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We present experimental results and their interpretation on the propagation of surface acoustic

waves on a particular one-dimensional quasiperiodically corrugated solid surface. This problem has

previously been studied theoretically in the limit of a vanishing corrugation. We report precise re-

sults about the reflection and transmission frequency dependence, the temporal impulse response,

and the spatial structure of the proper modes obtained from an optical diffraction experiment using

the Raman-Nath effect (laser-beam diffraction by the surface ultrasonic deforrnations). The theoret-

ical predictions are well observed experimentally. In particular, a special quasilocalixed mode is ob-

served which exhibits an interesting Ane scale structure not predicted in the theory, since it falls out-

side its validity range. In the time domain, our experiments are able to clearly distinguish triple

reflections and to count as many as 10 different paths which contribute coherently to the impulse

time reflection signal.

I. INTRODUCTION

A lot of theoretical works'* have been concerned with
the propagation properties of quasiperiodic (d =1) lat-
tices essentially focusing on the tight-binding discrete
Schrodinger equation. On the experimental side, a
few works have been reported on semiconductor superlat-
tices which have mainly focused on the study of their
structural, dynamical, electronic, and optical properties
in relation to the quasiperiodicity. The analog problem
of acoustical or optical wave propagation in quasiperiod-
ic lattices has been much less studied theoretically ' and,
to our knowledge, there are no experimental results in
this field.

The problem of wave propagation in quasiperiodic sys-
tems is interesting since it is intermediate between period-
icity and randomness. Another motivation for studying
these systems follows from the recent experimental
discovery of the quasicrystal phase in metallic alloys.
From a different point of view, studying the interaction of
elastic surface acoustic waves with complex surface to-
pography' ' " is of major importance to underwater
acoustics, seismology, surface acoustic wave devices, non-
destructive testing, and ultrasonic applications in medi-
cine. Quasiperiodic structures could also provide useful
systems for analogical coding, multiband filters, random
discretization, and integrated analogical frequency
analyzer.

In this paper, we present experimental results and their
interpretation on the propagation of Rayleigh-surface
acoustic waves on a particular one-dimensional quasi-
periodically corrugated solid surface. This problem has
previously been studied theoretically in the limit of a
vanishing corrugation (implying a vanishing amplitude
reAection coefficient p~O) in a large system of size L
with L ' «p (see Sec. VI and Ref. 1 for an explana-
tion of this inequality).

%'e report precise results about the reAection and

transmission frequency dependence, the temporal impulse
response, and the spatial structure of the proper modes
obtained from an optical diffraction experiment. The
theoretical predictions are we11 observed experimentally.
The simple structure of our system offers interesting
features which can be used as paradigms for more com-
plicated systems. In particular, a striking quasilocalized
mode is observed whose large scale shape is in good
agreement with the theoretical model. ' However, it also
exhibits an interesting fine scale structure not predicted
in Ref. 1 since it falls outside the validity range of the
theoretical analysis. A second interest of our system lies
in the analysis of the time response. Indeed, our experi-
ments are able to distinguish clearly triple reAections and
to count as many as 10 different paths which contribute
coherently to the impulse time reflection signal. These
results could be useful to improve present techniques
based on ultrasonic acoustic wave propagation in more

complex systems. "
The structure of the paper is the following. In Sec. II

we present the experimental setup and recall some useful
particularities of the surface acoustic waves which have
been used. In Sec. III, we analyze the spectrum obtained
from reAection and transmission studies. In Sec. IV, the
spatial structure of some proper modes are reported and
discussed. In Sec V, the time impulse response of the sys-
tern is analyzed in detail. Section VI concludes by dis-
cussing some open problems and directions for the future.

II. KXPERIMENTAI. SETUP

%'e have studied a lattice of identical grooves engraved
at the surface of a piezoelectric lithium niobate (FZ-
L1Nb03) substrate, using well-known microlithographic
techniques. ' The system is represented in Fig. 1(a). Its
construction is given as follows. ' Let I' and Q be two rel-
atively prime numbers. The lattice of grooves is the su-
perposition of two periodic lattices of period proportional
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to P and Q. The groove density function is, therefore,

n (x)= g 5(x —mPd;„)+g 5(x —nQdm;„) .

