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We present a sampling method for Brillouin-zone integration in metals which converges exponen-
tially with the number of sampling points, without the loss of precision of normal broadening tech-
niques. The scheme is based on smooth approximants to the 8 and step functions which are con-
structed to give the exact result when integrating polynomials of a prescribed degree. In applica-
tions to the simple-cubic tight-binding band as well as to band structures of simple and transition
metals, we demonstrate significant improvement over existing methods. The method promises gen-
eral applicability in the fields of total-energy calculations and many-body physics.

I. INTRODUCTION

In solid-state one-electron and many-body calculations,
integrals of periodic functions over the Brillouin zone
(BZ) are routinely made in the evaluation of densities of
states, single-particle sums, charge densities, matrix ele-
ments, response functions, and so on. Precision in energy
on the order of 1 mRy is common; in more demanding
cases, such as the calculation of phonon frequencies, one
requires 1 or 2 orders of magnitude better convergence.
In the case of insulators and semiconductors, the func-
tion to be integrated has the property that it is infinitely
many times differentiable, due to the separation of occu-
pied and empty bands by a gap. Under these cir-
cumstances, it is well known' that integrals converge ex-
ponentially in A, where 4 is the spacing between divisions
made along the primitive vectors of the reciprocal lattice
in constructing a uniform mesh over the BZ. (By ex-
ponential convergence, we mean convergence that is
more rapid than any power in A.) Investigations into the
properties of metals, on the other hand, are hampered by
the fact that one must integrate a function over the BZ
that is discontinuous due to the partial filling of the ener-
gy bands, and hence not even once differentiable. This
leads to very slow convergence when sampling over a uni-
form mesh in the BZ, or at best an 42 convergence? when
using the linear tetrahedron method.® Since in many ap-
plications the time-limiting procedure is the solution to
an eigenvalue problem at each sampling k point, it is im-
portant that the required precision be obtained without a
prohibitively fine k mesh.

We will implicitly deal with two types of convergence
in what follows, which may be best illustrated by refer-
ence to a very commonly used procedure for BZ integra-
tion in metals: one may immediately obtain improved k
convergence by a broadening or ‘“‘smearing” of contribu-
tions from all k points into Gaussian, Lorentzian, or
similar smooth functions with characteristic linewidth W
(thorough discussions can be found in Refs. 4 and 5).
This method ensures exponential convergence of in-
tegrals, albeit to the wrong answer. The only justification
for this ad hoc procedure is that in the limit as W —0 one
would recover the “absolutely” converged result—at the
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expense of using a prohibitively fine k mesh. Thus for
each choice of W the broadening method will converge to
a particular result; in the unattainable limit as W —0 so
would each of these results converge absolutely to the
precise answer.

It is our intention to show here that a more sophisticat-
ed choice of the broadening function can provide the
necessary freedom with which to control both the k con-
vergence and the absolute convergence independently. In
practice, this means that a broadening can be chosen for
which k convergence is reached for a relatively coarse
mesh and that the corresponding limit is close to the true
value. The method we propose revolves around a hierar-
chy of smooth approximations to the step and & func-
tions, which we derive and motivate in the following two
sections. These are then applied to BZ integrals for the
simple-cubic tight-binding band in Sec. IV and to actual
band structures of metals in Sec. V. The most important
points are summarized in Sec. VL.

II. SMOOTH APPROXIMATIONS TO THE STEP
AND 8 FUNCTIONS

We wish to evaluate
I=[ S(EK)—Ep)f(kdk=[" S(e—EpF(e)de,
where
Fle)= [ f(0)8(e—E(k)dk .

E (k) represents an energy band as a function of wave
vector and Ej is the Fermi energy. The function to be in-
tegrated, f, is multiplied by the Fermi cutoff or step func-
tion: S(x)=1—06(x)=1 for x <0, and O otherwise. F(g)
might be, for example, the density of states g (g), if I is to
be the total charge within the Fermi surface; or
F(e)=g(e)e if I is to be the band energy. It is easy to see
that conventional smearing, which essentially replaces
S'(x) by a Fermi-Dirac-like distribution, leads to an error
in the integration which is shown schematically in Fig. 1.
Note that in general this will occur unless F(¢g) is a con-
stant near E.

