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Disorder and density-of-states effects on the Hall constant
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The magnitude of the Hall coefficient RH of amorphous Cu„Ti&00 and Cu Zr&oo alloys,
prepared by rapid quenching from the melt as well as by sputtering, is found to decrease with in-

creasing temperature. This temperature dependence and the positive sign of RH are discussed with

respect to the presence of d electrons and disorder. Neglecting vertex corrections, we study the
effects of a finite spread in the electron s spectral function. Short-range order is included, and hy-
bridization is taken into account in a two-band model. It is shown that under certain conditions
lifetime broadening can lead to a positive Hall constant. Below about 25 K the temperature depen-
dence can be described by a T' law for the most accurate measurements. This finding gives sup-

port to corrections due to electron-electron interaction that are consistent with the low-temperature
conductivity and predictions from perturbation theories for coherence efFects in disordered conduc-
tors.

I. INTRODUCTION

The presence of disorder leads to new features in the
electronic transport properties of metals and alloys. '

Due to the strong defect scattering, the resistivity of
disordered conductors varies only on a scale of 10 be-
tween 10 and 300 K. A more striking feature may be the
sign of its temperature coefBcient and the magnetocon-
ductivity measured at low temperatures in glasses based
on transition metals as well as on simple metals. There is
broad evidence that the underlying Inechanisms are
quantum interference and electron-electron interaction
effects.

Previously we have discussed such conductivity
anomalies in CuTi and CuZr glasses. Here, we focus on
the Hall effect, relying on data taken on the same sam-
ples. A preliminary report of some aspects of this work
has already appeared. ' The Hall coefBcient R~ is con-
troversial, since the positive" ' sign generally observed
in transition-metal-based metallic glasses cannot be ex-
plained with perturbative corrections to the Boltzmann
conductivity assuming a free-electron density of states.
On the other hand, given the magnitude and sign, RH
should be affected by the same electron coherence effects
that are present in the conductivity and also in the Hall
e6'ect of two-dimensional disordered systems. ' Because
disorder as well as the electronic density of states, which
is not free-electron-like, are involved, the temperature
dependence of RH has to be discussed with respect to
both.

The concept of energy bands in order to classify the
single-particle energies has to be modified at least in con-
ductors with resistivities larger than 100 pQcm. Since
the mean free path, I, of the electrons is of the order of
several atomic distances, a considerable width of the elec-
tronic spectral function is to be expected. However,
model calculations of amorphous systems show that band

structure' ' is still to be seen. In addition, the measured
density of states (DOS), as extracted from photoemission
experiments, exhibits very similar results for some crys-
talline, amorphous, and liquid compounds. ' This indi-
cates that, although on a large scale the positions of the
constituents are uncorrelated,

'
short-range order is

present and influences the electronic wave functions.
%'e will show how the sign of RH can be related to hy-

bridization between s and d electrons and to a finite
spread of the electronic spectral function. %'e then argue
that the temperature dependence does not result from
vertex corrections to the conductivity, but from a varia-
tion of the width of the spectral function with tempera-
ture. In addition, at the lowest temperatures electron
coherence and interaction effects will become important.
In this paper our main aim will be to describe the trans-
port properties, seen in different temperature regimes
with various approximations which, however, must be
consistent with each other as well as rely on the same
physical parameters.

II. EXPERIMENTAL RESULTS

The Hall resistivity pH =R~B is related to the longitu-
dinal (o ~ ) and transverse (cr ) conductivities via
(o„((o„)

2
PH ~ y«

The Hall coeKcient R& was determined by applying the
usual dc method, relying on

RH= UH/IBd,

where I is the sample current, UB the Hall voltage, B the
magnetic field, and d the sample thickness. The Hall
voltage could be measured with a galvanometer amplifier
coupled to an integrating microvoltmeter. ' Contacts
were made by pressing Cu wires (0.2 mm in diameter) to
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taps cut into the samples. This arrangement formed the
inner part of a "sandwich" consisting of a sapphire plate,
a thin sheet of mica, and a Cu plate which was clamped
to a Cu block. Using pressure contacts as compared to
soldering has the advantage that the samples are not ex-
posed to higher temperatures which could cause partial

