last equality of Egs. (2.11), the eigenstates
of U(¢;a) can be chosen as

e'* U (t +#a/F, 0;0)u; . (2.21)

Before we close this section we would like to make two
remarks. First, the dynamical symmetry presented above
should be applicable to more general systems in any di-
mension than our one-dimensional tight-binding model.
This fact follows from the generality of the symmetry of
electric translations.

Second, all the results will remain valid if the boundary
condition (2.2) is replaced by a fixed end type:

P(0,2)=u%(N +1, 1)=0. (2.22)

Of course, the group of dynamical symmetry in this case
can be extended due to the fact that if ¥(n,?) is a solution
of (2.3) and (2.22), then

g (n,t)=eFomin/fy(nt +17), I=integers (2.23)

are also solutions, with 7 arbitrary. This is another way
of saying that the time dependence of the Hamiltonian
can be gauged away without changing the boundary con-
dition (2.23). Such a transformation is not possible with
the periodic boundary condition (2.2), so we had to make
the restriction 7=h /FaN in (2.4).

III. PERIODIC POTENTIAL AND WS LADDERS

In this section, we consider the case of a periodic po-
tential and examine the consequences of the symmetry of

‘spatial translation on the frequency spectrum of the sys-

tem.
If the potential in Eq. (2.3) satisfies
Vn +p = Vn (3 1)
and the system size N is an integral multiple of the period
p, then we can impose the Bloch condition on the states
as

Yin +p,t)y=e*Py(n,t) , (3.2)
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where 0 <k <2 /pa, and k is discretized into N /p possi-
ble values according to the boundary condition (2.2).
With the Bloch condition in place of (2.2), the
Schrédinger equation (2.3) needs to be solved only for n
in a period, say 1<n =<p. The arguments and results
presented in the last section can then be transcribed to
here with the replacements N—pand a—k.

Therefore, if U(t,¢';k) is the evolution operator of Eq.
(2.3) with the condition (3.2), then the unitary operator

Ult;k)=e 2P0t +T, t k) (3.3)

will have p eigenvalues of the form {e ey T} , with the @’s
independent of ¢ and k, where T =h /Fap. Moreover, if
Y(n,t;k) is a solution of (2.3) and (3.2), then

Yn, t +T;k)=e 2™P3 U, (t;k)P(n',t;k) . (3.4)

The characteristic frequencies of the system then consist
of p sequences:

{coj+21mj/T, n;

’ (3.5)

=integers, j=12,...,p},

where it is understood that the @’s are defined modulo
2w /T.

The average frequency spacing in the spectrum (3.5) is
Fa /%, the same as in (2.12), reflecting a conservation of
level density. The spatial periodicity of the system has
imposed a structure in the spectrum (2.12); that is, a
periodicity over every group of p levels. In other words,
the spectrum has been organized into p sets of levels, with
a uniform spacing, Fap /%, within each set. These corre-
spond exactly to the WS ladders found before in various
ways. In this sense, we say that the system is character-
ized by p sets of WS ladders, each represented by a o;.

To get some insights into the behavior of the states, we
now go to a representation with the eigenstates of U as a

basis. Consider the following expansion of an arbitrary
state:
Y(n,t)=3 3 Cit;k)u;(n,t;k), (3.6)
ko

where u;(n,t;k) is an eigenstate of U(t;k) and satisfies
the Bloch condition (3.2). The wave function inside the
first summation symbol in the above expression should be
a solution of (2.3) and (3.2), and therefore is connected to
its time translation as in (3.4). Then it follows that

. —iw,IT
2mnl/p 3 Ci(tskde T u(n,t5k)
Jrk

Y(n,t +IT)=e

3.7

We will now see how the time evolution of the state is
influenced by the fact that the w’s are independent of k.
It will be convenient to consider, for a sequence of time
{to+IT, ] =integers}, the density matrix defined by
p(n,n'sto+IT)=e>™/ Tyj(n, t,+IT)

Xl/l*(n', to+lT)e~i27rn’l/p , (3.8)

where the gauge-invariant form of the time-shifting
operation has been used. [See Eq. (2.17) and the argu-
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ments given just above and below it for an explanation of
this usage.] Then it can be seen that the partial trace of
the density matrix over j,