It is periodic and the elementary cell contains P+Q
grooves. The system under study is made of one such ele-
mentary cell, with P =F,o =89, Q =F» =144. The total
number of grooves in the system is thus
X=P+Q =F,z=233. F„is the nth term of the Fi-
bonacci series (generated iteratively by F„+2=F„+&+F„,
for n ~2, with F2 =Fo= 1), which is such that the series
of rational numbers F„/F„+&gives the most rapid con-
vergence as n —++ ~ to the irrational inverse golden
mean t =(V 5 —1)/2=0. 6180. . . . The smallest spacing
between two successive grooves is d;„=4pm which
constitutes the unit length of the problem. The largest
spacing is d,„=358.S pm and the mean spacing a =221

~~~LB'~~

(b)

(c)

FIG. 1. (a) Schematic representation of the experimental sys-
tem. Each pair of "dumbbells" on both sides of the lattice of
grooves depicts a SAW transducer working either in reflection
or in transmission. The propagating path is perpendicular to
the array of grooves, along the large axis of the system. (b) De-
tail of a groove. IW stands for incident wave, RW for reflected
wave, TW for transmitted wave, and LBW for leaky bulk wave.
(c) Optical dift'raction experimental setup which allows to obtain
the local spatial structure of the proper modes. The large black
arrow shows the direction of the translation imposed on the
SAW device so that the laser beam may probe the SAW ampli-
tude along it.

pm. The size of the system is L =PQd;„
=F&oF»d;„=51264pm, Notice that the system is
symmetric with respect to its center. The grooves have
all the same well characterized profile [Fig. 1(b)] with a
width w =2 pm and a depth h =0.3 pm. The lateral
scale of each groove (the so-called opening) is E =1860
pm. In comparison, the typical wavelength of the surface
acoustic waves (SAW's) is around 20 pm.

This array of grooves is surrounded by electromechani-
cal transducers, laid down onto the surface of the FZ-
LiNb03 crystal, performing transmission and reception
of the surface acoustic ~aves. A transducer is generally a
periodic structure of alternate electrodes (so-called inter-
digital structure) connected to two buses, themselves con-
nected to the terminals of either an electric generator or
an analyzer. The spectral response of the quadrupole
constituted by the two transducers is centered around a
frequency corresponding to the periodicity of the fingers
of the transducers, with a 3 dB bandwidth depending
upon the number of pairs of interdigital electrodes (typi-
cally, the frequency f is in the range 10 MHz to 2 GHz
and the relative bandwidth is bfIf -20% for an interdi-
gital electrode structure of three periods). These charac-
teristics can be somewhat adjusted by an appropriate
electrical surrounding.

In practice, we must allow for a number of secondary
effects, among which predominate mutual rejections be-
tween transducers and between the later and the array,
rejections from the edges of the crystal, transmission of
bulk waves by the transducers, and the grooves which
can be reinjected at the surface after reAection from the
bottom of the crystal, electromagnetic radiated noise
from the excited transducers. These different artifacts
have been recognized' for a long time and can be either
minimized by a suitable optimization of the structure or
separated from the interesting information in the signal
treatment. We will address these points, when necessary,
during the exposition of the corresponding experimental
results.

The SAW which has been studied is the Rayleigh wave
whose characteristics for a perfect solid surface in con-
tact with void are well known. Rayleigh SAW consti-
tutes a particular type of elastic wave in solids and can be
seen as a mixture of longitudinal and transverse modes
such that the condition of vanishing stress at the free
solid boundary is fu16lled. They are characterized by a
real wave vector in the directions parallel to the surface
and a pure imaginary wave-vector component in the
direction perpendicular to the surface. The SAW thus
propagates along the plane and is evanescent away from
the solid boundary with a typical excursion of the order
of the wavelength. Rayleigh SAW's propagate with a
phase velocity cz slightly less than the phase velocity c,
of the transverse (or shear) bulk wave. The dispersion re-
lation of the Rayleigh SAW in linear (co =cz k) in absence
of corrugation. In presence of a perturbation to the pla-
nar shape (take, for example, the case of the existence of
a single groove of depth h and width w), the SAW is par-
tially rejected with a reAection amplitude coeScient
given by @=0.6(hlA, )sin(2nmlk) (Ref. 10) (=4X10
for our frequency range f=160 MHz). Furthermore, a
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fraction p -p of the SAW energy is detrapped and con-
verted into longitudinal and shear bulk acoustic waves. '

Note also that the consequence of the presence of air in-
stead of void has been well documented and is known to
lead to a small well-controlled additional loss. '

In the general context of wave propagation in inhomo-
geneous systems, SAW's are particularly interesting for
several reasons which we have exploited in our experi-
ments.

(i) Rayleigh waves are well defined in frequency (for in-
stance with a precision of 1 kHz around a main frequency
of 100 MHz corresponding to a relative precision of
10 ). The intensity of the wave can also be precisely
monitored and kept far away from nonlinear thresholds.
The wavefronts can be made planar to a good accuracy
and controlled by different techniques. '

(ii) All the characteristics of the propagation phenome-
na (spectra, time response, modal structures) can be ex-
tracted experimentally. This feature is particularly in-
teresting for testing predictions of theoretical models.