crystallization. The contacts were checked to be "Ohm-
ic" and turned out to be stable. During the experiments
slow cooling and heating rates (about 30 K/h) were ap-
plied to avoid stresses on samples and contacts. For typi-
cal dimensions (SX0.6X0.03 mm ), a resistivity of 150
pQ cm, and a current of 0.1 A, the heat dissipation is 6
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FIG. 1. Magnetic field dependence of the relative change of the Hall resistivity p& for amorphous Cu42Zr» (top) and Cu44Ti, 6 (bot-

tom) at different temperatures. The data points for pH(8) at 77 K are taken as a reference (see insets). The differences in the slopes

for negative and positive field directions are caused by magnetoresistivity contributions. They are eliminated by an averaging pro-

cedure.
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mW. For thinner samples, lower currents (10—50 mA)
were used. When drifts occurred the current was set to
lower values. A conventional electromagnet (0&8 & 1.2
T) or a superconducting magnet (0 &8 & 6 T) supplied
the magnetic field 8 penetrating the sample perpendicu-
lar to the ribbon plane. The field setting were calibrated
by proton NMR or by a calibrated Hall probe. The er-
rors--in the temperature determination, which was per-
formed with the aid of a calibrated carbon glass or a Pt
resistor (about 40 K) are smaller than 0.1 K. The error in
the temperature dependence of RH was estimated to be
less than 1%, whereas the absolute value is less accurate
owing to a 10% uncertainty in the sample thickness. A
detailed discussion of systematic errors can be found in
Ref. 14.

The amorphous alloys were prepared by melt spinning
and dc-magnetron sputtering with typical thicknesses of
30-50 pm and 1.4—3 pm, respectively. ' The conduc-
tivities at room temperature are in the range of S X 10
0 ' m '. A detailed discussion of the resistivity and its
temperature and magnetic field dependence is presented
in Ref. 9. It should be emphasized that the resistivity is a
sensitive marker for the ainorphicity of the samples.

The magnetic field dependence of the Hall resistivity
for Cu«Ti56 and Cu42Zr58 at difFerent temperatures is
reproduced in Fig. 1. As in our previous measure-
ments, ' no nonlinearities in pH(8) are observed over
normal and reverse directions of the magnetic field within
the experimental error. The Hall coefficient is calculated
from least-squares fits of straight lines to the data for nor-
mal and reverse directions of the magnetic field. Averag-
ing over both field directions eliminates the contribution
of the magnetoresistivity due to the imperfect alignment
of the Hall probes. The sign of RH is positive, but the or-
der of magnitude is characteristic for metals with charge
carrier densities of 10 cm

The temperature dependence of the Hall coeScient RH
is shown in Figs. 2 and 3. RH decreases with increasing
temperature for samples prepared by melt spinning as
we11 as by sputtering. The relative change of RH between
10 and 77 K amounts to about 2%. Results for RH(T)
with a lower resolution are reproduced for Cu4, Ti59,
Cu~oTi, o, Cu39Zr6&, and Cuz&Zr75 in Fig. 2. Very accurate
measurements could be performed for Cu44T~~6, Cu42Zr58,
and Cu2sZr7z (Fig. 3). For these alloys the Hall voltage
was also measured as a function of temperature at con-
stant magnetic field. In the latter case, the Hall
coefticient is obtained by averaging measurement for nor-
mal and reverse directions of 8. 'With this method, more
data points and a better resolution of the temperature
dependence are attainable. The absolute values of RB
agree with previous results, " ' the temperature depen-
dence is beyond the resolution quoted by other au-
thors. "

Measurements taken after annealing a Cu4& Ti59 sample
for 12 h at 468 K in 99.998%-pure Ar showed no
significant change in RH(T) (Fig. 2). The T dependence
can be described by a T' law below about 25 K,
whereas at higher temperatures RH decreases more rap-
idly. These findings have to be discussed on the same
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FIG. 2. Temperature dependence of the Hall constant 8& for
amorphous Cu4& Ti59 (see text for annealing procedure), Cu5oTi50,
Cu39Z16&, and Cu&'5Zr75 The dashed lines correspond to the
correction due to electron-electron interactions as expected
from the conductivity. (See also Table I.)

