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Corrections to the continuum approximation are calculated for the first-relaxed-excited-state en-
ergy of the free and bound large polarons. Two types of corrections are considered. First, a Debye
cutoA' J is made to eliminate phonons with wavelengths smaller than the unit cell. In addition,
corrections to the efFective-mass approximation are obtained up to second order in a parameter that
measures the unit-cell dimension relative to the polaron quantum radius. %ith use of the Green s-
function formalism of Matz and Burkey, an estimate of the first-relaxed-excited-state energy is ob-
tained in the Pock approximation. A Gaussian variational spectrum (parametrized by P) is used in
order to approximate the polaron wave function. In weak coupling, the corrections are found to be
positive and small; they decrease the self-energy of the polaron as well as its binding energy to the
defect. In strong coupling, the corrections become larger and two limits are interesting: L »P and
L &(P, with polaron radius larger or smaller than the dimension of the unit cell, respectively. In
the first case, the corrections remain small and have the same form as in the weak-coupling limit. In
the large-P limit, however, the continuum approximation is no longer adequate and the corrections
indicate that another approach should be used. Our numerical calculations confirm these analytic
asymptotic results. Nevertheless, for real polar crystals, the Frohlich Hamiltonian is quite good for
evaluating the first-relaxed-excited-state energy. The corrections are much smaller than those ob-
tained for the ground-state energy.

I. INTRDDUCTIQN

The presence of an electron in a polar crystal induces a
deformation of the lattice in its neighborhood. This dis-
tortiori forms a potential well in which the electron is
trapped for those crystals having strong electron-phonon
interaction. The polaron (the electron with its associated
lattice distortion) has an internal structure when the po-
tential well is deep enough to sustain at least one excited
state. ' When an infrared transition from the ground state
to the first excited state occurs, the lattice distortion stays
in the polaron ground-state configuration, the lattice re-
laxation being too slow. This is a so-called Franck-
Condon transition. After the transition, the crystal re-
laxes to a new configuration to accomodate the electron
in the first excited state. This 1eads to a relaxed excited
state. '

Calcu)ations of the first-relaxed-excited-state energy of
the free polaron have been made in the strong-coupling
limit using the adiabatic approximation and canonical
transformations. ' ' The Feynman-Hellwarth-Iddings-
Platzman (FHIP) approximation and Green's functions
have also been used and are valid for all coupling
strengths for which such an excited state exists. A11 these
calculations were performed in the continuum approxi-
mation. The latter consists in treating the crystal as a
continuous deformable medium, the band structure at
low energy being approximated by a quadratic isotropic
energy characterized by an effective mass and the indivi-
dual charges being approximated by dielectric constants.

When a charged defect is added to the system, the po-

laron may become bound to it. In that case the electron
"sees" a potential well which is deeper, because the
charge of the defect also induces a distortion of the lat-
tice. Calculations of the first-relaxed-excited-state energy
of the bound polaron have been made in weak electron-
phonon coupling, using a variational approach and per-
turbation theory. ' In strong coupling, the adiabatic ap-
proximation has been used. ' Final1y, a unitary transfor-
mation approach" and a Green's-function approach'
have been developed which are valid for any coupling
strength. All these calculations were also performed in
the continuum approximation.

Recently, corrections to the continuum approximation
for the ground-state energy of the free polaron' and of
the bound polaron' have been considered. These correc-
tions include a Debye cutoff to eliminate phonons with
wavelength smaller than the unit cell. They also include
corrections to the efFective-mass approximation up to or-
der a, a being a parameter that measures the unit-cell di-
mension relative to the polaron quantum radius. The
corrections were found to be more important in the case
of the ground-state energy of the bound polaron than for
the free polaron since the wave function is more localized
in that case and since the screening of the defect by pho-
nons is strongly modified if the continuum approximation
is relaxed. These corrections are expected to be smaller
for an excited state since the extent of the wave function
is larger. In this paper we present calculations of the
first-relaxed-excited-state energies of the free and of the
bound polarons, including the same type of corrections as
for the ground-state energy. They are calculated in the
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Fock approximation using the Green's-function formal-
ism of Matz and Burkey' which is valid for all coupling
strengths, the Gaussian-model spectrum being used as
variational spectrum.

The organization of the paper is as follows: In Sec II,
analytical results for the first-relaxed-excited-state energy
of the free polaron are obtained, including asymptotic
limits. Section III is devoted to the analytical results for
the first-relaxed-excited-state energy of the bound pola-
ron. In Sec. IV, numerical results are presented for both
cases. The corrections for chosen polar crystals are also
given. The last section consists in a discussion of the re-
sults and in our conclusion relative to the validity of the
continuum approximation for the first-relaxed-excited-
state energy of the large polaron.