Zp”(k k'sto+IT)= zc 10;K)CH(t0;k") (3.9)

is independent of the time shifting /7, where by definition

Ptk k'stg+ I =23 uf(n,10;K0p(n,n's 16 +1T)
nn'

Xup(n',to;k’) (3.10)
with {u j(n,to;k)} normalized over a unit cell. This
means that the expectation value of any physical operator
acting on k only is periodic in time. One trivial example
of such an operator is the crystal momentum k itself. A
more interesting one is the projection operator into a set
of Wannier functions associated with the Bloch functions
{u;(n,tg;k)} at the initial time #,."® More specifically,
the Wannier functions here are defined as

172
w;(n —n,;5t0)= -]% ze_lklm“uj(n,to;k) s (3.11)
k
where n,, labels the position of the unit cells and can be

taken for its value as 0, =p, +2p, ,..., etc. The argu-
ments following (3.10) then indicate that the subspace
spanned by {w;(n —n,;ty); j=1,2,...,p} for a given

is an invariant space of the system under time transla-
tions by IT. In the case of p =1, we can choose e’ as
the eigenstate of U(t,;k), which implies that the Wannier
function will be strictly localized on a site. Therefore, a
state initially localized on a site will again be localized on
that site after a period of time T =h /(Fa).

We now examine the localization property of the Wan-
nier functions. The results of the preceding section [espe-
cially (2.11) and (2.21)] indicate that, if u;(n,0;0) is the
jth eigenstate of U(0;0), then we can choose

iw;#k /F
u;j(n,t;k)=e e fkan

X 3 O,,(to+%k /F, 0;0)u;(n’,0,0)  (3.12)

as the jth eigenstate of U(t,;k), where the summation is

restl’;}(c/tl‘ed on a unit cell. The n-independent phase factor
lw
ensures the periodicity as k is increased by a

reciprocal-lattice number 27 /(pa), as can be verified
directly by usmg the general properties of U and U listed
in (2.7)-(2.11) in the preceding section. From the theory
of initial value problems of differential equations,
0,,(ty+#k /F, 0;0) is an entire function of its time vari-
able, and therefore of k. To summarize, u ;(n,t;k) can be
chosen such that it is a periodic and entire function of k,
and that it satisfies the Bloch condition (3.2). All these
properties ensure that the Wannier functions in (3.11) be
localized, and that w;(n —n,;t,) go to zero faster than
any exponential function as |n —n,| gets large.”” The re-
sult of the last paragraph then tells us that if a state is ini-
tially localized, then it remains so in time.
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IV. WEAK- AND STRONG-FIELD LIMITS
AND MODEL STUDIES

In the weak-field limit, the Hamiltonian in (2.3) varies
slowly in time, and it can be useful to go to a representa-
tion with the adiabatic eigenstates of the Hamiltonian as
a basis. Consider the expansion of an arbitrary state:

Pn,t)="S Cylt;k)e™ g (n, k +Ft/#) , 4.1)
= B B

where 3 is a band label, and ¢4(n,s), with s =k + Ft /4, is

an adiabatic eigenstate of the following problem:

egls)p(n,s)=—R /2[e™Pg(n +1,5)+e  ¢sn —1,s5)]
+V,d4n,s),

dg(n +p, s)=¢B(n,s) .

It is seen from the above equation that the wave function

e p(n,s) 4.3)

(4.2)

is just a Bloch function, with wave number s and energy
gg(s), of the Hamiltonian in (2.3) in the absence of the
electric field. It is well known that, if the Bloch bands do
not cross one another, then the Bloch function can be
chosen as a smooth and periodic function of the wave
number.!® Therefore, we can impose the additional con-
dition on ¢ as

bpn, s +2mw/pa)=e 2" /Py(n,s) . (4.4)

Now, the wave function

% Cplt;k)e™ ™ y(n, k +Ft /%) 4.5)

in the expansion (4.1) should satisfy (2.3) and (3.2), so it is
connected to itself a period T time later by U(¢;k) as in
(3.4). It then follows that

CB(t+T;k)=%ffﬂg(t;k)cg(t;k) , (4.6)
where
Upp(t;k)=3, e*"=mgx(n, k +Ft /%)
n,n’
X¢p(n', k +Ft /#)U,,(t;k), @.7)

assuming that the ¢’s are normalized in the unit cell.
Thus, U is unitarily similar to U and must have the same
set of eigenvalues.