(iii) SAW propagation sufFers from a relatively weak in-
trinsic dissipation (without speaking of the attenuation
due to leakage of the guided SAW from the corrugated
surface into the bulk which is discussed below).

Our experimental results are obtained as follows. We
sample the frequency range of interest with a typical fre-
quency step of 3 kHz. The temperature of the sample is
regulated at +1'C and the spectral response of the quad-
rupole is measured with a precision better than 10 dB.
Because of the limited 3 dB bandwidth of the transducers
which is in the range of 30 kHz around 160 MHz, the
time impulse width is not vanishing but around 0.03 ps.
This allows us to distinguish SAW paths with length
difference of the order or larger than 100 pm.

The spatial structure of the modes is obtained from an
optical diffraction setup using the Rarnan-Nath effect,
which is presented in Fig. 1(c). A He-Ne laser beam is fo-
cused on the sample and the diffraction pattern is detect-
ed with a photodiode. The Raman-Nath effect can be
viewed as the diffraction of light by an acoustic wave of
finite extent and therefore of indeterminate wave vector.
In this regime which is different from the usual bulk
Bragg difFraction, the laser beam is split, after interacting
with the acoustic wave, into several beams of different or-
ders of diffraction each corresponding to the absorption
or emission of a different number of phonons.

In ord.er to improve the signal-to-noise r'atio of the ex-
periments, we used a lock-in amplification in the detec-
tion of a 1 kHz amplitude modulated SAW. The wave
amplitude was then drawn on an X-Y chart recorder as
the sample was moved.

III. THE SPECTRUM

Figure 2 gives the value of the SAW transmission
coefficient of the system as a function of the frequency.
The bell-like global shape corresponds to the transducers
filtering. Two families of stop bands decorate this large-
scale structure. The first family, shown in Fig. 2 by the
large arrows is made of equidistant peaks with period
b,f~ =4.85+0.02 Mhz. This corresponds to a reciprocal
wave vector 6k~ =2mb f~/c which is also related to the
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FIG. 2. Value of the SAW energy-transmission coefficient of
the system as a function of frequency. The large (small) arrows
show the stop bands of the periodic Q (P) subsystem of period
Pd;„(Qd;„).The large-scale bell-like shape of the curve cor-
responds to the passing band of the transducers.

periodicity Pd;„ofthe Q sublattice by b,kp=qr/Pdm;„.
This yields an experimental determination I'd
=357.5+1.5 pm which compares very well with the ex-
act value 358.5 pm. We have used the value c =3468
m/s measured in the impulse response (see Sec. V). For
the other family shown in Fig. 2 with small arrows, the
analysis is similar and we measure Afq =3+0.01 Mhz
leading to Qd;„=578+2pm which compares very well
with the exact value 576 pm. The experimental value for
P/Q is thus 0.6185+0.0005 and approaches very well the
exact value 89/144 =0.6181.

This spectrum has been predicted in Ref. 1 on the basis
of a transfer-matrix formulation' which is reduced to the
study of the dynamics of the phase shift between forward
and backward waves; this leads to the iteration of a
nonautonomous mapping on the circle. ' A continuous
spectrum of passing bands separated by 5-like gaps is pre-
dicted in the limit of quasiperiodicity (i.e., P =F,
Q =FJ+„with j~+ oc) and in the zero refiection
coefficient per groove limit (p —+0). In these limits, the
set of gaps is given by the Fourier transform of n (x)
which is simply the superposition of the Fourier trans-
forms of the two subsystems of period P and Q, as verified
on Fig. 2. The finite value of the reflection coefficient en-
larges the gaps and makes them observable. The finite
size X of the sample introduces in addition a rounding of
the gaps over a frequency range of the order of N

Note that Fig. 2 contains other information specific to
this experimental SAW system. Indeed, the peaks on
Fig. 2 have not all the same size and one observes a sys-
tematic rise in the amplitude of the inverted peaks of the
stop bands as the SAW frequency increases. This can be
related to the variation of the single groove reAection
coefficient with the frequency known from perturbation
theory' as
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@=0.6(h /A, )sin(2nw/A, )

-hm/A, for our range of A, . (2)

namely F„+iF„2F—„F„i=( —1)", known as the Cas-
sini identity. Indeed, let us note

The typical value of p at f=160 Mhz is p=4. 5 X 10
Note that one expects a transmission coefFicient of the
form T = Toexp( apL—

) which decreases as p increases
or X decreases. This explains the trend observed in Fig. 2
showing an increase of the peaks at larger frequencies.

This quasiperiodic system presents also a particular
feature on its spectrum, namely a pair of very close gaps
shown in Fig. 3 with a narrow passing band between
them, which has been termed the "fundamental pass
band" in Ref. 1. Our observation in Fig. 3 is well in
agreement with the prediction of Ref. 1 concerning this
band in spite of the presence of several additional phe-
nomena, such as the wave attenuation, which are not tak-
en into account in the model. In the limit of a small
reAection coefficient p, it has been shown that the fre-
quencies corresponding to the dominant stop bands of the
system are given exactly by

n (f)= +5(2kd;„mP)++ 5—(2kd;„—ng) (3)

which is the simple superposition of the two patterns of
stop bands, one for each periodic sublattice. Those spe-
cial frequencies such that there exist two integers m and
n such that 2kd;„=mP is very close to ng correspond
to the "fundamental passing bands. " In fact, there ex-
istence is related to specific diophantine properties of Fi-