II. THE FRKK POLARON
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In this section, analytical expressions for the first-
relaxed-excited-state energy of the free polaron are
presented. They include corrections to the continuum
approximation. Our starting point is the free-polaron
Hamiltonian, presented below, with these corrections in-
cluded. It has been derived in a previous paper, ' in the
tight-binding approximation, for a cubic structure with
inversion symmetry. It is obtained using the kq represen-
tation of Zak' and includes two types of correction to
the continuum approximation. First, a spherical Debye
cutoff, 2 =n/a*, is imposed to eliminate phonons with
wavelength smaller than the lattice parameter a *.
Secondly, corrections to the effective-mass approximation
(that we called Zak corrections) are included, up to
second order in a parameter a that measures the unit-cell
dimension relative to the polaron quantum radius. That
Hamiltonian, written in dimensionless units
(2m ' =ficoo=R= 1) is given by the following expression:

H=V + g b b + g (B,e"'b +B'e "b )

III L, ItI L.
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In these equations, r and m* are, respectively, the posi-
tion and the effective band mass of the electron, and coo is
the long-wavelength longitudinal-optical- (LO-) phonon
frequency. b& and b& are the second quantization opera-
tors for phonons of wave vector l. a represents the
electron-phonon coupling constant and 'Tp the polaron
quantum radius which is the natural unit of length in the
problem. eo and e are the static and the high-frequency
dielectric constants, respectively, and 0 stands for the
system volume. The parameter a is the root mean square
of the electron-orbit radius for the atomic level leading to
the conduction band (divided by &6) when the tight-
binding approximation is made.

From this Hamiltonian, an upper bound to the
ground-state energy was previously calculated' using the
Green's-function formalism of Matz and Burkey. ' This
approximation, in the continuum limit, leads to a transi-
tion of the free polaron to a self-trapped polaron for
+=6. This is usually considered as an artifact of the ap-
proximation. ' However, for the ground-state energy, the
numerical values of the energies and their asymptotic be-
havior correspond well to those of other methods. Here,
the same approach is used to obtain an estimate of the
first-relaxed-excited-state energy E& at zero temperature.
This method has been previously applied to the calcula-
tion of the first-relaxed-excited-state energy (E&) of the
free polaron in the continuum limit. It allows one to ob-
tain an estimate of E, for any value of e for which such a
state exists. It cannot be shown, however, that the ener-
gy obtained is an upper bound to E, , even if it coincides
with vanational results in strong coupling. Also, as dis-
cussed in Ref. 6, these energies are obtained for an
infinite-lifetime level. This approximation is good in
strong coupling' but becomes weaker for lower values of
a (a & 3), when the internal structure of the polaron just
appears. Using this formalism, we write the energy E, in
a form valid for all electron-phonon coupling strengths
(see Ref. 6):

P„(r)P„'(r, )
E, = —f P*, (r)V,&&(r)d r+ g f d r f d r, ~B&~ exp[il (r —r, )]
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where the [P„(r)j form a complete variational model
spectrum, the c,„'s being its eigenvalues. Here the
Gaussian-model spectrum will be used with variational
parameter f3 The model Ham. iltonian is thus

H =P +P'r

The first relaxed excited state will be approximated by a
2p state and P, and c, , will refer, in Eq. (6), to a Gaussian
2p state. A similar approach was previously used in the
case of the continuum approximation. In the present
case, in contrast to the procedure followed in Ref. 6, the
summation on I is limited to ~l ~

(L and the electron-
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phonon interaction potential VI is renormalized to BI.
Note the presence of a singularity in Eq. (6) when
E, —1 =so (when 2p =1). This singularity is present be-
cause the first relaxed excited state was assumed of
infinite lifetime. In fact it is the case for asymptotic
strong coupling. In intermediate coupling, the first re-
laxed excited state can have a short lifetime and its ener-

gy is then less accurate. In weak coupling, no minimum
is obtained with a negative energy, ' a relaxed excited state
then does not exist.

Equation (6) with the Gaussian spectrum leads to

E2 =—', P +T(t'+T2t', (8)

where
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This energy (E2 ) has to be minimized with respect to p. In these equations, (/t(x ) is the error function. In Eq. (8), the
first term is the kinetic energy of the electron. T, corresponds to the Fock term and includes the Debye cutoff correc-
tion. Tz represents the Zak correction, in a, associated with the Fock approximation.