The equation of motion for the expansion coefficients
Cp can be found by substituting (4.1) and (4.2) into (2.3),
with the results

iﬁ—aa?cﬂ(t sk)=eg(k +Ft /H)Cylt;k)

+ > Xpg(k +Ft /#)Cpl(t;k) (4.8)
B

where the interband coupling matrix X (s) is given by

Xps(5)=F 3 43(n,5)ims-bg(n,s) . 4.9)
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So far, the results have been exact, as long as the bands
do not cross one another. The adiabatic approximation
amounts to dropping the off-diagonal elements of X (s).
Then, Eq. (4.8) can be easily solved to yield

Cplt +T;k)=Cplt;k)
__i T
Xexp _fi—fo [eglk +Ft /%)

+Xpplk +Ft /)] |,

(4.10)

with the evolution operator U(z;k) diagonal in the band
index, and with the eigenfrequencies given by

where the angular brackets denote averages over a period
of time 7. That the eigenfrequencies are independent of ¢
and k can be seen from the fact that both e and X 88
depend on ¢ and k through the combined variable
(k +Ft /#i) and are periodic in time with period T.

The formula (4.11) says that #wg is equal to the average
band energy plus an extra term (X 8B ). The extra term is
in general nonzero, and can be related to the Berry phase
associated with the adiabatic eigenvalue problem (4.2). If
we had imposed on ¢ the condition of parallel transport,

2¢E(n,s)%¢,3(n,s)=0 : 4.12)

then there would have been an extra phase factor e Ts
multiplying the right-hand side of (4.4). The phase I'y is
called the Berry phase for the 3’s adiabatic level of (4.2),
with its value given by

_ 27

where (X {3?) should be evaluated with the original condi-
tion (4.4)."" Since the Berry phase is independent of the
field, the term {(Xgg) is proportional to the field. It is
seen that (4.11) is really the first two terms in an expan-
sion in powers of the field strength.

The correction to the adiabatic approximation (4.10)
will be exponentially small when Xgg/(eg—eg), for
B#P', is small. Since Xgg is of order Fap /(27), the cri-
terion for a good approximation is

Fap /(2mAgg) <<1, (4.14)

where Agg is the minimum gap between the Sth and B'th
energy bands.* The corrections will in general show up in
the off-diagonal elements of U, and lift the degeneracies
(if any) in the adiabatic eigenvalues {eﬂw“T}. This fact
has also been noticed by other authors.’

Now consider the strong-field limit. We can then make
a first-order time-dependent approximation for the uni-
tary matrix O( T,0;0), because the time period
T =h /(Fap) will be small. Therefore
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. gn)= 3 ¢€,¢,(n)¢k(n) (4.19)
0(T,0;0) ~exp —ﬁ—’ fOTﬁ(t)dt ] m
is the average energy on the site n. In view of the above
=exp[(—iT/#A)H], (4.15)  arguments, the condition for the strong-field approxima-
tion should be
where

Hpin)=— %%sin(w/p)[e"”/ﬂzp(n +1)

+e T imPY(n —1)]+V,¢(n) .
(4.16)

The corresponding approximation for U(0;0) is then

—iTe, /#

. 4
0,,(0,0)~e =22 ¢ _(n)p%(n')e , (417
m=1

where {g,,,4,,(n)} are the eigenenergies and eigenstates
(orthonormalized over a unit cell) of (4.16). When T —0,
the matrix (4.17) will be diagonal in n, due to the com-
pleteness of the eigenstates {¢,,(n)}. The p diagonal ele-
ments e ‘2™/P are all different, so when the off diagonals
are small compared with the minimum-level distance,
2 sin(7r/p), the eigenvalues of U(0;0) can be approximat-
ed by

exp[—i(2mn/p +TE(n)/#)], (4.18)

where

J

Uy (n,t)=e*"exp

This is the so-called Houston function for the Bloch band
under consideration. The unitary operator U is now a
scalar and can be read from the above as