footing as the positive sign of R~. Because of
RH =o «Icr 8, the quantity RH Ip~~ should be equal to
cr /8 within the same approximation .Therefore, we
have plotted RH divided by the square of the normalized
resistance (4.2 K) for constant fields in the insets of Fig.
3. Above about 25 K o increases with rising tempera-
ture. Thus, the temperature dependence of RH is not
only due to that of o . The measured resistance which
has been used for the calculation of 0.„~ contains all the
contributions to the temperature dependence. In the case
of Cu~4Ti56, o.„„ is approximately constant in just that
temperature range, where RH —T' is observed. This
behavior is predicted by leading-order perturbation
theory for the electron-electron interaction. The varia-
tion of roughly 1% between 4 and 25 K is about twice as
large as the T dependence measured by Bergmann in
two-dimensional disordered Au films, ' which was also
explained by the Coulomb anomaly.

The Hall constant is shown as a function of the Cu
concentration for Cu 7r& and Cu Ti& in Fig. 4. For
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denote results from the magnetic field dependence of the Hall resistivity at constant temperature. The other data were taken by vary-

ing the temperature at constant magnetic field (,6 T; ====, 3 T). The T' dependence is indicated by straight lines. Insets
show the normalized transverse conductivity o.

~ obtained from RH and the conductivity at zero field. The conductivity o.(4.2) at 4.2
K is about 5X10 0, ' m



DISORDER AND DENSITY-OF-STATES EFFECTS ON THE. . . 3585

Ctt~Zr72

~0
~4

~0

~1
~0%

~~
~~

~O

7.00- ~B*STesla

~~+~~~'"
~8*0

6.90'

T
1/2

( K I/2)

FIG. 3. (Continued).

both systems RH is positive in the transition-metal-rich
region and depends only weakly on concentration. RH
becomes less positive with increasing Cu concentration
and changes sign at about 80 at. % Cu. In order to dis-
cuss a possible relation of the sign of the Hall coe%cient
with the density of states, we will consider experimental
values for N(e). Measurements of this quantity by the
ultraviolet-photoemission-spectroscopy (UPS) method
have been published by Oelhafen et al. According to
them N(e) of the transition-metal alloys is dominated by
the d bands with maxima at the Fermi energy EF. The
spectra for the alloys are not merely a superposition of
those of the metals, but exhibit a characteristic splitting
into 'two maxima. It follows from the concentration
dependence that the peak at higher binding energy is due
to the Cu 3d states, whereas the peak at the Fermi energy
e/; is due to Zr 4d and Ti 3d states, respectively. For

EF, N(c. ) is increasing with energy, i.e., dN/de) 0.
Recent bremsstrahlung isochromat spectra by Dutzi
et al. show that dN/de~0 also for E) e/; in Cu6pTi4p
and Cu3pT17p. N(cF) can be determined independently
from the electronic part of the specific heat. Measure-
ments by Samwer and v. Loehneysen as well as Moody
and Ng show that N(EF) is decreasing roughly linearly
with increasing Cu concentration. Hence, there is no
change of sign in dN/d e at 70—80 at. % Cu.

Over a wide concentration range the CuZr and the
CuTi glasses show a positive sign of the Hall coefficient.
Because of the isotropic amorphous structure the "Fermi
surface" should have spherical symmetry. It has been
proposed' that the sign of the Hall constant in some me-
tallic glasses and amorphous iron arises from the slope in

the dispersion relation' at the Fermi surface. This idea
is based on an earlier work by Jan derived from the
Boltzmann equation. If a dispersion relation E(k) can be
defined, the sign of the Hall e6'ect should be given by the
sign of the group velocity at the Fermi energy
U~=h' 'Bs/8k~k ..

RH=y/ne,
where n is the charge carrier concentration and
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III. A MADEL INCLUDING FINITE-LEVEL-WIDTH
EFFECTS FAR THE HALL EFFECT

Numerical results show that the spectral function has
broad peaks and that it is very similar for liquid and
amorphous alloys. ' ' However, it is not obvious that an
effective dispersion, e.g., by the locus of the maxima, can
still be defined. Due to the finite width of the spectral
function details of the zero-order dispersion average out.
Therefore, we propose a very schematic model for amor-
phous transition metals, which takes the finite lifetime of
the electronic states into account.