When a =0 and L ~ tto, Eqs. (8)—(10) reduce to
1/2 ' 1/2

5P 2 aP ~ (2p& 11t 6 5z 2 a/3 1
2p z ~ 6 2p' —1

which is the result obtained in Ref. 6 in the continuum
approximation.

For asymptotic limits the minimization of Eq. (8) can
be effected analytically. First, when a~O, P~O and the
resulting energy is in fact the ground-state energy in
weak coupling:

2n 4a (xL
m.L m

(14)
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This result is obtained for large values of L. No other
minimum of negative energy can be found for p) 1/&2.
As a consequence, no excited state exists in weak cou-
pling.

When a is large, the energy is minimized for a large
value of /3. If p ((L, the minimization gives

and the first-relaxed-excited-state energy reduces to

121m 2a 4a aL
720m mL

(16)

The first term is the continuum-approximation result and
it can be found from the adiabatic approximation. The
second term is the Debye-cutoff correction and the last
term is the Zak correction. Both corrections are positive;
they reduce the self-energy of the polaron. They are
asymptotically the same, to that order, as those found for
the ground state (see Ref. 13) in strong coupling as well
as in weak coupling. Note that these corrections are
small and the strong-coupling continuum polaron behav-
ior in a is the dominant contribution. For p=L, the
cor'rections for the first-relaxed-excited-state energy
would be smaller than those of the ground state, as will
be seen in the next section.

When a is large but P))L, Eq. (8) minimizes to
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III. THE BOUND POLARON

In this section, analytical results for the first-relaxed-
excited-state energy of the bound polaron are presented.
Our starting point is the bound-polaron Hamiltonian,
presented below, including corrections to the continuum
approximation, as obtained in a previous paper. ' It con-
tains terms describing an electron of charge —e, a defect
of effective charge qe, and a phonon field, all interacting
together. The static distortion of the lattice induced by
the defect is taken into account by a unitary transforma-
tion which is an adaptation of that of Platzman. ' This
Hamiltonian, written in dimensionless units (2m'=%coo
=A'=1), is the following (it has been obtained under the
same conditions as in Sec. II):

H~ =Ho+HJ,
where

(19)

This result is very similar to that for the ground-state en-
ergy. We obtain here the same value of P and the energy
differs only by an additional P term. As a consequence,
the ground-state and the first-relaxed-excited-state ener-
gies approach each other in this regime (as opposed to
the L ))P limit), their separation in energy being propor-
tional to Va. The quadratic dependence of the energy on
u disappears and is replaced by a linear dependence.
This indicates that the continuum approximation is not
applicable in these conditions. In fact, in strong cou-
pling, 1//3 is proportional to the polaron wave-function
extension and P »L means that the polaron is localized
in a region smaller than the unit cell. The small-polaron
theory constitutes a better approach in this limit.

cq i /2
2

2&~o~oe
(22)
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Note that limJ „b,L(r)=5(r). ' In these equations %„
is the dimensionless Rydberg without screening of the de-
fect and Si(x) denotes the sine integral. We also define

the Rydberg of the defect as screened by the
electron-phonon interaction. It is the same as A, calcu-
lated with eo instead of e . The first two terms of Ho
[Eq. (20)] are the usual free-particle energies. The third
term represents the Coulombic potential energy of the
electron in the field of the screened defect, the Debye
cutoff reducing the screening induced by the LO pho-
nons. The last term in Eq. (20) constitutes the correc-
tions to the effective-mass approximation associated with
the screened Coulombic energy. H~ is the electron-
phonon interaction term including the two types of
corrections. As stated in Ref. 14, this Hamiltonian
differs significantly from that of Platzman, ' principally
due to the cutoff which reduces the screening of the de-
fect.

From the Hamiltonian (19) an estimate of the first-
relaxed-excited-state energy can be obtained using the
Careen's-function formalism of Matz and Burkey in the
Fock approximation. ' Note that for the bound polaron,
in contrast to the free-polaron case, no transition occurs
to a self-trapped state [discussion preceding Eq. (6)]. The
resulting energy for the bound polaron in a 2p state is

P„(r)P„*(r,)
E~ = —f Pz (r)Hog& (r)d r+ g f d r f d r, ~B&~ exp[il (r —r, )]
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This expression is similar to that obtained for the free po-
laron, Eq. (6). The only difference is the presence, in the
first term of Ho (instead of —V', ) which includes the in-
teraction with the defect. It is also similar to the expres-
sion obtained for the excited states of the bound polaron
in Ref. 12, the difference being the corrections to the con-
tinuum approximation in the present case. We will use
the same Gaussian variational model spectrum for the
bound polaron as for the free polaron. This is not the
best spectrum to use when a &&Ro, but in the case of
a ))%o the Gaussian spectrum gives the lowest energies.