U=exp

1 ph/Fa), . ,
mfo dt'[ —R cos(Fat' /fi+ka)+ V]

=e —i2nV/Fa , 4.23)

with o=V /#, which is independent of k as expected.
The single set of WS ladders is then

{o+nFa/#, n=integers} . (4.24)

We expect that these uniformly spaced levels will, in gen-
eral, be modulated to nonuniform ones in the presence of
a varying potential; the modulation will be periodic if the
potential is periodic.

When p > 1, exact solutions are hard to find, and nu-
merical calculation has to be invoked. We have con-
sidered several cases, each to reveal one or more aspects
of the behavior of the eigenfrequencies. In the figures
[1(a)-(e)] presented and analyzed below, the reduced
eigenfrequencies {#iw;/(Fa), j=1,2,...,p} are plotted
against R /(Fap), namely the inverse field scaled by the

1 t nwo___ ’
7 fodt[ R cos(Fat /h+ka)+V]] )

T
#
We will now study a concrete model to illustrate the

ideas presented above and in the previous sections.
Specifically, we take the site potential in the form

R% «<1. (4.20)

V,=V cos

—Z—Z—‘ln , (4.21)

where g and p are mutually incommensurate integers so
that p is the fundamental period of the potential.
Without the electric field, the Schrodinger equation (2.3)
with this potential is the time-dependent form of the
well-known Harper’s equation or the discrete Mathieu’s
equation.’’ Harper’s equation has been extensively stud-
ied in the context of two-dimensional periodic systems in
a uniform magnetic field. Our study here will be applic-
able to such systems with an additional electric field ap-
plied on them.?! What we like to know particularly is
how the eigenfrequencies behave when the field or other
parameters are varied.

The case of p =1 is very simple. The solution of (2.3)
and (3.2) can be found exactly as

(4.22)

=

hopping amplitude R. Since ;T =w;h/(Fap) is only
defined modulo 27, we found it convenient to fold
fiw;/(Fa) inside the range [0.5,p +0.5). The reader
should be aware, however, that the whole frequency spec-
trum extends periodically both upwards and downwards.
The other dimensionless parameter besides R /(Fap) is
V/R. We have taken it as 0.5 for the first three figures
and 0.1 for the last two in order to study the limit of
small band splittings.

Figure 1(a) corresponds to g /p =+. In the strong-field
limit, the spacing between the two w’s approaches Fa /4,
meaning that the whole spectrum reduces to the single set
of WS ladders (4.24) of the parent band. The initial
slopes of the two levels agree perfectly well with the pre-
diction of (4.18), which now gives

#iw,/(Fa)=1—2V /(Fap) ,
#iw,/(Fa)=2+2V /(Fap) .

(4.25)

Deviation from the above behavior becomes pronounced
when R /(Fap)>0.2. As the field gets weaker, the levels
approach straight lines with decreasingly small repulsions
at their intersections. The straight-line behavior is a
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FIG. 1. Reduced frequency levels {#w;/(Fa), j=1,2,...,p} as functions of R /(Fap) for the discrete cosine potential (4.21). (a)
q/p=3,V/R=0.50b)q/p=4%,V/R=0.5;() q/p=2%,V/R=0.5;(d) qg/p=1, V/R=0.1;(e) g/p=2, ¥ /R =0.1. These levels
repeat periodically both upwards and downwards in the frequency spectrum. As a reference, the levels for the parent band (V' =0)
are horizontal lines at integral heights.

manifestation of the adiabatic limit. [The band structure g=2 f lds[( ¥V /R)?+cos¥ms)]/? 4.27)
of (4.2) is shown in Fig. 2(a).] The expression (4.11) can 0

be evaluated with little effort to give with g =1.677 61 at ¥ /R =0.5. When the expressions in

(4.26) are folded in the range of the plot, they match very

fiw,/(Fa)=g(R /Fap) , (4.26) Well with the levels in the figure for R /(Fap)>1. The

#iw, /(Fa)=1—g(R /Fap) , ' level repulsions at their intersections are due to the cou-

pling of the two adiabatic bands. The size of the gaps
where generated by level repulsions decreases exponentially
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FIG. 2. Band energies {eg4(s), B=1,2,...,p} for the adiabat-
ic eigenvalue problem described in (4.2) in the text. The poten-
tial is ¥, = Vcos(2mq /p), with ¥ =0.5. The hopping amplitude
is R =1. The parameter ¢/p is (a) £, (b) %, and (c) Z, respec-
tively.