bonacci numbers' which determine the best values for m
and n such that mP and ng are as close as possible,

0

0.5
Gl

z0—10. -'

I~

Z

(4)

is a given reciprocal-lattice wave vector, with v being an
integer running from 1 to Pg. The fundamental pass
band corresponds to the v interval [FFi,F. +,F z].
With j =10 as in our experimental system, this leads to v
in the interval [4895,4896]. This corresponds to a surface
acoustic wavelength A, =L/v in the interval [20.941 pm,
20.945 pm] and to a frequency width given by
bflf =2X10

. Experimentally, we measure the center of the band at
f =165.68+0.02 MHz corresponding to A, =20.93+0.01
pm in excellent agreement with the prediction. The
width of the band can be estimated as a fraction of the
distance between the two inverted peaks and is found of
the right order of magnitude compared to the expected
value of about 3X10 MHz, taking account of the
rounding bands induced by the finite size of the system.
The rounding of the bands can be measured by the pa-
rameter Af /f, ratio of the frequency rounding over the
frequency f. It is related to the finiteness of the system
by b,f/f -A, /2L =2X10 which corresponds nicely to
the measured value.

Let us finally discuss the expected values of the quality
factor 6 in the vicinity of this passing band and compare
it with the prediction of Ref. 1. By definition, 6=f /hf,
where b,f is the frequency rounding. Taking the theoreti-
cal value Af =3.5 X 10 MHz and f =165.7 MHz, we
have e =4730.

On the other hand, f /2m6 is equal by definition to the
ratio (lost energy fiux)/(stored energy) =c (1—R)/L since
1 —R is the loss for the refiection (assuming an infinite
system and therefore a vanishing transmission). This im-
plies that 6=fL /4n (1—R )c. In our case, 1 —R=I(L)/Io (neglecting the loss phenomena) which is
found to be approximately equal to 6.8X10 (Ref. 1)
[see Eq. (7) in Sec. IV where I (L)IIo is calculated explic-
itly]. This gives 6-5000 compatible with the preceding
estimation.

Peyraud and Coste have estimated theoretically in Ref.
1 that 8 obeys the following asymptotic equation:

6=@' L' exp(apL' ) .

165.55 165.TO 165.85
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FIG. 3. Detail of the spectrum obtained in transmission
showing a pair of very close gaps with a narrow passing band
between them, which has been termed the "fundamental pass
band" in R,ef. 1. Note the dissymmetry of the two inverted
peaks which amplitudes are related to the number of grooves
(P =89 and Q =144) pertaining to each periodic subsystem.
The deeper peak corresponds to the periodic P subsystem which
has the largest number (Q = 144) of grooves and the other peak
corresponds to the periodic Q subsystem having P =89 grooves.

The L'~ dependence in the exponential of Eq. (5) stems
from the fact that the number X=P+Q of scatterers
grows like L' for large L. Taking 8=5000, we obtain
the value +=16 for the coefFicient in the exponential of
Eq. (5). Equation (5) shows that 6 increases as the ex-
ponential of the square root of the system size in this
quasiperiodic system.

Let us compare this result to the case of a simple
periodic system of period a inside of which one intro-
duces a transducer so as to launch a SA%' inside it. Us-
ing the previously discussed expression for
6=fL/4m(1 —R)c, we use 1 —R =e ~~, with /=a/p
at the Bragg condition, and replace L by g since it is the
effective length over which the SA%' can penetrate inside
the periodic system. This yields finally
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8=m /2(1 —R)jM —(m I2p)exp(pL/a) which shows that
8 increases exponentially with 1. and is therefore much
larger than that of the quasiperiodic system. In this case,
the number of scatterers grows like I. and thus the fre-
quency resolution is much better.

In such passing bands, Peyraud and Coste have pre-
dicted the existence of quasilocalized modes. This is re-
lated to the fact that one can expect special behaviors
near a gap and thus, particularly so, between two gaps in
such close proximity.

IV. THK SPATIAL STRUCTURE
OF THE FUNDAMENTAL MODE

LLI

O
DI-
Cl
K

In the fundamental passing band seen in Fig. 3, a spe-
cial quasilocalized proper mode was predicted to appear. '

The spatial structure of this quasilocalized mode obtained
with the optical diffraction technique described in Ref. 16
is reported in Fig. 4 for the case when the SAW is in-
cident from one side (condition of "nonzero Aux"). One
observes that the wave amplitude decreases at first rapid-
ly with distance along the system before increasing again
due to the existence of the quasilocalized mode. Note
also the short scale complex pattern which probes each
single groove diffraction pattern as the sample is moved
in front of the focused laser beam spot.

In Figs. 5 and 6 are reported the spatial structure of
the SAW amplitude for the case when two incident waves
from the left and from the right are impinging on the sys-
tem (condition of "zero energy fIux"). Figure 5 is ob-
tained from Fig. 6 by defocusing the laser beam il-
luminating the sample so that most of the small scale

0 25
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FIG. 5. Spatial structure of the fundamental quasilocalized
mode obtained with two SAW incident from the left and from
the right onto the system (condition of "zero energy Aux"). This
averaged pattern is obtained by defocusing the laser beam il-
lurninating the sample. The smooth curve is obtained numeri-
cally from the theory of Ref. 1.
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FIG. 4. Spatial structure of the fundamental quasilocalized
mode obtained with the optical diffraction technique shown in
Fig. 1(c) and described in Ref. 16. The SAW is incident from
the left-hand side ("nonzero Aux" condition). The amplitude of