Using a 2p excited state of the model spectrum, we ob-
tain the following energy for the bound polaron:

5P 8gP i/p L
2 3v'~ " 2P

'V
e

—L /4P (1 2a2L) +Z2P+7 2P (25)

This expression has to be minimized with respect to P.
The first term represents the kinetic energy of the elec-
tron. The second and the third terms correspond to the
Coulomb energy of the electron on the defect, including
the screening and the associated corrections. The last
two terms are defined by Eqs. (9) and (10) and result
from the Fock approximation with its corrections as ex-
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plained in Sec. II. Note that in Eq. (25), as in Eqs.
(8)—(10), a singularity is present at p= 1/3/2. In the
present case, a minimum for p & 1/3/2 indicates an excit-
ed state of the defect while for p & 1/&2 an excited state
of the polaron-defect complex is obtained. '

From Eq. (25) the continuum-approximation limit is
obtained by imposing a =0 and L ~~:

5p2 SqPW,'/2

2 33/rr vr

11 2p=
60

163/2qz,'/2

11
(32)

and we obtain

where

121$ 133la ag 2a 4a aL
720~ 21600~2 ~L

(33)

In the limit of strong coupling, when a or A is large,
the energy is minimum for a large value of p and two
cases have to be considered: L &)p and L «p. When
L »P, E2 is minimum for

where
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11
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and the resulting energy is

This is the result previously obtained in Ref. 12 in the
continuum approximation. Note that in this reference
the Rydberg is defined using the static dielectric constant
(Ao is the Rydberg of a fully screened defect). The most
important diff'erence between Eq. (25), which contains the
corrections to the continuum approximation, and Eq.
(26), which does not include them, is the reduction of the
screening of the defect by polar LO phonons resulting
from the Debye cutofF.

The minimization of Eq. (25) can be efFected analytical-
ly for asymptotic limits. When a and % are small, the
variational parameter P is small.

22' 2qaRO

720~ 45m

4a ~L 1331a
21600~'
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The first two terms of Eq. (35) are the usual strong-
coupling terms for large a in the continuum approxima-
tion. ' The three other terms are the corrections to the
continuum approximation. These are all positive; they
reduce the self-energy of the polaron and its binding ener-

gy to the defect. For a «Ao, Eq. (33) gives

32q A 22v 2qa+ 2563/2q 3g a%3/2
+

45~ 45vr 675m

Without the corrections, this expression is identical to
that found by Lepine. ' The last two terms of Eq. (33)
are the same as those found for the ground-state energy
of the bound polaron and for the free polaron. For
a &)A~, Eq. (33) reduces to

32q Ao
E2 ——a~-

45m.(1—a /6)

where
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The first two terms are the usual strong-coupling terms
for large Ao with Gaussian wave function in the continu-
um approximation. ' The last term is the leading correc-
tion to the continuum approximation. No polaron
effective-mass behavior is obtained.

The limit L «p corresponds to the case where the po-
laron radius [-2/(3/mP) in strong coupling] is much
smaller than the unit-cell dimension (m/L ). In this case,
we expect our approach to the efFective-mass correction
(the Zak correction) to be inapplicable. ' Nevertheless,
the Debye-cutoff correction can still be applied and the
minimization gives

(31) sqa'„"
(37)

This expression represents a polaron in its ground state,
with a selfenergy of —aE, and an effective mass,
m *'=m*/(1 —a /6), bound to the defect in its first ex-
cited state. The factor 32/45vr in Eq. (29) comes from the
use of the gaussian spectrum instead of the hydrogenic
spectrum which would have given 4. aE and a are the
same as those obtained for the free polaron. '

and

2aL
( 1)

125aL
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32 '~ 3

45m n 64q2+

(38)
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The corrections are now very important. The first term
corresponds to the Coulomb potential energy of an elec-
tron in a 2p state of an unscreened defect (calculated with
a Gaussian wave function); it involves the high-frequency
Rydberg %„. This indicates that the Debye cutoff has
significantly reduced the screening of the defect. Also,
the polaron effective mass does not appear in this expres-
sion. The second term gives the remaining reduced
screening of the defect and of the electron charges. It is
the same as that found for the ground-state energy Eo of
the bound polaron in the same limit. ' As a consequence
of the reduction of the screening when L decreases, the
binding energy to the defect becomes larger. This has the
effect of increasing the difference in energy between Eo
and E2, in contrast to the case of the free polaron in the
same limit. In conclusion, when the cutoff is important
(L ((P), the polaron bound to a defect looks very much
as an electron bound to an unscreened defect. The effects
of the electron-phonon interaction are then rather small,
the short-wavelength phonons being absent. However, as
in this case corrections to the effective-mass approxima-
tion should be important, a small-polaron approach has
to be used instead of a band approach. The continuum
approximation is no longer a good starting point.