EFFECT OF AN ELECTRIC FIELD ON A SPLIT BLOCH BAND

3633

with decreasing field, that is,
8(#w/(Fa))~exp[ —AR /(Fap)] ,

where the exponent A is about 0.77 for ¥ /R =0.5.

Figure 1(b) is for ¢ /p =1. The new feature appearing
in this case is that two of the levels are horizontal lines.
Explicit calculation shows that the four adiabatic bands
are symmetrically located about €=0, and that the cen-
tral two are degenerate [see Fig. 2(b)]. If we treat the de-
generate bands as one big band and apply the adiabatic
approximation to it, then we obtain the two horizontal
levels in the figure. They are horizontal, because the
average energy of the combined band is zero. The Berry
phase term never gives rise to a nonzero slope in our plot,
and it only shifts the levels vertically to their right posi-
tions.

Figure 1(b) is for ¢ /p =4. The new feature appearing
in this case is that two of the levels are horizontal lines.
Explicit calculation shows that the four adiabatic bands
are symmetrically located about e=0, and that the cen-
tral two are degenerate [see Fig. 2(b)]. If we treat the de-
generate bands as one big band and apply the adiabatic
approximation to it, then we obtain the two horizontal
levels in the figure. They are horizontal, because the
average energy of the combined band is zero. The Berry
phase term never gives rise to a nonzero slope in our plot,
and it only shifts the levels vertically to their right posi-
tions.

In the zero-potential limit, the levels should become
those of the WS ladders of the parent Bloch band, that is,
they should become horizontal lines with integral heights
in our plot. To study the effect of a weak periodic poten-
tial, let us consider again the cases ¢/p =1 and %, but
with ¥V/R =0.1. The results are displayed in Figs. 1(d)
and 1(e). It is seen that the levels are modulated up and
down sinusoidally about the WS ladders of the parent
band, as the field strength is varied. The amplitude of
modulation increases with decreasing field, while the fre-
quency of modulation approaches to a constant. A quan-
titative analysis of these results will be given in the next
section.

(4.28)

V. FLOQUET THEOREM
AND WEAK-POTENTIAL LIMIT

In this section we will make use of the symmetry asso-
ciated with the explicit time periodicity of the
Schrodinger equation (2.3) by applying the Floquet
theorem.”? As one will see below, this approach will lead
to a very compact theory for the WS ladders of the
parent Bloch band under weak perturbation.

The theorem tells us that the evolution operator of Eq.
(2.3) can be written in the form

U, t)y=e =711y, (5.1)

where W is Hermitian and independent of time, and
Z(t,t') is unitary and periodic in ¢ and ¢' with period
h /(Fa). The time evolution of the system is then charac-
terized by a set of frequencies given by the eigenvalues of
W plus integral multiples of Fa /#. Because of its addi-
tive multiplicity, the frequency spectrum can also be
determined by the eigenvalues of the following operator:
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e ~IWh/(Fa) = f)(h /(Fa), 0)=T , (5.2)

where the first equality comes from the periodicity of Z
and from the fact that Z(0,0) is the unity operator.
By definition, U is just the evolution operator over the
first perlod The above relation indicates that, if
{e omh/t a)} is the set of eigenvalues of U, then the fre-
quency spectrum is given by {®,,} plus integral multiples
of Fa /#.