the SAW is detected by a photoelectric cell and drawn directly
on an X-Y chart recorder without any signal processing. One
observes that the wave amplitude decreases at first rapidly with
distance along the system before increasing again due to the ex-
istence of the quasilocalized mode. Note the short scale com-
plex pattern which probes each single groove difFraction pattern
as the sample is moved in front of the focused laser-beam spot.
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FIG. 6. Same as Fig. 5 but with a spatial resolution of the op-
tical probe of the order of 50 pm which is obtained by focusing
the laser-beam spot. This resolution must be compared with the
average groove spacing a=221 pm. The signal-to-noise ratio is
increased by the use of a lock-in arnplification. The observed
slight dissymmetry of the mode structure is attributed to an im-
perfect "zero Aux" condition. As in Fig. 4, the belllike mode
shape is decorated by the diffraction pattern of the grooves.
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I (x)=Ioexp[ Fp, (2@x/L) /2v—'t j, . (6)

where F is the jth Fibonacci number related to the size
L, of the system by L =E F.+,d;„showing that in the
limit of large j, E -L, ' . p is the amplitude reAection
coefficient per groove given by Eq. (2) and t the inverse
golden mean. Thus, for large j, I (x )

-exp[ —ap(x/L ") j where a is a numerical factor.
With j =10, F&O=89, p=4. 8X10 at the frequency

f =165.7 MHz, Eq. (6) gives

structure is smoothed out. In Fig. 5, the smooth curve
has been obtained numerically from the analysis of
Peyraud and Coste in the same condition of zero energy
Aux. The agreement between the two curves is striking.
However, Fig. 6 exhibits a more complex structure at
smaller scales obtained with a more precise experiment
with a spatial resolution of the order of 50 pm. The spiky
structure observed at scales of the order of the average
groove separation can be attributed to effects working at
the scale of each single groove. At this scale, the SAW
and bulk wave amplitude are complex and are sensitive to
the nonpointlike structure of the grooves. A precise
study of the local SAW amplitude at these scales would
be certainly worthwhile in order to understand the
inAuence of the local features of the SAW pattern on the
large scale structure stemming from multiple interference
effects. Note also the existence of very deep inverted
peaks which corresponds to pairs of grooves having a
very small separation. This observation points at the im-
portance of nontrivial interactions between neighboring
grooves. We hope to return to these problems in the fu-
ture.

Figure 6 shows also the existence of modulations at
scales intermediate between the groove and system sizes.
This is not predicted from the analysis of Ref. 1, valid un-
der a coarse-graining approximation which relies on the
existence of a slow variable in the wave propagation. The
validity of this coarse-grained approach relies on the con-
dition p ))Q, implying that finite-size effects are small.
With our system @=0.5 % and Q '=0.7% and this con-
dition is not strictly fulfilled. This may be a partial ex-
planation for the discrepancy between Fig. 5 and Fig. 6.
Also, a coarse-grained treatment is not precise enough
for predicting fine details. A reasonable theoretical
description of the mode profile should involve a direct
transfer-matrix formalism and possibly use transfer ma-
trices taking account explicitly of the finite size of the
grooves and of the interaction between them.

Around its maximum, the amp1itude profile of the fun-
damental mode has the following asymptotic analytical
form

minimum size of the grooves and the maximum size of
the system.

Note that this mode is special since its norm diverges
as L increases according to'

J I(x)dx -L' (g)—L/2

and is therefore not really localized in the usual sense. '

Furthermore, defining the "sojourn time" T~ in a box A
as being proportional to the ratio (energy stored in
A)/( energy Aux), one finds' that TA ++ ~— when
L~+ co. This special mode has an infinite norm (and
therefore would qualify as being extended in this sense)
and in the same time an infinite sojourn time (and would
correspond to a localized mode in this sense). It is remi-
niscent of proper modes which occur for some other
quasiperiodic systems and which are associated to a
singular continuous spectrum. '

To end this section, we would like to stress the physical
origin of this fundamental mode and argue that it is relat-
ed to the general existence of localized modes in other
quasiperiodic or random systems. This will show that
this most simple system (1) is particularly well suited to
present pedagogically the origin of mode localization in
inhomogeneous structures.

Heuristically, the nature of this mode can be under-
stood as follows. Note first that the quasiperiodic system
possesses a center of symmetry at x =L/2. The system
can therefore be viewed as constituted by two equivalent
half-systems each being the mirror image of the other and
placed side by side. At frequencies inside the "fundamen-
tal passing band" of the whole system, each identical
half-system presents a stopping band. This means that
any solution of these half-systems at these frequencies
should either increase or decrease exponentiaHy with dis-
tance. Physically, the solution decreasing exponentially
inside each half-system is selected. But, due to their set-
ting side by side and from the existence of the center of
symmetry, the whole system develops proper modes
which can then be interpreted as resulting from a
coherent tunneling through each half-stopping system.
We can now understand that the center of symmetry in-
sures the matching of the solution decaying to the left in
