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We describe a new method for the treatment of molecular-dynamics computer simulation for sys-
tems with long-range interactions when the system to be simulated is only infinite in two of the di-
mensions of the three-dimensional space. Such problems arise, for example, in the study of surfaces.
We report a method to deal with these problems based on Ewald techniques but involving several
new features. Numerical tests show that our methods are fast and accurate enough to be feasible for
study of the systems of interest, though not quite as fast as the corresponding techniques for bulk

systems.
methods.

1. INTRODUCTION

Molecular-dynamics simulations have become an im-
portant tool for the study of the classical statistical
mechanics of many-body systems. In many models of
practical interest, it is necessary to consider Coulomb in-
teractions between the particles. As a practical matter,
even with the most modern computers one cannot make
computations on systems having these long-range interac-
tions which are large enough to adequately describe bulk
systems without special techniques. The techniques used
include estimation, by the reaction field approximation or
by other mean-field methods, of the field due to the parti-
cles not in the finite-size sample. The most accurate
method, however, is the use of an extension of the Ewald
method' for calculation of electric fields in ionic crystals.?
In this method, the entire molecular-dynamics sample is
reproduced an unlimited number of times in all three
Cartesian directions [see Fig. 1(a)] and the resulting elec-
tric fields and electrostatic potentials are calculated by
Ewald methods. Thus the simulated system at any mo-
ment in time has the symmetry of a crystal with a large
unit cell containing all the particles.

In many problems of interest in condensed-matter and
statistical physics and chemistry, one encounters systems
which are effectively finite in some directions and infinite
in others. Examples include a polar fluid or an electro-
lyte trapped between two plates (as in some electrochemi-
cal configurations) and a beam of charged particles in an
accelerator. In the first example, just two dimensions are
effectively infinite while in the second, there is only
one macroscopic dimension. This paper presents
modifications of the Ewald method for the treatment of
Coulomb interactions in molecular-dynamics simulations
of such systems. In the past, there have been some at-
tempts® to deal with these systems by using the same
three-dimensional codes which were developed for bulk
fluids, merely reproducing the system many times in the
finite directions [as sketched in Fig. 1(b)]. This method
can lead to errors, however, unless the reproduced finite

40

We report results of a simulation of water between two dielectric walls using the new

systems are made so far apart that the calculations be-
come quite impractical as one can see by the following ar-
gument: If the molecular-dynamics sample is charge neu-
tral, then the unphysical periodic replicas of the system
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FIG. 1. (a) Schematic illustration of the Ewald technique for
a bulk system. (b) Illustration of the treatment of a system with
two boundless dimensions and one finite dimension by means of
“slabs” reproduced periodically both in the direction of finite
extent and in the directions of infinite extent. (c) Illustration of
the method used here in which the system is replicated only in
the directions of infinite extent.
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in the finite directions [the z direction in Fig. 1(b)] will
not lead to any unphysical fields in the mean-field approx-
imation. But a particle in the sample will observe fields
arising from inhomogeneities in the charge distribution of
the periodically replicated cells. Such inhomogeneities
occur up to a scale L which is the size of the molecular-
dynamics sample in the infinite directions. This means
that to avoid a significant effect from these unphysical
fields, one must make the system much larger in the finite
directions than in the infinite directions with consequent
loss of computational efficiency. To avoid this problem,
several workers have used mean-field estimates of various
kinds*> to account for the electric fields arising from
charges outside the molecular-dynamics or Monte Carlo
sample. Such methods do not take into account the
short-wavelength structure in the fluid near the
molecular-dynamics cell.

Finally one may attempt to use Ewald methods in these
quasi-two-dimensional systems. Various versions of such
methods have been considered, for example, by Heyes
and co-workers.® The same group has also used mul-
tipole expansions of the fields arising from the repro-
duced cells as well as Evjen summation techniques. Here
we report a method for the treatment of this problem
which combines Ewald techniques with multipole expan-
sions in a way which we have found numerically satisfac-
tory and which appears to be new. We have redeveloped
the Ewald methods from the beginning for a two-
dimensional Ewald sum on a three-dimensional sample
reproduced an infinite number of times in two of the
three directions [Fig. 1(c)]. We have tested the resulting
formulation numerically using several different functions
in order to separate the coordinate and reciprocal space
sums. Although this method still does not take into con-
sideration the fact that there are artificial spatial correla-
tions between the charge fluctuations in different cells, we
believe, nevertheless, that it represents an advance on
previous work. In Sec. II we describe the formal develop-
ment and in Sec. III we present the results of the numeri-
cal tests. Section IV contains conclusions and discussion.