The operator U here also has a simple relationship
with those introduced in the previous sections in the
same notation. It is, in fact, equal to the Nth power of
that in Sec. II, and the pth power of that in Secs. III and
IV. As a result, the frequency spectrum given in this sec-
tion will correspond to those modulo Fa /# in the previ-
ous sections. It will be helpful to notice that we have
been looking at the problem (2.3) in three different time

]

iﬁ—(,?—ta(k,t)= > alk',t)V(k —k')exp
<

where

Vik—k)=— Sei Ky,

To first order in the potential, we have

a(k, h /(Fa))=a (k, °)+% 3 a(k’,0)V(k —k’)exp

g

’—2fo'dt'[cos<Fat'/ﬁ+k'a)~cos(Fat'/ﬁ+ka)]

ﬂ&[sin(ka)—sin(k’a)]
Fa
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scales: h/(FaN) in Sec. II, h /Fap in Secs. III and IV,
and & /Fa here in this section. The degeneracy of the fre-
quency spectrum when viewed from a longer time scale
should correspond to a periodic structure of the spectrum
viewed from a shorter time scale, and vice versa.

When the potential ¥, is weak and the field is strong,
we can make a first-order perturbation approximation for
U. It is convenient to expand

Wn,t)=3 a(k,t)e™"
k

Xexp (5.3)

R t ’ ’
= [ dt’ cos(Fat' /5i+ka)

where the momentum k takes the same set of values as in
(3.2). Substituting this into the Schrodinger equation
(2.3) then yields

, (5.4)

(5.5)

Jo(sin[(k —k")a /2][2R /(Fa)]) , (5.6)

where Jy(x) is the zeroth-order Bessel function. Now, if we make a further expansion,

—R—sm ka) Ee ikamp (m,t) ,

a(k,t)=exp Fa

where m takes integer values 1,2, ..., N, then

b(m, h/(Fa))=b(m,0)

Therefore, U is diagonalized to first order in V by the
transformations (5.3) and (5.7), with the eigenfrequencies
given by

fiw,, = 3 V(k)e™™J (sin(ka /2)[2R /(Fa)]) . (5.9)
k

This expression can also be written in terms of V,, as

Fiw, =SV, fo‘ds Jatn—my(cos(2m)[2R /(F)]) ,  (5.10)

where we have taken the limit N — .

When the potential is zero (or constant), the eigenval-
ues of U are all degenerate, implying that any state is an
eigenstate of U. Therefore, the approximation described
in the last paragraph is really that of a first-order degen-
erate perturbation. It can be seen from (5.9) or (5.10) that
the degeneracy is lifted in first order by a general poten-
tial. The perturbed eigenstates can be found by tracing

1+ 2% 5 V(k)e*m o (sin(ka /2)[2R /(Fa)])
iFa %

(5.7)
(5.8)
[
back the transformations (5.7) and (5.3) as
um =_.1A7§ F—sm(ka) lka(n—m)
=¥ Jn—n+ww(R/(Fa)), (5.11)
]

where the last summation is over integers ensuring the
boundary condition (2.2). In the limit of N — o, we have

U, (n)=J, _.(R/(Fa)), (5.12)

a much simpler result. It is noticed that the last expres-
sion is also the eigenstate of the Hamiltonian in (2.3) in
the static representation of the electric field, with an uni-
form site potential and an infinite system size.

The formula (5.10) is very convenient when the effect
of a few impurities is concerned. Consider, for instance,
the case that V, is zero everywhere except at the origin
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n =0. Then we have

fiw, =V, fo‘ds Jym(cos2as)[2R /(Fa)]) . (5.13)

In Fig. 3(a), exact numerical results for {#w,, /V,} are
plotted against R /(Fa), where we have taken
Vo/R =0.1. The above formula gives a very good ac-
count of the behavior of the levels. In the strong-field
limit, the levels are degenerate except for the one corre-
sponding to m =0 in the above formula. As the parame-
ter R /(Fa) is increased from zero, there are two levels
peeled off from the degenerate center to second order in
R /(Fa), then another two to fourth order in R /(Fa), and

so on. This behavior of the levels can be understood from'