The more sophisticated approach we adopt amounts to
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FIG. 1. A schematic density of states g (¢) and the same func-
tion multiplied by a Fermi-Dirac-like smoothing. An error
arises when the charge below Ep is calculated as
f g(e)So(e—Er)de since the two hatched areas are not equal,

unless the density is constant near Ef.

a search for successive approximants, Sy, to the step
function which are smooth and for which the error is
zero if F(g) is a polynomial of some order within the en-
ergy range determined by the choice of broadening. If we
use a characteristic broadening W, we can work with a
dimensionless energy variable, x =(e—E)/W, and look
for a function Sy(x) to approximate S(x). Our approach
is to write down a suitable representation of the § func-
tion 8(x), which we will integrate to obtain successive ap-
proximants to S(x). One may expand 8(x) in a complete
set of functions, and since it is even we may write,

8(x)= 3 A,H,,(x)e >,
n=0

where H, is the Hermite polynomial®® of degree n. Us-
ing the orthogonality of the Hermite polynomials with
respect to Gaussian weights:

f ® H,(x)H, (x)e *dx =n02"7$,, ,
we obtain for the coefficients 4,,,
_ H2n (0) _ ( —1 )n
"oenuVr

Now consider the finite sum

N 2
Dy(x)= 3 A,H,,(x)e””
n=0
which we introduce here as an approximation to the §
function. By construction,

7 Dyx)P(x)dx = [ © 8(x)P(x)dx =P(0)

if P(x) is a polynomial of degree 2N +1 or less; since
then P(x) may be expanded in the Hermite polynomials
up to degree 2N +1. To obtain an approximation to the
step function S (x), we integrate D y:
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Syx)=1—[" Dy(nat ,

and making use of the identity (d/dx)[H,(x)e _"2]
=—H, . (x)e”* and the definition of the error func-
tion, ! we obtain the central result of the present paper:

So(x)=21(1—erfx)

N
Sy(x)=So(x)+ 3 A,H,, _ (x)e *
n=1

in which the zero-order approximation S, corresponds to
simple Fermi-Dirac-like smearing, and higher-order
terms serve to correct the errors inherent in such a pro-
cedure.

Sy has a similar property as Dy of integrating polyno-
mials exactly, since by partial integration of

0= f_w [Dy(x)—8(x)]P(x)dx ,

one has
_ > _ dP
0= [ [Sy(x) =S (0] —dx .

Therefore, Sy(x) can be substituted for S(x) in the in-
tegral f S (x)F(x)dx without incurring significant error
if F(x) can be represented as a polynomial of degree 2N
or lezss in the range where Sy(x)—S(x) (or, equivalently,
e *) is appreciably nonzero; whereas S, will serve only
in cases where F(x) is constant in this interval. This is
our desired property.

In Fig. 2 we show successive approximations Sy(x)
and Dy(x) to the step function and 8 function, respec-
tively. Note that both oscillate close to x =0 as might be
expected from the Gibbs phenomenon of Fourier

FIG. 2. Successive approximants to the § function, Dy, and
to the step function Sy. The order of the approximant N is indi-
cated on each curve. Note that the zero-order approximants are
a Gaussian and complementary error function, respectively.
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analysis. The figure shows that for practical purposes,
Dy(x)=~0 and Sy(x)=S(x) if |x| is greater than 2—3.

We remark that the method is trivially easy to include
in a standard BZ sampling or special points’ program.
The approximants Sy(x) may be obtained using the re-
currence for the Hermite polynomials:

Hy(x)=1, H(x)=2x,
H, (x)=2xH,(x)—2nH,_(x) .

Substituting Sy (x) for S (x) in our original integral I, and
sampling over a uniform mesh which is reduced by sym-
metry to a set of points {k;} with weight factors q; in the
irreducible wedge of the BZ, we obtain the quadrature

E(k;)—Ep
Iy= 3 a;f(k;)Sy(x;), x;=——F——.

; W

The sum converges exponentially in k space because of
the smoothness of S,. This procedure is as simple as
conventional broadening methods for metals. In fact
such a method is equivalent to our zero-order approxima-
tion with W equal to the width of broadening used. If
Dy /W is substituted for Sy in the above equation, one
obtains a completely analogous method for evaluating in-
tegrals over the Fermi surface. We remark in passing
that Sy and Dy could be used in other contexts, for in-
tegrating or interpolating a function of a single variable
tabulated on a regular mesh.

To conclude this section, we note for completeness that
the special integrative property of Dy and Sy, namely
that they integrate polynomials up to a certain degree ex-
actly, is not sufficient to define these functions uniquely.
A similar formalism would result for another choice of
weight function instead of the Gaussian. However, it is
clear that for the application of integrating bands of arbi-
trary width with a step or & function at E, the weight
function must be smooth over the whole real axis and
strongly localized near x=0. It is convenient that the
simplest choice, a Gaussian, is also the weight function
for a convenient and well-known orthogonal-polynomial
sequence.