II. FORMAL DEVELOPMENT

To do the Ewald method for the case of interest, we
reproduce the cell an infinite number of times in two of
the three Cartesian directions. We regard the system as
finite in both directions along the third coordinate (as if,
for example, water were sandwiched between two parallel
planes). We can later introduce boundary conditions and
fields at the two ends of the sample in the direction nor-
mal to the wall which correspond to such physical effects
as the charging of an electrode, the Debye-Huckel-
Gouy-Chapman screening of fields, the diffusion of ions
up to a metal surface, and possibly the tunneling of elec-
trons from one metal plate to another across a small gap
filled with water.

It is not sufficient to simply use the three-dimensional
Ewald codes for a narrow sheet in the middle of the
three-dimensional cell because long-wavelength charge
fluctuations in the sample would result in fields which

cause unphysical interactions between the sheets. In-
stead, we reformulate the problem. The charge density is

n(r)=2qj8(r—rj+v) (v
4
in which the charges g; are both in the sample (positions
r;) and at the periodically continued positions (r;+v).
This can be written

n(r):(l/ﬂ)zn(k)eik'r (2)
k
in which

8‘2’(k —-G). 3)

n(k)= qu 2
J

L is the length of a side of the unit cell, 8? is a two-
dimensional 8 function, and k; is the projection of the
three-dimensional vector k onto the xy plane. Inserting
this in the Poisson equation V2¢(r)= —4n (r) and solv-
ing by Fourier transform gives

—ik (z;—2z2)
2 —iG(s;—s)

$(r)=4m/ 4 zq, , @

g __——¢
2 k2+G?
where the G are reciprocal lattice vectors corresponding
to the two-dimensional lattice of repeated cells. A is L.
The total electrostatic potential energy V, of the system
is then

VN=%fn(r

where the second term corrects for a self-energy occur-
ring in the first. We insert the previous expressions for
¢(r) and n(r) in this. The term involving G=0 in the
sum on reciprocal lattice vectors must be treated sepa-
rately. We find

8(r— r)
lr— rl

)p(r)dr— % a} [ — (5)

Vv=12 qqulﬁ( |21j|,81j)

pl

-1 zq [arswsr. , (6)

T
4 21, qqulzljl
Js

The second term can be understood physically as the en-
ergy of the interaction which the charges would have if
they were spread smoothly over the x and y directions
while the first term takes account of the inhomogeneity of
the charge distribution in the x and y directions. (|z|,s)
is defined by

—Glz

'/’(|2|,s)=%;1 %i?—e*m. %)
The prime on the sum on reciprocal lattice vectors means
that the term with G=0 is to be omitted. s is a position
vector in the plane parallel to the boundary walls so that
r=(s,z). To use the Ewald method we must introduce a
function f (a,G,z) which plays the role of separating the
expression for ¥V into a sum on lattice vectors and a sum
on reciprocal lattice vectors. By a suitable choice of f we
wish to cause both sums to converge at a sufficiently rap-
id rate to make the method practicable. f is introduced
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into the previous expression for 9 as follows:

¥z, s)=22 y 2 [l—f(an] —iGs
27 ’ e—szf —iG-s
+ 4 % G fla,G,z)e . (8)

We require that f(a,0,z)=1. The parameter a will con-
trol how fast f approaches zero for large |G|. The first
term will be calculated as a sum on lattice vectors. To
express it in that way we define

d*G e‘GlzI
(2m) G
F(a;z;s) depends only on the magnitude of its third ar-

gument. We find that the first term of Eq. (8) can be ex-
pressed in terms of the “effective interaction” F as

27 3f (a,G,z)
A G

Fla;z;s)= [1—f(a,G,2)]eCs . (9)

EF(az s—v)+— (10)

G=0

[For a choice of f which we use below, F(a;0;s) is com-
pared with 1/s in Fig. 2.] In the first term of Eq. (10) one
can separate out the term with / =j and show that it con-
tains an infinity which cancels the infinite last term of Eq.
(6) up to an additive finite constant. The final form for
the potential energy is

—Glz;;|
—iG's;; e v

__2 2 qlq_] ijT—f(a,G,Zij)
Lj [G]

+13> zq,qu(a Z;j38; V)
ij [v]

__}izjqiqjlzij[+c,(a,{z,-j])+c2(a) . (1

Expressions for ¢,(a, {z;}) and c,(a) are derived in Ap-
pendix A. In practice, c,(a) plays no role in the
molecular-dynamics simulation except that it depends on
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FIG. 2. Function F(a;0;s) compared with the function 1/s
using the form in Eq. (13) for f(«,G,z) and N=3.

the function f and thus can be useful in confirming that a
code is behaving correctly by checking that the potential
energy is independent of the choice of the function f, as
it must be.