Although this model can by no means cover the situa-
tion in a generic amorphous transition alloy, it is able to
explain certain experimental features, such as the correla-
tion between the temperature dependences of the conduc-
tivity o. and the Hall constant R~. This model also
shows that a possible sign change of R& is not necessarily
related with a sign change in dN/de if finite-level-width
effects are taken into account. The efFect of level
broadening is examined in a two-band model with one-
band Hamiltonians for a wide s and a narrow d band.
Both are coupled by a hybridization interaction. Disor-
der is included by using spectral functions with finite
widths. The diagonal and nondiagonal elements of the
conductivity tensor are evaluated in the presence of a
magnetic field applying the Kubo formalism. The free-
electron result is recovered in the quasiparticle limit, i.e.,
with vanishing level broadening.

For simplicity, let us start with a one-band mode1. The
first approximation to the conductivity tensor o., neglect-
ing vertex corrections, will be

o.,„=(e /4rn5) V ' g e'(k)

o, = fdgg, (g)A,„(g, e)
e=eF/A

alld

0 xy f dgg2(g) 1 — A,„(g,E)

X A,„(g,c, )
F

as well as for the density of states:

N(e)=V 'f dago(f)A„(g, E),

where

go(g)=g &(e(k) —g),
k

g, (g)=QE'(k) 5(e(k) —g), (12)

g2(g)=g „&(e(k)—g) .
E'(k)

k
/

The usual electronic quasiparticle limit is recovered for
I —+0.

Next, we generalize these results to a two-band model,
where a coupling (hybridization) between the bands is in-
cluded. In order to model a transition metal we assume a
wide s band and a narrow d band. Since only the situa-
tion at the Fermi level cz will be important, the other d
band at higher binding energies will play no role. The
Hamiltonian is

The Fermi-Dirac distribution function nz(e) is approxi-
mated by the step function, i.e.,

n„(e)=8(e~—e),
since we can assume I &&k&T, where k~ denotes the
Boltzmann constant.

From these assumptions we get

cr, = (e /6vrh)(eB)V H =H'+H" +H' (13)

Xg f den~(e)A, „{k,E)
e'(k)

X [Reo „'(k,e, )] .
Bc

(6)

where H' and H" are one-band Hamiltonians. The hy-
bridization interaction H' " couples the bands. For the
moment we disregard all interactions in the single-band
parts. The Hamiltonian then reads

Here, n~(E) denotes the Fermi-Dirac distribution func-
tion, e the electronic charge, 8 the magnetic field, fi
Planck's constant divided by 2m, and V the volume of the
system. A,„(k,s) describes the electronic spectral func-
tion, averaged over the atomic configuration, and 6,",' is
the retarded electronic Green's function. These equa-
tions show how the special electronic structure, con-
tained in A „and 6,"„',enter the transport properties.

For simplicity, we choose a special electronic spectral
function, containing a level broadening I:

A,„(k,e) = 2I
(e —g') +I'

H = y E, (k)~sk&&ks~+y e { k)~ dk&&kd~

+ —,
' y ~sk & V'„„"(kd(+'C. C.

'

k, k'
(13a)

+ —,'(V~ Jsk&(kdi+c. c. )] . (13b)

We diagonalize H and obtain new bands e+(k) and
(k),

Here c.c. means the complex conjugate. Separating the
A:-diagonal term we have

y [e,(k)~sk&(k ~+e„(k)~dk&(kd~
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a =g [s+(k)l+&&(+kI+e (k)/ —k&( —kI] (14a)

s+= —,'(e, +ed+ ,' V—Jt) R„„b(c)

/)
/

/
N„yb (s)

+ ] [( 2 2 )2+ V2 (s +s )2]1/2 (14b)
4-

Cf ~ —.

V~ denotes the constant-hybridization matrix element.
The remaining nondiagonal k contributions can be in-
cluded in the scattering terms, which give the finite-level
broadening. Equations (9)—(11), suitably modified for
two bands, can now be evaluated a1ternatively with the
unhybridized or hybridized states E, (k), sd(k) and
E+(k), s (k), respectively.

The unhybridized bands E, (k) and ed(k) are given by
the tight-binding-type expressions appropriate for amor-
phous systems:

e, (k)-1—sinak
Qk

AdEd(k)-so+ cos—', ak .