the localization property of the eigenstates (5.12): as the
parameter R /(Fa) is increased, the localization length of
the states become longer, and therefore more and more
sites feel the existence of the impurity. At weaker field
strengths, the levels which are already outside the degen-
erate center begin to oscillate, accompanying the continu-
ous peeling off of new levels from the center. In Fig. 3(b),
{#iw,, /(Fa)} are plotted against R /(Fa), where we have
taken again V/R =0.1.
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FIG. 3. Frequency levels as functions of R /(Fa) for a single-
impurity potential, with ¥, /R =0.1. The levels have been fold-
ed into an interval —0.5<#w/(Fa)=<0.5, corresponding to a
level spacing in the frequency spectrum of the parent band. (a)
{#iw,, /V,} are plotted. Note the Bessel-function-like behavior
of the levels. (b) {#iw,, /(Fa)} are plotted. Integral heights in
this plot correspond to the levels of the parent band.
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For a periodic potential of the form (4.21), a very com-
pact formula for the levels can be derived from (5.9) as

#iw,, =V cos(2mqm /p)Jy(sin(wq /p)[2R /(Fa)]) .
(5.14)

Evidently, the levels bunch into p degenerate branches,
which is a consequence of the periodicity of the potential,
and is true even if the potential is strong. Remembering
that the spectrum defined in this section corresponds to
those modulo Fa /# in the previous sections, one can read
off the degeneracy from the periodic structure of the
spectrum in (3.5). The above formula has been tested nu-
merically, and is shown to give a quantitatively good ac-
count of the oscillatory behavior of the levels in Figs. 1(d)
and 1(e).

The formula (5.14) shows a further coalesce of the p
branches into one, for a infinite discrete set of values of
the parameter R /(Fa) where the Bessel function van-
ishes. This is, of course, generally true only to first order
in the potential corresponding to the degree of our ap-
proximation. It can be shown, however, that for p =2
the degeneracy occurs infinitely many times as the pa-
rameter R /(Fa) is varied, even if the potential is strong.
The degeneracy of the two branches corresponds to
where the two levels {#w;/(Fa)} in Figs. 1(a) and 1(d)
have a distance of unity. When all the eigenvalues are
the same, the evolution operator U is proportional to the
unity operator, and therefore every initial state will
evolve back to itself after a period of time & /(Fa). As
has been seen many times in this section and the previous
sections, this is the case for the unperturbed parent Bloch
band. We now see the recurrence of the states at particu-
lar values of the parameter R /(Fa), if the parent band is
split into two. The formula (5.14) predicts an approxi-
mate recurrence of the states, when the potential is
periodic and weak.

VI. CONCLUSION AND DISCUSSION

In this paper, the effect of a constant and uniform elec-
tric field on a split Bloch band is studied through a tight-
binding model. We have shown how the WS ladders of
the parent band are modified by a splitting potential, and
how the frequency spectrum behaves as a function of the
field strength sweeping from the weak to the strong limit.
In the case that the parent band is split into a finite num-
ber of subbands, we have also established a new result
concerning the time evolution of the system. Further, we
have developed a theoretical framework which exploits
the symmetries of the system and allows for easy and
clean numerical calculations.

The general analysis has been guided by the symmetry
group of electric translations,’* namely the gauge-
covariant space-time translations, which exhibit the phys-
ical uniformity of the electric field. Three Abelian sub-
groups of the electric translations have been used, each
emphasizing certain aspects of the system. The results
obtained in different ways are related and complementa-
ry.
The first subgroup emphasizes the temporal uniformity
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of the system. The resultant dynamical symmetry de-
scribed in Sec. II enables us to characterize the time evo-
lution by a set of eigenfrequencies, and offers us a general
and convenient calculational framework for a system
with or without a spatial symmetry. For large systems,
the eigenfrequencies are the same as the eigenenergies (di-
vided by #) of the Hamiltonian in the static representa-
tion of the field. For finite systems, the approach offers
the convenience of eliminating the boundary effect, if
bulk properties are the basic concern. Yet, when neces-
sary, one can always insert an infinite potential some-
where to effectively break the ring geometry into a simply
connected one with fixed-end boundary conditions.