The electrostatic part of the forces on the particles in a
molecular-dynamics simulation are determined by
differentiation of V) in the usual way. Full expressions
for the forces are given in Appendix B.

We have considered several possible forms for the
function f(a,G,z). First we tried forms which were in-
dependent of z,

fla,G)=e (e®" (12)

with n=1,2,3. The choice n=2 corresponds to the
choice made in the usual Ewald method. The resulting
function F(a;z;s) must then be calculated on a two-
dimensional array associated with the variables z and s.
The resulting algorithm gave reasonable results but re-
quired a very large amount of storage for this array. We
could avoid the necessity for this two-dimensional array
by using an explicit z dependence in f,

fla,G,z)=e!Glzg ~(aG)" (13)

The z dependence is chosen to exactly compensate the
factor e ~!G'% in the second term in the integrand of the
definition of F(a;z;s) [see Eq. (9) and Appendix A] so
that the large array is not necessary. This choice also
simplifies the calculation of the sums in reciprocal space
by permitting use of the identity

> q;49:e 2 g;e
Lj

iG(r;— lG'l’i 2

As a consequence of the second advantage, the computa-
tion time for the sums in reciprocal space increases
linearly with particle number instead of as the square of
the particle number. The price which is paid for the ad-
vantages is that the short range part of the forces have a
part which decays algebraically at long distances s in-
stead of exponentially. Physically, this corresponds to
the multipole fields of the sample charge arising from the
finite width of the sample in the z direction. We have
made such a multipole expansion of the relevant terms in
order to deal with these effects. The details are described
in Appendix B. Using this last choice for f(a,G,z), one
finds without great difficulty that

L J.7dG Iy(Gs)e ™«

Fla;z;s)=—F5———7>—
(s2+2z2)!

where J,(GS) is the zero-order Bessel function.

III. NUMERICAL TESTS

To implement the method set out formally in Sec. II
one must choose values of a and n. The function
F(a;z;s) is then computed and tabulated. In the
molecular-dynamics simulation, this function is used to
evaluate the coordinate space sums in Egs. (11) and (B3).
In tests of the algorithms with separation function (12)
we evaluated the electrostatic potential and force for each
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of 250 particles placed for convenience in a bee array in a
cubic box which was continued periodically in the x and
y directions in order to test the various functions f(a,G).
We found, unlike the implementation of the Ewald
method in three dimensions, that we could not efficiently
confine the coordinate space sums to one cell. Twenty-
five cells (up to the third-neighbor ‘“square shell”’) were
required in both coordinate and reciprocal space. The
best results were obtained with n=3 and a/L=0.116.
The resulting code is not as fast as corresponding Ewald
codes for a bulk system written by ourselves and others”?
but it would be fast enough to make the method practical
if it were not for the large memory requirements. Vari-
ous checks on the accuracy of the calculated forces were
carried out.

To test the alternative separation function (13) we used
‘the Toukan-Rahman® molecular-dynamics model of wa-
ter. That model describes the water molecules in terms
of central forces between three points (one oxygen and
two hydrogen atoms) in each molecule. In addition to
short-range forces described in Ref. 9, the oxygens have
charge —0.82/e| and the hydrogens have charge 0.41]e].
Using this method we tested the method on a sample of
216 molecules of water between two rigid “walls” in nor-
mal to the z direction. The water-wall potential was tak-
en to be