-20

-30

WO—

-50

20

15

10

Ez

——-- Devreese et al.

g Ez

——- QE0

~ ~ ~ ~ ~ ~ ~ ~ a E'

10
a

20

IV. NUMERICAL RESULTS

In this section the first-relaxed-excited-state energies
calculated numerically are presented. ' They are obtained
from Eq. (8) for the free polaron and from Eq. (25) for
the bound polaron. To take into account the Zak correc-
tion, we approximate the parameter a, which is defined in
Eq. (5) by

SQ=
L (39)

where S is a geometric factor depending on the crystal
structure. ' It is calculated by assuming ionic radii equal
to half the nearest-neighbor distance. In what follows we
present the energy curves obtained for the free and the
bound polaron. We also discuss application of our results
to polar crystals.

We present, in Figs. 1 and 2, the ground-state energy
Eo and the first-relaxed-excited-state energy E2p of the
free polaron, first, as a function of the electron-phonon
coupling constant a, and, second, as a function of the De-
bye cutoff L. In Fig. 1(a), these energies are presented for
three levels of approximation: E gives the continuurn-
approximation results, E includes the Debye-cutoff
correction calculated for L =10, and E takes into ac-
count both the Debye-cutoff correction, and the Zak
correction (correction to the effective-mass approxima-
tion) calculated for L =10 and S=0.2777 (zinc-blende
structure). We observe that the corrections to the contin-
uum approximation for the first-relaxed-excited-state en-
ergy are smaller than those for the ground-state energy.
This is expected since the first-excited-state wave func-
tion is more delocalized than the ground-state wave func-
tion. Also the corrections are positive; they decrease the
self-energy of the polaron. This behavior can be under-
stood because the cutoff reduces the number of short-

10
a

20

FIG. 1. (a) Ground-state energy Eo and erst-relaxed-excited-
state energy E» of the free polaron as a function of the
electron-phonon coupling constant a. E is the continuum-
approximation result, E is calculated with a Debye cutoff
L =10, and E includes both the Debye-cuto6'(L =10) and the
Zak correction calculated with S=0.2777. (b) Transition ener-

gy LekE E2p Eo as a function of a. AE is calculated in the
continuum approximation, hE includes the effect of the Debye
cutoff with L = 10, and AE takes into account both the
Debye-cuto8' and the Zak correction obtained for L =10 and
5=0.2777. The results of Devreese et al. (Ref. 20) are also
presented.

wavelength phonons interacting with the electron.
In Fig. 1(b), we have plotted the transition energies

(b,E =E2 Eo) as a functio—n of a for the same three lev-
els of approximation. Also we have plotted on this graph
this transition energy as obtained from the Feynman-
Hellworth-Iddings-Platzman (FHIP) approach. ' In the
asymptotic limit of large a' s, our approach and that of
FHIP are expected to converge to the same value. How-
ever, for the intermediate a's (between 5 and 11) for
which the FHIP energies are available, our results for AE
are much lower than those coming from the FHIP ap-
proximation. This discrepancy is difficult to evaluate,
since in both cases, the energies themselves are not varia-
tional even if they have been obtained from variational
methods and since our results are less reliable for smaller
values of a. Note, however, that in this range of a the
corrections to the continuum approximation are very
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small, much smaller than the difference between our re-
sults and those of the FHIP approach.

The effect of the Debye cutoff on the energies E and
F. is presented in Fig. 2. These are calculated for +=20
and S=0.2777. The continuum approximation corre-
sponds to the limit L~~. For this strong-coupling
case, the corrections to the continuum approximation are
important for L smaller than 10. When L, decreases, the
corrections increase rapidly. The decrease of L also in-
duces a reduction of the difference between the ground-
state and the first-relaxed-excited-state energy. This
comes from a reduction of the electron-recoil correlation
due to the cutoff which destroys the strong-coupling be-
havior in a, as can be seen in Eq. (18), which is applic-
able for small L.