the first half-system with the solution decaying to the
right in the second half-system in the precise frequency
range corresponding to the fundamental pass band. This
explains the bell-like shape of the mode depicted in Figs.
4—6. This line of reasoning is reminiscent of the general
Borland's type argument for the construction of localized
states in one-dimensional (1D) random systems

V. ANALYSIS OF THK IMPULSE RESPONSE

I(x)=Ioexp[ —10.75(x/L) j . (7)

The half-width of the mode at 1/e is therefore x/I =0.3
which explains its rather smooth peaked structure. If we
could have made a system with a higher j, the localized
structure of the mode wou1d have been much clearer
since F, increases exponentially with j (see, for example,
Fig. 7 of Ref. 1 obtained for j= 12 and j= 15). However,
we were limited by experimental constraints on the

The information in the time domain is in principle
equivalent to that obtained from the spectrum discussed
in Sec. III since it is obtained from it by a simple Fourier
transform. We have verified this point in our experi-
ments: the impulse response obtained experimentally is
indistinguishable from the Fourier transform of the ex-
perimentally determined frequency spectrum.

However, it gives a nice complementary picture of the
SAW propagation which may be in some cases more in-



SURFACE ACOUSTIC WAVES IN A SIMPLE QUASIPERIODIC. . . 3611

tuitive. A number of undesirable efFects are well isolated
in the time domain and can even be filtered out. For in-
stance, this happens for the spurious reAections between
transducers. Also, certain features are much clearer in
the time domain. It can be very useful for locating the
position of the scatterers. This study may also serve as a
paradigm of acoustic wave probing techniques which are
essentially implemented in the impulse time domain, ' as
for example, in geological survey of natural resources.

A. .Time response under re8ection

Figures 7 and 8 show the impulse response under
reflection of the quasiperiodic system. Note that the suc-
cession of pulses reproduces the quasiperiodicity of the

I

system in the time domain. Since the average distance
between the grooves is 221 IMm, each individual groove
gives a distinctive and measurable signal, except in some
cases where two grooves happen to be positioned within a
distance smaller than the pulse duration which corre-
sponds to a spatial extension of the order of 100 pm.
Indeed, with a 3 dB bandwidth of 32.5 MHz due to the
transfer function of the transducers, we expect a tem-
poral resolution time of 0.03 ps which corresponds to a
flight distance —100 pm. In Fig. 7, we identify the pulses
corresponding to a simple reflection over the successive
grooves of the quasiperiodic system, which can be
represented as follows for the few first grooves (in units of
d,„=4pm):

Q subsystem 0
P subsystem

89 178
144 288 432 576

267 356 445 534 623 712
720

Period M,.„=89d
Period Qd;„=144d

"0" corresponds to the first groove, "89" to the second
groove of the period P placed at a distance equal to
89d;„,etc. In this series, each groove gives its distinc-
tive pulse except for the two grooves at 712 and 720
which are separated by a distance (720—712)d;„=32
pm. The e6'ective length covered by the pulse in
reIIection is twice this distance (direct and return) and is
thus of the order of the pulse width.

The intensity of the pulses which are rejected on the
first grooves gives a measure of the reflection coefticient
10log ys = —46.25+0. 1 dB which yields p=4. 8+0. 1

X10 which is in good agreement with the theoretical
value @=0.6(h/A)sin(2mw/A)=4. 6X10 around the
central frequency 160 MHz. In Fig. 9, one can identify
two regimes: from the time ti =1.445 itis (arrow A) to
T2 =31.005 ps (arrow 8), we measure essentiall'y the sin-

0, 0
A 8
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FIG. 7. Details of the time impulse response under reflection shown on Fig. 9. The SAW is launched from one transducer (T1) at
the left of the system and is received by a second transducer (T2) placed in between the transducer (T1) and the system. (a) Short
times. The arrow g corresponds to the direct electromagnetic propagation from Tl to T2 and is taken as the origin of time for the
SAW propagation. The reference peak B corresponds to the direct surface acoustic wave propagation from T1 to T2. The peak C
corresponds to the SAW triple reflection on the transducers T1 and T2. Note that one can identify the partial pulse reflections on
each single groove. This is exemplified by the two sequences denoted P and Q which correspond exactly to the structure of the sys-
tern. Each number denotes the groove belonging to one of the two systems on which the pulse has undergone reflection. (b) Long
times. This figure shows the last single reflections on each individual groove and the transition to a triple reflection regime at long
times. Peak A corresponds to the SAW reflection upon the up step placed at the right of the system of grooves. Peak B corresponds
to the reflection on the grounded transducer placed at the right of the system.
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FIG. 8. A typical path of the SAW in reflection which exhib-
its three successive reflections on three grooves.

gle rejections on the successive grooves. The pulses re-
ceived on the transducer at times larger than t2 corre-
sponds to triple rejections of the form shown in Fig. 8.
The measured time for covering the distance
2L, = 102 528 pm is t2 —t, =29.56+0.02 ps. This yields a
measured SAW group velocity c =3468+2 m/s. This is
in reasonable agreement with the velocity c =3485(+5)
m/s known for a (YZ-LiNb03) smooth substrate at room
temperature (the relative velocity variation with tempera-
ture is of theorder of 10 /'C).