III. THE BENEFIT FROM USING
HIGHER-ORDER APPROXIMANTS

For the k-space integration procedure which we are
presenting here, it is a complication that two parameters
W and N must be chosen suitably. We would like to ac-
quire a feeling for their significance. By construction, use
of Sy (or Dy) leads to a negligible error if F(g) is
representable as a polynomial of degree 2N (or 2N +1) or
less in an interval of ~5W around the Fermi energy (see
Fig. 2). The k-space converged result can therefore be
made to approach the true value either by increasing N
or by reducing W. Obviously, our approach would be
superfluous if it were always possible to reproduce the re-
sult for some set W and N, with equally fast k conver-
gence, by simply using the zero-order function at a small-
er broadening. In this section, we show that the use of
orders N> 0 brings definite advantages which cannot be
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simulated with zero-order functions.

Consider the simplest case for which S; could give
better results than S,: as above, we want to integrate
S (k) over the occupied part of the band, and we suppose
that F(¢) is linear in € near the Fermi energy E,. The er-
ror in the integral obtained at k convergence can be cal-
culated by a standard integration, giving

© £—
AIN=f_w Sy WF —S(e—Ey) |F(e)de
_ LF(Ep)W?* for N=0
0 for N>0.

In this, and in what follows, primes denote differentiation
with respect to €. One sees that the zero-order result
converges to the correct value as W-—0, but only as
slowly as W?2. For the case under consideration, all
higher-order approximants already give the exact result.
The tests in Secs. IV and V will show that k convergence
is only marginally slower for S| compared to S;. Thus,
there is an immediate gain in using S, instead of S,
whenever F (¢) has a nonzero linear term near E.

Next we determine the analogous relation for the case
of an integral over the Fermi surface, i.e.,

E‘—‘EF
w

Iv=[" Fle)—-D,

o w de

which converges to F(Ey) as W—0 or as N— . Since
D, integrates polynomials of linear order exactly, F(g)
must have a nonvanishing quadratic term near E if D is
to give a better result. If F(¢) is quadratic in ¢, the error
in Jy at k convergence is

LF"(Ep)W? for N=0

0 for N>0.

Again, we have found that k convergence of integrals
made using D, is only slightly slower than those using
D,. The criterion for making Fermi-surface integrals is,
therefore, use of D, in place of D, gives an immediate
improvement if F(e) has a substantial quadratic term at
Eg. As a practical example, note that an approximation
to the density of states (DOS) for a given set of bands
E,(k) can be accumulated by adding Dy(x,;)/W,
x,;=[e—E,(k;)]/W, with the proper weight into the
DOS for each band n and each mesh point k;. This is
equivalent to the case under discussion if one considers
E as a variable. From the expression for the error AJy,
it follows that the use of D, i.e., making the DOS by
conventional Gaussian smearing, has the effect of reduc-
ing peaks and filling in valleys, and that this undesirable
phenomenon vanishes only as W2 On the other hand,
the DOS made using D, will have the proper heights and
depths if W is no larger than about one-tenth of the dis-
tance between successive peaks. For a larger broadening,
the same improvement can be obtained through the use
of functions of higher order than N =1. Tests for energy
bands of transition metals have confirmed this.

The connection between the two cases (integrals over
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the occupied states and over the Fermi surface) can be
made in the following way. It is easy to show that

[ Flesy de= [ Fleude

where F(g) is the result of smoothing F (&) by convoluting
it with Dy, /W:
]m.

It follows that F(e) made using D, is equal to F(g) at
those energies for which F(g) is linear in € on the scale
given by W. On the other hand, the integral up to Ep
made using S, is already in error if F(g) has a linear
term, i.e., unless F(g) is approximately constant near E.
The reason for this seeming discrepancy is that the in-
tegral has summed the errors in F(g) for all energies up to
E;. The preceding equations show an interesting fact,
namely that this accumulated error made by smoothing
F(¢) into F(¢) depends only on the behavior of F(e) near
Ep. More precisely, the error estimate above gives this
sum (to leading order) as proportional to the slope of
F(¢) at Ep.