The five other figures describe the behavior of the
bound polaron. The ground-state energy Eo, and the
first-relaxed-excited-state energy E2, are plotted as a
function of the Debye cutoff L in Fig. 3. E is calculated
with the Debye-cutoff correction only while E includes,
in addition, the Zak correction (S=0.2777). These
curves are given for a=1 and % =2. The effective
charge of the defect q is fixed to be unity. The presence
of the defect does not significantly change the behavior of
the corrections to the continuum approximation; they are
still positive, and small for L & 10. The excited-state en-

ergy is weH approximated by its weak-coupling asymptot-
ic limit, Eq. (29). This corresponds to a polaron in its
ground state bound to an excited state of the defect. In
this case, the screening of the defect by the phonons has
for effect the renormalization of A to Ro.

In Fig. 4, we plot the same quantities as in Fig. 3, for
strong coupling: a = 10 and A „=150. The arrows indi-
cate the value of L for which L =213, P being the value of
the variational parameter at the minimum energy. This
graph is quite different from the previous figures. In the
present case, the corrections are very important for the
ground state. They become negative for small L, in con-
trast to the behavior manifested in the preceding graphs.
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FIG. 3. Ground-state energy Eo and first-relaxed-excited-
state energy E» of the bound polaron as a function of the De-
bye cutoff L, for a=1, A„=2, and q =1. E is the energy cal-
culated with the Debye-cutoff correction alone, and E includes
both the Debye-cutoff and the Zak correction calculated with
S=0.2777.

For the excited state, the same behavior is obtained but
the corrections are smaller. Note that for L (2P, the
Zak correction is no longer applicable, since it was as-
sumed small from the start. The curve E&~, which takes
into account the Debye cutoff only, can be well approxi-
mated by the strong-coupling asymptotic result, Eq. (38),
for the L (2P region, the slope being 2a(2q —1)/m. . This
region corresponds to the regime where the screening of
the defect by the phonons is reduced due to the app1ica-
tion of an important Debye cutoff which eliminates pho-
nons with wavelength smaller than the polaron radius.
This results in a large increase of the binding energy of
the defect. Note that there is a sharp change in slope for
the curves E2 at the point indicated by the arrow. At
that point, the variational parameter P which minimizes
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FIG. 2. Ground-state energy Eo and first-relaxed-excited-
state energy E» of the free polaron as a function of the Debye
cutoff L, for +=20. E is calculated with the Debye cutoff, and
E includes both the Debye-cutoff and the Zak correction cal-
culated with 5=0.2777.

FIG. 4. Ground-state energy Eo and first-relaxed-excited-
state energy E» of the bound polaron as a function of the De-
bye cutoff L, for +=10, % =150 and q=1. E is the energy
calculated with the Debye-cutoff correction alone, and E in-
cludes both the Debye-cutoff and the Zak correction calculated
with 5=0.2777. The arrows on the curves indicate the values
at which 2P=L.
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the energy jumps from 1.2 for L )4 to 3.6 for L & 4. This
behavior corresponds to an abrupt change in the screen-
ing of the defect; for L ~4, this screening decreases
abruptly. The same behavior occurs for Eo but the tran-
sition is less abrupt and occurs for larger values of L
(L =15). This figure illustrates clearly the fact that the
corrections to the continuum approximation are much
smaller for the excited state than for the ground state, the
electron wave function being less localized.

In Fig. 5, the ground-state energy and the first-
relaxed-excited-state energy of the bound polaron are
presented as a function of the effective charge of the de-
fect q. E gives the continuum-approximation result, E
includes the Debye cutoff with L =10 and E takes into
account the Debye cutoff and the Zak correction calcu-
lated with 5=0.2777. This graph is obtained for a=1
and %„=2, an intermediate-coupling situation with a
polaron in its ground state bound to a defect in its excited
state. The energy E2 is well approximated by Eq. (29).
Relatively small corrections are observed in this regime.
We note that when the defect disappears (q=0), the
first-relaxed-excited-state energy collapses to the ground-
state energy since, in weak coupling, the polaron has no
internal structure.

In Fig. 6, Eo and E2 are plotted as a function of q, for
a=10 and %„=150. E, E, and E have the same
meaning as in the preceding figures. The Debye cutoff is
calculated with L=10, and the Zak correction, with
S=0.2777. These parameters correspond to strong cou-
pling and the arrows indicate the points for which
L =2P. It is clear from this graph that the corrections to
the continuum approximation are much more important
for the ground-state energy than for the first-relaxed-
excited-state energy. This is related to the larger spatial
extension of the first-relaxed-excited-state wave function.
As L )2P for all values of q on the graph, Ez~ can be ap-
proximated by the strong-coupling L ))P limit: Eq. (33).
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FIG. 6. Ground-state energy Eo and first-relaxed-excited-
state energy E» of the bound polaron as a function of the
effective charge of the defect q, for a=10 and %„=150. The
three lower curves give Ep and the three upper curves, which
are superimposed, give E». E is the continuum-
approximation result, E is calculated with a Debye cutoff
L =10, and E includes both the Debye-cutoff (L =10) and the
Zak correction calculated with S=0.2777. The arrows on the
curves indicate the values at which 2P= L.