V,(z)=A4/z°—B/z*,

where 4=43.1 a.u. A® and B=0.10 a.u. A’ for the
oxygen-wall component of the water-wall interaction and
A takes the same value while B=0 for the hydrogen-wall
interaction. This water-wall potential is the same as one
used in simulations of two ideal classical metal walls!®
and is discussed somewhat further in Ref. 10. We tested
the algorithm for n=2 and n=3 and for a range of «
values. With n=3 we found better convergence than
with n=2. The convergence was not sensitive to the
value of a in the range 0.07 <a/L <0.15. When we used
a/L=0.11 the calculation time was 0.574 seconds per
step in the molecular-dynamics calculation. In this cal-
culation, 9 cells (up to the second square shell) were in-
cluded in coordinate space and 709 reciprocal lattice vec-
tors in reciprocal space were included. To estimate
whether this number of coordinate space shells was
sufficient, we calculated the forces for the next square
shell in a few instances and found that the next shell con-
tribute a correction of only about one part in 10*. We
find pair correlation functions which indicate that the
water model is behaving reasonably in this two-
dimensional configuration. In Fig. 3, we show the density
of the oxygens (Gwo) and hydrogens (Gwh) as a function
of distance from the walls after simulation for 10 ps of
real time. A comparison of these resutls with the results
of Ref. 10 shows that the peaks are slightly broader but
almost exactly the same distance from the wall as those
found in the simulation of water between ideal classical
metal walls. [The full width at half maximum (FWHM)
of the first peak is 1.38 A here and 1.30 A in Ref. 10.]
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FIG. 3. Density of oxygen (Gwo) and hydrogen (Gwh) as a
function of distance across space between two rigid walls in the
Toukan-Rahman model of water calculated using the methods
described here.

IV. DISCUSSION AND CONCLUSIONS

These studies show that an Ewald method which is
practical exists for the kinds of constrained geometries in
which we are interested. The most detailed studies with
which we may compare this work are those of Heyes and
co-workers.*!' ™13 Our Ewald method is related to that
of Ref. 13 as follows. We rewrite the charge distribution

n(r)=3 q;8(r—r;+v), (14)
jhv
as
n(r)=n(r)+[n(r)—a(r)], (15)
where
—(8.—s V2 112
A= 8z—z)e " fama? (16)

v
Following the steps of Appendix A of Ref. 13 we find
that the first term of Eq. (15) gives precisely the recipro-
cal space part of our result in Eq. (11) while the second
term of (15) gives the real-space sum, as long as we
choose n=2 in Eq. (11). Thus the differences between
our methods and those of Ref. 13 are that (1) in the
Heyes method, the Gaussian spreading is applied to the
charges in the z direction normal to the repeat directions
as well as in the transverse directions, even though there
is no periodicity in that direction, whereas, with a Gauss-
ian separation function f, we apply the spreading only in
the directions in which the sample is periodically repeat-
ed, and (2) the method of Ref. 13 is confined to Gaussian
separation functions [#=2 in Eq. (11) of the present pa-
per]. We have found, as explained above that n=3 in Eq.
(11) gives a faster algorithm. With regard to comparing
the computational speed of the methods, we note that in
Ref. 11 the Ewald method of Ref. 13 is reported to be
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slower than the depolarized Evjen method. But the re-
ported computational time for the latter method is 0.14
sec/step for 216 particles on the Cray 1-S. Our calcula-
tions are for 648 particles on the Cray-2. Because the
clock time of the Cray-2 is about three times shorter than
that of the Cray 1-S we estimate that our algorithm
would require about 0.574X3/9=0.2 sec/step for 216
particles on the Cray 1-S. This time is comparable to
that reported for the depolarized Evjen method so that
on the basis of the report of Ref. 11, our algorithm is
probably faster than that of Ref. 13. Of course, we have
not completely explored the space of functions f(a,G,z)
and it is possible that further improvements can be made
in this direction. The extension of these results to sys-
tems with two finite dimensions and one infinite one is
straightforward. We have worked out the formal
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methods for doing this but have not yet tested the result-
ing algorithms numerically. The development of this
method opens the way to study of a variety of problems
involving charged fluids at surfaces by molecular-
dynamics techniques.
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APPENDIX A: DERIVATION OF THE EXPRESSIONS FOR ¢(a, {z;;}) AND ¢;(a)

By Fourier transforming the definition of the effective interaction F (a;z;s) we find

e—Gll

[l—f(an)]———fdsFazs)e’Gs. (A1)
Substituting this into Eq. (6) using (8), the first term becomes
1 , iG-(s;; —s') 1 , :
13 aa— [ds Flaszgs) | 3 e " =1 |=13 qq;— [d*'Flaz;s) [A 2 8(s—s;+v)—1 ]
ij {G] hj [v]
1 ’ ’
‘:Tzqiqj zp(a;z,'j;sij_v —%Zq,qj—A—fdzs F(a;Zij;S ). (A2)
i [v] ij
This gives Eq. (11) in which
1 ’ ’
cl(a,{zij})z—-z—qu,-qudzs F(a;z;;8') .
From (A1)
—Glz..|
. ] ij - af (a,G,z;;)
=—— iq; 1 1— , Gz )] | =— g . A
cl(a { tj}) A %q[q_] Gl—n;l() [ f(a Zu)] A ?jqzq] 3G G =0 (A3)

The constant c,(a) in Eq. (11) comes from the contribution of the i =j term in Eq. (A2) together with the self-energy

correction in Eq. (6),

ZEZq,F(aOV)—ZZq,zf —8(r

i ¥ i

But F(a;z;s) can be written as

c(a)=

—GJz[
Fla;z; s)——1 ———fdGe‘Gsf a,G,z)S——
r

Thus c,(a) is given by

cz(a)=72q,-22'F(a;O;v)—%2q,»zfode fla,G,0) .
i [v] i

1

dr=13 q? 3 'F(a;0;%) +‘Eq, hm[F(az s)—1/r].