The second subgroup emphasizes the spatial transla-
tional symmetry that the system may have. An immedi-
ate consequence is the periodic structure of the frequency
spectrum, revealing the WS ladders in a natural way. An
important result has been obtained regarding the spatial
and temporal behavior of the states in an isolated multi-
band system. There exists a set of subspaces to which the
states return periodically in time, and the constituent
states in each of the subspaces are localized (more than
exponential) around a given unit cell. This result is a
generalization of the periodic recurrence of the states de-
rived from a single-band approximation. Since a local-
ized state returns after a finite time interval, the state can
only travel a finite distance. In this sense we say that the
states are localized.

The following problem has been studied in detail: how
are different sets of WS ladders placed relatively in the
frequency spectrum, and how do their positions depend
on the field and other parameters? The study is guided
by the analytic results obtained in the weak- and strong-
field limits and in the weak-potential limit. Exact numer-
ical results for the frequency levels have been displayed
for several cases of a model periodic potential. When the
field is weak, the levels are shown to behave according to
the prediction of the adiabatic (or single-band) approxi-
mation. The Berry phases are in general nonzero and
shift the levels to their right positions. The interband
couplings show up as level repulsions where the adiabatic
frequency levels try to cross one another. The sizes of the
gaps generated at the intersections depend exponentially
on the field and are very small for weak-field values. The
gaps widen as the field gets strong, with the spectral
structure smoothly transformed to that in the strong-field
limit. As expected from the analytical approximation ap-
propriate for this limit, the levels become those of the
parent band, individually shifted by the site energies,
showing the extreme localization of the states. The initial
slopes of the levels, as the inverse field deviates from zero,
are also correctly predicted by the theory.

The explicit time periodicity of the Hamiltonian is ex-
ploited by the Floquet theorem. The appropriate sub-
group of electric translations is the one with a basic time
step equal to the period of Bloch oscillation of the parent
band. Weak perturbation of the WS ladders of the parent
band can be studied this way and a simple and general
formula has been derived for the perturbed levels. For a
weak periodic potential, the WS levels of the parent band
are shown to be modulated up and down sinusoidally as a
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function of the inverse field. The amplitudes of modula-
tion increase as the field gets weak, while the frequency of
modulation approaches a constant. Such behavior of the
levels is closely described by a very compact formula.
Another interesting phenomenon revealed is the approxi-
mate (to first order in the potential) recurrence of an arbi-
trary state, for an infinite set of values of the field or oth-
er parameters. The period of recurrence is that of Bloch
oscillation of the parent band. For a two-band system,
the recurrence is expected to be exact. Finally, the effect
of a single impurity has also been considered and ana-
lyzed in detail.

Having summarized our basic results, we now make a
few remarks regarding the generality and limitation of
our approach and the results. First, the notion of electric
translations should be applicable to more general sys-
tems: one dimensional or higher dimensional, discrete or
continuous. In this paper we have limited our attention
to a system whose dynamics is invariant under continu-
ous time translations. What can happen if the dynamics
is invariant under discrete time translations only? Ques-
tion of commensuration will arise if the dynamics also
has a spatial periodicity. In this case, an Abelian sub-
group of electric translations exists as a symmetry group,
only when the product of temporal and spatial periods is
a rational multiple of 4 /F. The situation is analogous to
a two-dimensional electron system in a periodic potential
and a uniform magnetic field.

Secondly, most of our results will remain valid if our
tight-binding model is modified to a more general form:
with hopping amplitudes nonzero beyond the nearest
neighbors and/or dependent on positions, except for the
requirement of short-ranged intersite couplings. For ex-
ample, the conclusion about the existence of localized in-
variant subspaces will remain true, since it was drawn
from a symmetry consideration and from a fact concern-
ing a finite set of first-order differential equations.
Another example is the approximate recurrence of states
when the parent band is weakly perturbed.

Thirdly, difficulties will arise, however, for a continu-
ous system when all of the interband couplings are taken
into account. According to Ref. 4, the spectrum will be-
come continuous without any gaps. Therefore, the validi-
ty of the notion of WS ladders becomes doubtful. The
problem does not bother us too much, if only a finite
number of bands (or a finite spectral range) is concerned,
and if these are bounded by large energy gaps. The de-
fense is to invoke the usual wisdom concerning the weak-
ness of Zener tunneling across big gaps, and to regard the
results as valid for long, but not infinitely long, time
scales.
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