€

Fle)= [ F()+-Dy

— o0

—t
W

IV. THE SIMPLE-CUBIC TIGHT-BINDING BAND
The tight-binding band (TB) on a simple-cubic lattice,
E (k)= —{(coswk, +cosmk, +cosmk,) ,

provides us with an ideal DOS g 3(€) with which to both
illustrate and test the principles of the present integration
method. Near the minimum of the band at e=—1,
g1r(€) shows free-electron-like behavior; near the center
at €=0, it is practically constant, and there are Van Hove
singularities at e =41 and +1. These features are seen in
Fig. 3, where we also show the effect of convoluting
grp(€) with 8-function approximants of various orders.
As expected, the convoluted DOS approaches the true
DOS as N increases. Near the singularity at e= — 1, the
convoluted DOS has structure similar to the correspond-
ing step-function approximant. The benefit gained
through use of the higher-order functions is evident when
compared with the zero-order approximation both where
the DOS deviates from linearity and near the singularity.
In the regions where the DOS is almost linear, all orders
work equally well. The smoothing near the singularity is
reduced if a smaller broadening is used; then Sy(x) varies
more strongly in k space and a finer k mesh is needed.
Thus the choice of broadening is determined by the dis-
tance of E. from the Van Hove singularities and by the
amount of variation of the DOS near E;. The order N is
determined by the required precision: small N requires
fewer k points at the expense of convergence to a less-
precise result, higher orders guarantee convergence to the
correct result but require more k points.

For three choices of E, Fig. 4 illustrates the k conver-
gence of the charge within the Fermi surface using the
present method and the linear tetrahedron method.
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FIG. 3. Density of states of the simple cubic tight-binding
band (Ref. 8) (dashed line) and successive approximations ob-
tained from its convolution with approximants Dy to the &
function. Only the negative energy range is shown. The energy
broadening W is 0.10.

Characteristic for the curves made by sampling using the
Sy is that they become flat very rapidly after a threshold
for the fineness of the mesh is reached. For larger N the
threshold is reached later. A more exact analysis shows
that each curve converges to its limit as exp(—C/h?)
whereas the linear method converges as #2. In view of

EF= -01

-N=0)

Number of electrons
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10 20 30 40
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FIG. 4. The k convergence of the charge within the Fermi
surface for the simple-cubic tight-binding band for three choices
of Er as indicated. N is the number of divisions along each re-
ciprocal lattice vector. N, =10 and 40 correspond to 56 and
1771 irreducible k points, respectively; LTM denotes linear
tetrahedron method; other curves result from successive ap-
proximations Sy. Each division on the ordinate represents
0.001 electrons (the band is normalized to one electron). The
energy broadening is 0.10. ’
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the considerations of Secs. Il and III, the value to which
the Nth curve converges should depend on the shape of
the DOS near the Fermi energy. In the first panel, Ep
lies in the free-electron part of the band where the DOS
has a large variation. Consequently, there is a marked
improvement using S, with N larger than zero. The
DOS is very flat near Ej for the third panel, so that here
S, is already adequate. Finally, the second panel shows
the result when E is chosen exactly on a Van Hove
singularity. While convergence with increasing N is now
slower, the advantage of using a higher-order Sy is obvi-
ous and the present approach still compares favorably
with the linear method.

V. APPLICATION TO REALISTIC BANDS

To test the scheme for realistic band structures, we
have applied it to a number of the metallic elements. The
aim was also to give rules for choosing W and N in prac-
tical applications. Our examples are fcc Al, hcp Zr, and
bee Nb. The energy bands were generated using the stan-
dard self-consistent LMTO method.® For each case, we
have calculated the charge within the Fermi surface and
the band energy as a function of the fineness of the uni-
form k mesh. The potential and the Fermi energy were
kept fixed at the values given by the standard program.
Again, the linear tetrahedron method was used for com-
parison. For each metal, various choices of broadening
were tried and one was selected which was characteristic
of the range which seemed most suited. One can only
give rules of thumb for this choice, since it depends on
the shape of the bands in question. The most difficult sit-
uations are those in which both steep free-electron-like
and flat tight-binding-like bands cross the Fermi surface.
For each metal considered, we have chosen a broadening
W such that the first 2—3 approximants are well con-
verged with relatively coarse meshes to their own values,
while the next few higher approximants converge abso-
lutely (i.e., to the true value) with the use of a fine mesh.
One then has the freedom to choose an N that will simul-
taneously optimize the mesh size and the absolute con-
vergence required for the application at hand. For the
higher orders (say, N> 5) we have found that similar con-
vergence properties can be obtained by taking the next-
lower order and a slightly smaller broadening. For the
low orders, this is not true: use of Sy with some low N
gives a gain in precision together with fast k convergence
which cannot be obtained by simply making the zero-
order function narrower (as anticipated in Sec. ITI).