[v]

APPENDIX B: TREATMENT OF ALGEBRAICALLY DECAYING TERMS IN THE SHORT-RANGE INTERACTION

Using f(a,G,z) from Eq. (13) in Egs. (11) and (A3) one has, defining g (o, G)

g (a,G)
qu'qj'gT”

ij G=0

cl(a’{ Ij} quq]lztj|+

=¢@9”" that

(B1)
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o g(a G) T g (a,G)
VN_:I_ [2,] >4 +‘ 2 Eq,qu(a 2385 V)+724i‘1j—‘_gaG . 0+c2(a) . (B2)
j {¥ i =

The last two terms in V) are independent of the positions of the particles and do not contribute to the force. The force
F, on the kth particle is then given by differentiation of the other terms as

sz_gl > g(a G) Eqkq sin(G-sg; )+ 3 3 qrq;(sy;+v) 1 de(a;|skj+V|)
4 i @ ! e e (sg; +vI> 4282 Isi; +v1
- Zkj
+]Zk%qkqu(tskj+v!2+zlfj)3/2 ’ (B3)

where
0 ©
df s(azs)=- | [ 4G 1o(Gslg (@, G) | -

In the second term of the last equation for the force, we add and subtract the term 1/ |sk . +v|3 in order to separate the

sum into a short-range part and a part which can be treated by a multipole expansion in the charge moments of the lay-
er

1 dfs(a;Iskj+v|)
[skj+v|2+z )32 |Skj+1’|

1 df s(a;lsy;+v|)
|skj+v|3 Iskj+V|

1 .
(|Skj+V|2+Z1%j)3/2 |Skj+v|3

2

Skj+v)

(Skj+‘V)=/ 2

+2

v

Because df s(a,s)— —1/s? as s— oo, the first term of the last expression contains summands which fall off rapidly
with |v| while the second term can be expanded to give the aforementioned multipole expansion. Suppose that the sum-
mands in the first term become negligible after |v| > e, whereas a multipole expansion to order # is valid for values of v

in the second term for which |v| > V., Then we can rewrite the last expression as

(Skj+‘V) .

max(v, ,v, )

‘174 1 df s(a;lsy;+v))

2‘ 1 1
2 syt P4z st

(|Skj+v|2+sz)3/2 |Skj+vl3

(Skj+v)+ 2

|v| >max(vcl,vcz)

The multipole expansion can now be made in the last term. It is convenient to subtract and add the terms in the mul-
tipole expansion for 0 < |v| Smax(vcl,vcz) to the first and second terms of this expression, respectively. Then the last
term becomes the multipole expansion summed over all values of |v|>0. We have found numerically that a Taylor
(multipole) expansion of the last term up to second (quadrupole) order gives very good accuracy as explained in the text
when max( VesVe,) is set so that the sum in the first term is restricted to the first nine cells in the square lattice in the

water problem. The force on the kth particle then becomes

F,i=2" 5 8 4(0,6)S g,g;sin(G-sy,)
A4 G ;
1 df s(a;lsy; +v)  3z%  15(z¢ +2z2|s;; +vI2—222v%)
T 2 2 akq;(sg+v) 21,232 | +]| s ’ = ’
Jj#k (v} (‘Skj+v| +ij) skj v 2v 8v
1 1
+ 919,2zy; —— |+F2?
,ék% Je“kj (|Skj+v|2+z]3j)3/2 NE]
n which
@ 1,15 15 , 1
Fk = gkqjqk 3ijsk122— 3 Skj(ij+22kjSkj)2“+—ij ki % +/\ij% v .
J v v

Che sums over {v} can be done explicitly in the expression for Fi?’ giving
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3 1/v*=9.031783 /L3,
(v

> 1/v°=5.090258/L° ,
v

I&

> 1/v'=4.423117/L7,
(v

S vv/v'=2.545129(3% +99 ) /L° .
(v}
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