In the following, all energies are measured in units of the
s-band width 6„ i.e., 4, =1. The momentum is mea-
sured in arbitrary units and a cutoff at k =1 is intro-
duced. The hybridization interaction V& is of the order
of the d-band width 5d. The main features of our results
do not depend drastically on the cutoff; because the cross-
ing of the bands is far away from the band edge. We
choose a d band of negative slope to assure the possibility
of a positive Hall constant. This model provides a tool
simple enough to gain insight into the influence of the
finite level width. Representing the d electrons by a sin-
gle band is not a serious limitation, because usually only
one hybridizes with the s band. For the unhybridized
bands we assume a constant broadening I, and I d for
the s and d band, respectively. For the hybridized bands
a linear combination of I, and I d is used so that at the
band edges the broadening is of s or d type. The d band
is weighted by a factor of 3 relative to the s band. This
corresponds to six d electrons and two s electrons. For
hybridized states we assume equal population. All of
these specifications do not change the qualitative
features. In Fig. 5 both the Hall constant and the density
of states (DOS) are shown for Vtt =b,d, I', =5, /10, and
I'd =hd /10, which might be a realistic set of parameters
for an amorphous metal. The positive peak resemb1es
very closely what one would expect from an S-shaped
dispersion as proposed by Weir et a/. ' In an extension
of that work Mor'gan et al. ' and Nguyen-Manh et al.
find that an S-shaped dispersion curve of the electrons
and s-d hybridization both lead to a negative slope in the
density of states. However, an S-shaped dispersion is
only obtained for a certain strength of the hybridization.
The positive Hall coef6cient is then explained as being
caused by the negative slope in the density of states. As
is evident from Fig. 5, we do not get such a clear-cut
correlation. An S-shaped dispersion is not seen also,
since g2(g) containing e'(k) can be shown by numerical
calculations to be a1ways positive. In fact, the pro-

Y~= 1.25 hd

r, =a, /l0, t, = a, /lo

0 0.5

FIG. 5. The negative of the Hall constant and the DOS for
hybridized bands calculated with Eqs. (7)—(12) and (14) as a
function of energy. I, , s-band broadening; 1 d, d-band
broadening. 6, =1.0, hd =0.2, and V~ =0.05.

nounced structure seen in Fig. 5 can be attributed only to
the finite width of the spectral function according to Eqs.
(10) and (7). Hence, we encounter the situation where the
weighting factor in Eq. (10) determines the sign of cr„~.
This is a surprising outcome, which was not realized be-
fore.

The Hall constant becomes positive if the Fermi energy
is located in the d band. At its edges it gets negative
again. This is a behavior previously attributed to an S-
shaped deformation of the s band, due to hybridization.
We do not observe a direct corre1ation of the DOS and
the sign of the Hall constant (Fig. 5). The general shift of
pronounced structures in the DOS and HaB constant is
explained by the fact that the DOS is essentially propor-
tional to s'(k) ' [Eqs. (11) and (12)] and the Hall con-
stant to e'(k) [Eqs. (10) and (12)]. This gives for the
DOS a pronounced peak at the bottom of the d band and
for the Hall constant a dip located somewhere in the rnid-
dle of the d band.

Although the positive sign of R& can be attributed to
the finite width of the spectral function, a quantitative
analysis cannot be made using the simple approach out-
lined above. A different approximation would be a
direct evaluation of the spectral function for an amor-
phous alloy, extending calculations for a one-component
amorphous system by Morgan et al. ' and Bose et al. '

Taking into account the electron-phonon interaction in
the spectra1 function seems to be of some importance
since this gives a temperature-dependent contribution.
Alternative explanations have been put forward by
Movaghar and by Hoshino. However, sig.ce they ei-
ther are not in agreement with experiment or rely on the
existence of electrons and holes, we will not discuss them
here.