The measure of the slope of the logarithm of the indivi-
dual pulses intensity versus time yields the attenuation.
We measure a global attenuation of 5.7+0.6 dB for a
propagation over a time of 29.56 ps taken by the wave for
a round trip ("aller retour") ove-r the array. This corre-
sponds to a characteristic attenuation time l, /c
=21.3+0.5 ps and l =75000+2000 pm.

We can distinguish between the contribution of intrin-
sic dissipation and coherent losses (surface to bulk detrap-
ping). ' ' With the known formula' P, D(d 8/ps)
=0.19f+0.88f for the intrinsic dissipation per ps
(where f is given in GHz), we obtain P,D=1.6dB for the

Q50
l~

Z
LIJ

~ 75-

aller-retour over the system and by difference we can esti-
mate the total power loss due to SAW leakage over an
aller reto-ur P„h=4.1 dB with 10%%uo accuracy. Then, the
coherent loss for a single passage of the SAW over one
groove is I„h&„„,=0.0088 dB and must be compared
to the amount. of refiected energy per groove:
p =(4.8X10 ) =2.3X10 . This leads toI„h~„„,-90p . The factor 90 is much greater than ex-
pected usually' (a factor of order 20—30 is often report-
ed).

Using the optical diffraction technique described in
Sec. II, we have probed the SAW intensity profile in the
direction transverse to the lattice axis. This has permit-
ted us to verify that the SAW propagation was correctly
directed along the axis of the lattice. Therefore, the large
measured loss factor cannot be explained by a "beam
walkoff" effect, but rather seems characteristic of the
grooves which have been used.

Let us now analyze in details the second regime at
times larger than t2 corresponding to the triple
rejections seen in Fig. 7(b). We identify two families of
peaks. The first one is constituted of equidistant peaks
separated by a time interval At& =0.204+0.005 ps corre-
sponding to the propagation (direct and return) over a
distance chtI /2=354+3 pm in good agreement with the
period Pd;„=356pm. The second one is constituted of
equidistant peaks separated by a time interval
At& =0.333+0.005 ps corresponding to the propagation
(direct and return) over a distance cb.t&/2=577+2 pm
in good agreement with the period Qd;„=576pm.

The two periodic subsystems reappear in the triple
reAection since only the SAW trajectories with a triple
reliection on a same periodic sublattice and correspond-
ing to the same time arrival are suKciently numerous to
give an important signal. This is due to the fact that a
single triple reAection signal is 101og&ys = —47 dB below
a single simple reAection signal. Thus, many SAW trajec-
tories must add coherently to increase the triple reAection
signal which are measured in Fig. 7(b) at only 8 —10 dB
below the simple reAection signals.

Let us first analyze this problem quantitatively on the
subsystem of period P which possesses Q= 144 grooves.
Consider a particular triple reAection SAW trajectory
and let us note 1&n& & Q, the number of the groove on
which the first reAection occurs, 1~n2 &n&, the number
of the groove on which the second reAection occurs and
n2&n3&Q, the number of the groove on which the third
reAection occurs. Then, the time of arrival of the SAW
trajectory is

9.375 19.375
TIME (ps)

29.375

ts.w=r[n, +(n& n2)+(n—3 n3)+n3]

=2r[n, n2+n3], — (9)

FIG. 9. Large-scale time impulse response under refIection
on the quasiperiodic system. A {response 8) denotes the recep-
tion of the pulse after single reflection upon the first (last)
groove of the system. After 8, pulse trajectories having sufFered
triple reflection as shown in Fig. 8 can be observed. The arrow
C shows some spurious peaks corresponding to the reflection on
the grounded transducers on the other side of the system.

n
~

—n 2+ n 3
= tsAw /2w (10)

with ~sAw fixed. Let us note n n i z Then, the con-

where ~ is the time taken by the SAW for propagating
over one period Qd;„.Our problem is now to determine
the number of trajectories, i.e., triplets (n„n n z)su3ch
that
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dition (10) reads

rt ++3 tsAw/21

The number of couples (n, n 3) with n, n 3
~ 1 which obey

Eq. (11) is equal to the number of points given by
(ts~w /2r) 1 i—n the plane (n, n3) which are positioned on
the line whose equation is (11). For each such couple,
i.e., at n fixed, there are Q n—couples (n „n2)such that
n =n, n—

2 T.hus, the total number of triplets (n i, nz, n3)
verifying Eq. (10) is given by

~ 'sAw ~2'~

N(tsAw) =

Q I. (tsAW/2r)

0

25.0 '

-50.0

I-I-
K 750

'I ' I ' ' ~

(tsAw/41 )l. (tsww/21 )+11 (12)

I.et us now predict the intensity of the first triple
re6ection. This corresponds to (ts~w /2r ) =Q and
N (pshaw ) =0.5Q —1.5Q =10 152. Thus, about 10
different SAW trajectories with triple rejections add
coherently and build the measured signal. Its intensity is
thus given by

I«,p&, (tsww)=101ogio[N (ts~w)p 1

= —60.7 dB . (13)

We expect, therefore, a decrease of —38 dB over a time
interval of 40 ps which must be compared to the mea-
sured —43 dB. Again the difference stems from the wave
attenuation, which for 40 ps is of the order of 8 dB.

Experimentally, we measure in Fig. 7(b) a signal —66+1
dB below the reference. The difference can be under-
stood by taking account of the attenuation. Indeed, for a
travel time of 21 Q =29.56 Itts, one expects an attenuation
of 10logioexP( —21.Qc/l, )= —6 dB. We thus obtain a
remarkable agreement by adding the theoretical valueI„;&,(tsAw)= —60.7 dB and the attenuation of —6 dB.
It is remarkable that we are able to identify experimental-
ly the contribution of as many as 10 SAW triple
reAection trajectories. This reasoning can also explain
the dependence of the pulse intensity as a function of
time, by replacing the expression (12) for N ( tsAw) in Eq.
(13). This leads to

I„;@1,(ts~w)=I„;@1,(ts~w =2&Q) —0.2056(tsIt, w/21 )