For the ground state, the major part of the curves are in
the L (2P regime.

In Fig. 7, we present the phase diagram of the bound
polaron in the a —Ac plane. It is calculated for L=5,
and q

= 1, without the Zak correction (the Zak correction
has no significant effect on these curves). For parameters
in the lower left part of the graph, an effective-mass state
of an excited defect is found. In the upper right part of
the graph, an excited state of the polaron-defect complex
is observed. This is to be compared to the behavior in the
continuum approximation which is shown on this graph
by a dashed line. ' The effect of the corrections is to
slightly increase the area of the region of existence of the
effective-mass state.
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FIG. 5. Ground-state energy E& and first-relaxed-excited-
state energy E» of the bound polaron as a function of the
effective charge of the defect q, for a = 1 and %„=2. E is the
continuum-approximation result, E is calculated with a Debye
cutoff L =10, and E includes both the Debye-cutoff (L =10)
and the Zak correction calculated with S=0.2777.

FIG. 7. Phase diagram of the bound polaron in the a —Ao
plane. An effective-mass state exists below the lines. The solid
line is calculated using a Debye cutoff with L =5, without the
Zak correction. The dashed line is obtained without corrections
to the continuum approximation.
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TABLE I. First-relaxed-excited-state energy of the bound polaron in polar crystals. A is the un-

screened electron-defect coupling constant. Ezp Epp and E&~ are the energies calculated in the contin-
uum approximation, using the Debye-cutoff correction and including the Debye-cutoff and Zak correc-
tions, respectively. AE» is the difference E&~

—
E&~ and Eo in the ground-state energy obtained with

the corrections. These results were calculated mostly using the parameters taken from Kartheuser
(Ref. 1, p. 715). We also present E,„~„the transition energy {1s—+2p ) obtained experimentally, as well
as E, , the theoretical results for that transition obtained by Adamowski (Ref. 21).

C

(meV)
2p

(meV)

Ez
(meV)

Ez Ez E EAd

(meV) (cm ') (cm ') (cm ')

GaAs
CdTe
ZnSe
CdS
Tlcl
AgBr
AgC1
CdF2
KC1
RbC1
NaClg
LiFg

0.068
0.316
0.432
0.527
2.56
1.56
1.94
3.19
3.44
3.83
4.86
5.13

0.205
1.14
2.19
1.99
8.74
7.82

11.1
21.26
45.6
54.4
73.4
44. 1

—3.745
—9.412

—21.45
—27.61
—53.96
—19.62
—39.08

—148.6
—175.7
—170.0
—318.9
—413.8

—3.673
—9.219

—20.89
—26.67
—52.24
—18.61
—36.94

—135.0
—169.1
—164.0
—289.4
—375.8

—3.662
—9.192

—20.81
—26.54
—51.26
—18.42
—36.52

—133.1
—167.4
—162.4
—285.1
—365.8

0.083
0.220
0.64
1.07
2.70
1.20
2.56

15.5
8.3
7.6

33.8
48.0

27.57
62.71

180.8
163.5
27.95

303.5
485. 1

1365
2554
2540
5551
5240

35'
87b

158'
196

168'
272'
524'

89.5
158
198

209
399
669

'G. E. Stillman et al. , Solid State Commun. 9, 2245 (1971).
D. R. Cohn, D. M. Larsen, and B.Lax, Phys. Rev. B 6, 1367 (1972).

'P. J. Dean et al. , Phys. Rev. B 23, 4888 (1981). Measured for Cl donor impurity.
C. H. Henry and K. Nassau, Phys. Rev. 8 2, 997 (1970).

'R. C. Brandt and F. C. Brown, Phys. Rev. 18I, 1241 {1969).
'See Ref. 21.
gFor these crystals, the band mass being unknown, the free-electron mass has been used.