In Fig. 6 the Hall coefFicient is plotted as a function of
the resistivity for some metallic glasses. There is no
correlation between an anomalous sign and a high resis-
tivity. In the metallic regime, positive Hall coe%cients
have only been observed vari glasses with transition metals.
On the other hand, Rtt is negative in high-resistivity al-
loys like CaAl. ' These findings suggest that d elec-
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FIG. 6. The Hall coefficient RH as a function of the resistivi-
ty p for some amorphous alloys V, PdSi (Ref. 47); W, LaGa; A,
LaA1 (Ref. 48); 0, CaA1; ~, CaA1 (Ref. 37); I, MgCu (Ref. 49);
4, MgZn; 0, CuZr; 0, NiZr;, CuTi. 'When no reference is
indicated, the data are taken from Ref. 11.

trons are relevant for the sign of RH, but p is influenced
by both d electrons and disorder. In this sense we have
neglected all two-particle correlations for the sign of the
Hall coefficient and emphasized the aspect of short-range
order by calculating the defect-averaged one-particle
correlation functions.

IV. THE TEMPERATURE DEPENDENCE
OF THE HALI. COEFFICIENT

A. Preliminary remarks

The sign of the Hall coefficient in amorphous
transition-metal alloys has been discussed with the energy
dependence of the density of states and finite-level-width
effects. A finite lifetime of the electronic states means
that the density of states is modified by the nonvanishing
imaginary part of the self-energy X. This quantity is tem-
perature dependent in the presence of the electron-
phonon interaction and can cause a weakly temperature-
dependent Hall constant. Another contribution is due to
the temperature dependence of the Fermi energy. The
inhuence of the self-energy can be described by a
broadening of the spectral function and will be discussed.

Prange and Kadanoff have shown that many-body
effects due to the electron-phonon interaction cancel in
the dc conductivity as calculated with the Boltzmann
equation. The same applies for the electronic part of the
thermal conductivity and the galvanomagnetic transport
coefficients. Experimentally, no corrections due to renor-
malization (e.g., for the effective mass) could be observed
in the temperature dependence of RH for amorphous Bi,
Pb, and Ga films. On the other hand, the density of
states changes between 4 and 30 K by a certain percen-
tage due to the renormalization. Thus, deviations from
such a behavior would be consistent with corrections not
contained in the Boltzmann equation, for instance due to
disorder or electron-electron interaction.

As shown in Figs. 2 and 3 there is a non-negligible tern-
perature dependence of the Hall effect, independent of
the preparation method. Thermal expansion would result
in a positive temperature coefficient RH dRH ldT of RH

The temperature coefficient observed, however, has the
opposite sign. We exclude magnetic effects, since the
magnetic field dependence of the Hall resistivity is linear
and no peculiarities could be detected in the thermo-
power. "' The results of the annealing experiment per-
formed on Cu4, Ti59 and the temperature dependence of
the resistance rule out spurious effects due to crystalliza-
tion. We have discussed possible systematic errors to the
temperature dependence in detail in Ref. 14.

In a study of Hall effect of noncrystalline ZrCu films,
von Minnigerode and Boettjer find that the quantity R&
of unannealed Zr-rich films depends only weakly on tem-
perature. Within the limited accuracy of their experi-
ments the variation of R& with temperature is always
linear between 4 and 280 K. Both the values of RH and
its temperature coefficient, RH 'dRHldT, change with
heat treatment performed 50 K below the crystallization
temperature. We do not observe such a significant
change of the temperature dependence with annealing.
However, our heat treatment was done at much lower
temperature (T„=468 K). In isothermal annealing ex-
periments we found that 50 K below the crystallization
temperature ( T =700 K) is too high a temperature to ex-
clude crystallization effects.

B. Thermal broadening of the spectral function

As has been shown in Sec. III, the sign of the Hall
coefficient can be explained with d states in the DOS and
a finite spread of the spectral function due to strong
scattering. Such a spread depends on temperature in gen-
eral, i.e., it is due to the electron-phonon contribution to
the self-energy X. To explain the experimental results the
absolute magnitude of R& has to decrease with increasing
temperature, if the imaginary part of X exhibits a positive
temperature coefficient. The relative variation of the
Hall constant is a factor of 3—5 larger than that of the
conductivity, at least for temperatures above 30 K (see
Figs. 2 and 3). We would like to discuss this regime first.