(14)
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FIG. 10. Large-scale impulse response under transmission of
the quasiperiodic system as a function of time. The largest peak
at 0 dB corresponds to the direct transit over the sample, from
the launching transducer on its left to the receiving transducer
on its right. The dotted-dashed line is the theoretical prediction
of the pulse intensity in transmission as a function of time, dis-

cussed in the text. It takes account of the number of difterent
double reAection SAW trajectories arriving on the transducer at
the same time as a function of time, including the attenuation.

B. Time impulse response under transmission

Figures 10 and 11 show the impulse response under
transmission of the quasiperiodic system. The large peak
of intensity of 0 dB (which serves as a reference) corre-
sponds to the direct propagation over the whole length of
the system. The latter peaks correspond to double
rejections of the type shown in Fig. 12.

As for the impulse response in reAection, we can un-
derstand the intensity of the pulse by summing the con-
tribution of the different double reAection SAW trajec-
tories arriving on the transducer at the same time. We

FIG. 11. Details of the time impulse response under
transmission shown in Fig. 10. As in Fig. 7, one can identify the
spatial pulse reAections on each groove. The difference with
Fig. 7 is that each individual pulse response corresponds to a
double reAection path as depicted in Fig. 12. This accounts for
the observation of two pulse subsystems corresponding to the
two periodic subsystems of Q and P grooves etched on the sam-

ple. Note that, as discussed in the text, crossed reAections on a
pair of grooves, one of which belongs to the I' subsystem and
the other one to the Q subsystem, are too scarce in order to
build a strong enough signal which can be sorted out of the
noise.



3614 MACON, DESIDERI, AND SORNETTE

I r

FIG. 12. A typical path taken by the SAW in transmission
exhibiting two successive reAections on two grooves.

obtain, for the first peaks

Ip=101og,o(Q p )= —50.6 dB,

I&=101 go& (0P p )= —55 dB,

(15a)

(15b)

which are in very good agreement with the measure-
ments. We also obtain an estimation of the golden mean
by

P/Q = 10 ~ =0.60+0.02 . (16)

The concave shape of the envelop of the pulse intensity as
a function of time can be explained by taking account of
the number of different double reAection SAW trajec-
tories arriving on the transducer at the same time as a
function of time:

Ip ( tsAw ) =20 log, o( 1 n /Q )—
where n is the distance between the two rejections. In
the time domain, with a time interval of 2Pd;„/c be-
tween successive peaks, this gives

Ip ( tsAw ) =20 log 10( 1 tsAw /29. 56)

with ts~w expressed in ps. As shown in Fig. 10, Eq. (18)
gives a curve following very well the envelop of the pulses
when including the attenuation of the order of —4.5 dB
at time tsAw =22 ps.

dictions were well observed experimenta11y. Note howev-
er that the validity of the coarse-grained approach
developed in Ref. 1 relies on the condition p »Q, im-
plying that finite-size effects are small. With our system
(p=0.5% and Q '=0.7%%uo), this condition is not strictly
fulfilled. Our results can thus be taken as a clue that the
theoretical results derived in Ref. 1 are robust with
respect to the condition p»Q '. It would be interest-
ing to go beyond the coarse-grained treatment of Ref. 1

to demonstrate this fact.
Let us now discuss some open problems. A first one

concerns a proper description of the surface to bulk wave
conversion by a groove in presence of all the other
grooves. Spectacular efFects concerning the vanishing of
this leakage have been observed for periodic systems and
in another quasiperiodic system studied in Ref. 20. They
seem to involve coherent destructive interferences at
infinity between all the partial wavelengths emitted in the
bulk by the different grooves. In terms of a local SAW
description, this implies the existence of long range corre-
lations between the SAW propagation in groove arrays.
These correlations are difficult to describe theoretically,
for example within a transfer-matrix formalism. ' For
this problem, our quasiperiodic system could provide in-
teresting information due to the rather large value of the
average distance between grooves and the existence of a
large set of difFerent distances between nearby grooves.
In principle, this could allow the observation of the effect
of groove coupling as a function of their distance. We
hope to come back to this problem in the future.

A second open problem concerns the fine scale struc-
ture of the fundamental proper mode observed in Figs.
4—6. Preliminary results, with a finer optical resolution
than the best used in the experiments reported here, point
at the role of step discontinuities which should be con-
sidered separately and not in pairs (each pair "down-up"
constituting a groove). We also intend to come back
more carefully on this point.

VI. CQNCLUSIQN ACKNDWI, KDGMKNTS

We have presented experimental results and their inter-
pretation on the propagation of surface acoustic waves on
a particular one-dimensional quasiperiodically corrugat-
ed solid surface. It has been constructed by a simple su-
perposition of two periodic lattices of periods P and Q
such that P/Q approaches a particular irrational num-
ber, the golden mean. This problem has previously been
studied theoretically in the limit of vanishing corrugation
in Ref. 1. We have reported precise results about the
transmission frequency dependence, the temporal impulse
response both in reAection and transmission and the spa-
tial structure of the proper modes. The theoretical pre-
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