The results obtained with our chosen broadenings are
shown in Fig. 5. For the free-electron metal Al, behavior
was found which is similar to the low-energy range in the
simple-cubic tight-binding band. Because of the wide
bands and smooth DOS, a large broadening of 65 mRy
could be used. As before, a marked improvement is
found if higher-order step functions are used in place of
So. For this case, the present scheme is superior to the
tetrahedron method.

The situation is qualitatively different for transition
metals because of the narrow d bands. The Fermi surface
is more complicated and more k points are needed to
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resolve it properly. The DOS of hcp Zr is very steep at
Eg; correspondingly, a much smaller broadening of 15
mRy was found suitable. Use of Sy with N=2, 3, or 4
then gives quite good convergence for a reasonably small
number of k points. The improvement over the zero-
order function is pronounced. The comparison to the
linear method shows that the two schemes work about
equally well here. Similar conclusions apply to the case
of Nb. The band structure at the Fermi energy is still
more complicated. Therefore neither method is com-
pletely converged for the largest number of k points we
have used. However, in applications such as calculations
of frozen-phonon energies it is probably more important
to work on a flat part of the curve than to have reached
absolute convergence. Then the result is insensitive to
the position of the mesh points relative to the Fermi sur-
face and consequently no artificial discontinuities are in-
troduced when the Fermi surface passes over mesh points
as the crystal is perturbed. Use of higher step-function
approximants makes it possible to reach this flat part and
obtain results which are substantially better than with the
zero-order function. For the linear method, this kind of
convergence cannot be achieved in practive. We have

AllW=65mRy)  Zr(W=15mRy)

,————N-=0

E LT™M

Nb (W=35mRy)

o

Number of electrons

Band Energy
r
_|
z
LGLNGs
r
|
£

10 20 30 40 10 20 30 40

10 20 30 40
Nk Nk Nk

FIG. 5. The k convergence of the charge Q and band energy
U at fixed Ef for the elemental metals Al, Zr, and Nb. Abscissa
and labeling of curves as in Fig. 4. N, =10 corresponds to 47 ir-
reducible k points in Al and Nb and to 84 in Zr, while N, =44
corresponds to 2168 and 4232, respectively. Spacings between
markers on the ordinates are 0.01 electrons for the Q curves and
1 mRy for the U curves. Note the expanded scale for the Al Q.



40 HIGH-PRECISION SAMPLING FOR BRILLOUIN-ZONE . .. 3621

done similar tests for bcc Mo and paramagnetic bec Fe.
The DOS for Mo has a wide smooth valley near the Fer-
mi energy and a choice of W=65 mRy gives good con-
vergence similar to the Zr results. The case of Fe is simi-
lar to Nb and W near 20 mRy is suitable; both the
present approach and the linear tetrahedron method need
a very fine mesh to attain absolute convergence here.

The preceding results indicate that two kinds of appli-
cation are conceivable. For high-precision calculations,
it is necessary first to optimize the values of W and N,
once, for a typical band structure. For this purpose we
have found it instructive to make plots of the integrals
against the order N for different finenesses of the mesh
and with various fixed broadenings W. On the other
hand, it suffices to be aware in many instances that
without any exhaustive testing, an extension of the zero-
order smearing method by employing the first- or
second-order approximant to 8(x) or S(x) will give a
significant enhancement in precision at the expense of
minimal extra effort.

VI. SUMMARY AND CONCLUSIONS

We have introduced a systematic set of smooth approx-
imants to the step and § functions. When convoluted
with a given function, these approximants give no error if
the function satisfies a well-defined smoothness property.
This makes it possible to evaluate Fermi-surface integrals
as well as integrals over the occupied part of the Brillouin

zone precisely, using straightforward sampling tech-
niques such as the special-points method. Comparison to
results obtained using standard Gaussian smearing show
the superiority of the present approach. Tests for realis-
tic metal band structures indicate that the scheme is
better suited than the linear tetrahedron method for
free-electron metals and about equally successful for tran-
sition metals. Our method has advantages common to all
sampling schemes, namely (a) all k points are treated in-
dependently so that it is extremely easy to implement and
no large disk files with eigenvalues and eigenvectors are
needed, and (b) no errors are introduced by band cross-
ings. The scheme is equally appropriate for k-dependent
matrix elements as for densities of states and single-
particle sums.

It is envisaged that the method may be employed on
two levels of complexity. (1) An immediate improvement
over standard smearing methods may be obtained, simply
by use of the first- or second-order approximants to the
step or 8 function. (2) By careful choice of the parame-
ters W and N very high precision in BZ integrations may
be achieved which was hitherto unobtainable.
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