For a binary alloy with substitutional disorder, Chen,
Weisz, and Sher performed calculations in the coherent
potential approximation (CPA) taking into account an
electron-phonon coupling but neglecting vertex correc-
tions. The temperature dependence of X results in a
temperature-dependent DOS and conductivity. The de-
tails of the alloy are of some importance. Depending on
concentration, strength of the scattering potential, and
the position of the Fermi energy the authors obtain posi-
tive or negative temperature coefficients for the conduc-
tivity. Now, we can schematically account for the effect
of a temperature-dependent self-energy X produced by an
increasing width of the spectral function. We neglect a
temperature dependence in the position of the Fermi en-
ergy. The DOS, conductivity, and the Hall constant cal-
culated with Eqs. (9)—(11) for various widths of the spec-
tral function are plotted in Fig. 7. The variation of about
10% in the width corresponds to the values of Chen,
Weisz, and Sher. With increasing I, i.e., increasing
temperature, the DOS is increasing at the center and de-
creasing at the band edges. Depending on the position of
the Fermi energy, o. is increasing or decreasing with I .



DISORDER AND DENSITY-OF-STATES EFFECTS ON THE. . .

0.5

CJ 0-
CL

'0~x d/~5
--"-"-

1 o

0

VH= 1.375 h~ aF lb~
0.75
0,775

I

0 5 e/~~ 1.0625 1.125 10'- d/4 d

cl l0

LL

4k

0-
0 Q. S c/h ~

J5
CJ

pc
X

O

VH = 1.25 $~ grig
075
0.775

4 a

50-
1.0625 1.125 10 f ~ d/h~ d

L
C$

X

O
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o.„„asa function of the width I of the spectral function (see
text). For other specifications, see Fig. 7.
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gitudinal conductivity cr, calculated with the model presented
in Sec. III. 6, and Ad denote the s- and d-band width, respec-
tively. V~ is the hybridization energy. The broadening I is as-
sumed to be proportional to the temperature.

The Hall coe%cient is decreasing with T in the energy
range where the sign is positive. X(sF ), o, and RII are
shown in Fig. 8 as a function of I -T for fixed energy.
cz was chosen in the range where R~ &0. The tempera-
ture dependence is rather sensitive to the position of cz.
The resulting temperature coel.cient of the conductivity
is positive and thus consistent with the experimental
data. Hence, we can explain simultaneously the positive
sign and the T dependence of R~ as well as the T depen-
dence of the conductivity with the same model.

C. Electron-electron interaction eÃects at low temperatures

The Coulomb anomaly, i.e., modifications of the elec-
tronic Fermi liquid by impurities, was observed in two-
dimensional disordered systems ' after theoretical predic-
tions. Such anomalies have been detected in the con-
ductivity and the Hall effect only at temperatures below
about 30 K. Perturbation theories give the re1ative
change of the Hall constant in a weakly disordered sys-
tem as a function of temperature. They ignore the abso-
lute value and the sign of R~.

The result of Alt'shuler et al. for the fractional
change of RH(T) is

RH(0) —R~( T)

RH(0)

where I" is a screening parameter and D denotes the
electronic diffusion constant. The other symbols have the
usual meaning. In Table I the parameters determined
from the experimental results (T &25 K) are summa-
rized, assuming

RH( T) =RH(0)+hRH T'~

Here, R~ is defined by Eqs. (1) and (2). This interpreta-
tion relies on the fact that trivial phonon effects, as dis-
cussed in Sec. IV A, have been frozen out in the tempera-
ture range considered. With the help of the conductivity
the quantity F was found to lie between 0 and I. The
electronic diffusivity D was estimated from the resistivity
p and the bare density of states N(EF) by using the Ein-
stein relation,

D =[e p(0)X(E~)] (18)

F deduced in this way is consistent with the magnetic
field dependence and the temperature dependence of the
conductivity at low temperatures. According to
Alt'shuler et al. the effect of electron-electron interaction
should be given by

5RH(T) 5o,„(T)
2

R~(0) cr„(0)
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TABLE I. Parameters determined from a comparison of Eqs. {18)and {19)to the temperature depen-
dence of the Hall coefficient below 25 K. The electronic diffusion constant D was estimated from the
co'nductivity and the density of states as described in the text [Eq. (18)]. The quantity bRH is defined to
be 6R~ =BORH T' =RII(T)—RH{0).

Alloy
R (0)

[10 " m'(As) ']
p(0)

[10 ' K ' 'm'(As ) '] (10 Qm)
D

{10 m s

«.4»~6
Cu42Zr58

Cu28Zr72

13.28
8.2
7.15

—1.91
—1.72
—1.56

1.94
1.72
1.61

3.1

1.0
1.3

0.22
0.26

=0.09

Therefore, as far as this contribution is concerned, due to
Eq. (1) o„must be constant in the T range, where the
T'~ behavior is observed. It can be seen in Fig. 3 (insets)
that this prediction is verified for the nonsuperconducting
samples. The situation is more complicated for the CuZr
glasses. Here, superconducting Auctuations interfere.
Quenching them with a magnetic field introduces addi-
tional contributions from magnetoresistivity. However,
it is clear from Fig. 3 that the curves labeled 0 and 6 T
are not inconsistent with the anticipated behavior:
0 zy const. For a certain field 0(8 (6 T superconduct-
ing fluctuation effects and magnetoconductivity effects
may cancel to give a horizontal line.

We may test the predictions made by Eq. (19) for
the very precise data obtained in the case Cu44Ti56.
From Table I we obtain —b,R~/R~(0)=1. 44X10
K ' . Using for the Coulomb correction to the conduc-
tivity 5o (T)=aT', the prefactor 343
0 'm 'K '~, and o.(0)=5.2X10 0 'm ' (Refs. 7
and 9), we obtain a/cr(0)=0. 66X10 K '~, and thus
[5RH/R~(0)]/[6o /o (0)]= —2. 19. On the other
hand, assuming the validity of Eq. (19), we get, with
a =472 and 309 0 ' m ' K '~ (Refs. 7 and 9),
o(0)=5.1X10 0 'in ', as well as a/cr(0)=0. 93 and
0.61X10 K '~, the results —bRH/RH(0)=1. 86 and
1.22X 10 K ' for Cu4)Ti59 and Cu50Ti~o, respective-
ly. Corresponding lines with slopes of —2.67 and—1.65X10 ' m (As) 'K ' are indicated in Fig. 2.
The agreement is quite good for temperatures T &25 K.
However, at higher temperatures we observe an addition-
al temperature dependence which is different from the
one predicted by the interaction efFect (see discussion in
Sec. IV B).

The present analysis invalidates an earlier interpreta-
tion given by Gallagher et al. These authors argue that
the electron-electron interaction should lead to a
significant temperature dependence of R~ even above 200
K. In our opinion such a contribution, which, in addi-
tion, is unable to account for the sign of RH in general, is
only detectable at low temperatures. It is in this regime
that the phase coherence time of the electronic wave
function is suSciently long to allow for significant quan-
tum corrections. Very recently, additional support was
reported for contributions due to electron-electron in-
teraction effects in quasi-two-dimensional and thin-
film CuTi samples and in amorphous Ag-Cu-Ge al-
loys. The overall temperature dependence of the resis-
tivity, which seems to be larger in the thin-film

samples —also showing higher resistivities —is yet to be
explored in more detail.

V. CONCLUSIONS

We have presented precise Hall-effect measurements
on the transition-metal glasses Cu Ti&00 and

Cu„Zr&00 „. In the transition-metal-rich concentration
range the Hall coefFicient RH exhibits a positive sign and

RH is weakly decreasing with increasing temperature. To
discuss theoretically finite-width effects in the electron
spectral function, we neglected vertex corrections alto-
gether and replaced the exact configuration-dependent
propagators by averaged ones. Therefore, it was possible
to express the elements of the conductivity tensor
through the electrons spectral function. For free elec-
trons the Hall coefFicient in the limit of zero width is
RH=(en) ' where n is the electronic density. We stud-
ied the Hall constant for arbitrary width I in a two-band
model. An amorphous transition metal was modeled as-
suming a Hat d band at the Fermi surface and a wide s
band. Hybridization between the bands was taken into
account. As a main result for the hybridized bands we
derive a positive Hall constant attributed to the finite
width of the electron's spectral function.

Within this model thermal disorder can lead to the ob-
served overall temperature dependence in the transport
properties discussed. In addition, at low temperatures
(T(25 K) a T'~ law is consistent with additional per-
turbative corrections due to electron-electron interaction.
This effect is related to the quantum corrections to the
conductivity. The origin of the positive sign of R~ in
metallic glass with d electrons can be understood by
studying only a one-particle property, namely the electric
spectral function. Here, broadening by static and
thermal disorder and hybridization of s and d electrons
proves to be important.
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