As the asymptotic results are generally not applicable
to real crystals, the first-relaxed-excited-state energy of
the bound polaron in polar crystals is calculated numeri-
cally and presented in Table I. For the first five corn-
pounds, the excited state corresponds to the excited state
of the defect. For the others, it is a polaron-defect-
cornplex excited state. The three levels of approximation
E (continuum approximation), E (with the Debye-
cutoff correction), and E (with the Debye-cutoff and the
Zak corrections) are given as well as the energy correc-
tion obtained for the different compounds. A comparison
to the corrections obtained for the ground-state energy of
the bound polaron (see Ref. 14) indicates that they are
slightly smaller for the first relaxed excited state than for
the ground state for the first seven crystals given in the
table. For the remaining crystals, the corrections are
small in the present case, in contrast to those of the
ground-state energy which are important. The transition
energy E& —Eo is given in the same table and compared
to the experimental value when available. We also give
this transition energy as calculated by Adamowski. ' In
our case, the agreement is not very good, particularly for
Agar, AgCl, and CdF2, while it is much better for the
calculations of Adamowski, especially for the weak-
coupling compounds. The discrepancy can be attributed
to one or to several of the following causes: the use of a
Craussian spectrum instead of a Coulombic one (error of
the order of +20%), the error on the parameters such as
the effective band mass used in the calculation, and cer-
tainly the neglect of an important part of the central-ce11
corrections in the calculation of the ground-state energy,

as stated in Ref. 14. Also, for the last seven compounds
in the table, the first-relaxed-excited-state energy ob-
tained with our formalism is a polaron-defect-complex
excited state, while the experimental value corresponds
probably to an excited state of the defct, the lifetime of
the latter being much larger. Nevertheless, the agree-
ment is quite good for GaAs, CdTe and CdS if the +20%
correction due to the use of a Gaussian spectrum is taken
into account. These are crystals for which the coupling
to the defect is weak so that the radius of the orbit is
large. Central-cell corrections are then negligible.

V. CONCLVSION

The problem of the corrections to the continuum ap-
proximation for the first-relaxed-excited-state energy of
the free and of the bound polarons is investigated. Two
types of corrections to the Frohlich Hamiltonian are con-
sidered: the elimination of short-wavelength phonons
with the use of a spherical Debye cutoff, I, and the first
corrections to the effective-mass approximation, which
we call the Zak correction, calculated using the kq repre-
sentation of Zak. ' The Zak correction comes from the
expansion of slowly varying electron-phonon and defect
potentials as a function of a parameter, a, that measures
the unit-cell dimension relative to the polaron quantum
1adlus.

From the resulting Hamiltonians, the first-relaxed-
excited-state energies of the free and of the bound pola-
rons are calculated with a Gaussian-model spectrum of
variational parameter, P, using the Green's-function for-
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malism of Matz and Burkey, in the Pock approximation.
This treatment is valid for all coupling strengths and the
resulting 6rst-relaxed-excited-state energies reduce to the
continuum results when a ~0 and I.~~. Two asymp-
totical analytical limits are treated: L »P and L «P,
I/P being proportional to the radius of the polaron in
strong coupling. These limits correspond to a polaron ra-
dius larger or smaller than the lattice parameters, respec-
tively.

Consider first the case of the free polaron. In the
weak-coupling limit there is no excited state since the free
polaron has no internal structure. In the strong-coupling
limit, and for L »P, the corrections for the first-
relaxed-excited-state energy are small and positive: they
decrease the self-energy of the polaron. The strong-
coupling behavior of the continuum polaron in a is

' preserved. On the other hand, the limit L «P, in strong
coupling, gives important corrections for the free pola-
ron. In that case, the polaron radius is smaller than the
unit cell and the o.'behavior is replaced by a linear varia-
tion of the 6rst-relaxed-excited-state energy with a, as is
the case for the ground-state energy.

The presence of a defect does not change the order of
magnitude of the corrections, when L »P. For the first-
relaxed-excited-state energy of the bound polaron, the
corrections are also small and positive; they reduce the
self-energy of the polaron and its binding energy to the
defect. In weak coupling, an efFective-mass state is ob-
tained which can be viewed as a polaron in its ground
state bound to the defect in its first excited state. In
strong coupling, the corrections are larger than in weak
coupling, but in the limit L »P the continuum polaron
behavior is preserved. Also, the screening of the defect
by the LO phonons is effective and important and the
electron-defect coupling constant, %„,is renormalized to

When L «P, the corrections become large and our
approach used to calculate the Zak correction is not
applicable. Nevertheless, we can still consider the
Debye-cutoff correction. Since the cutoff is important,
screening of the defect by the phonons is no longer
effective and the Rydberg involves the high-frequency
dielectric constant, inducing large, negative corrections:
the binding energy to the defect is increased.

The numerical results indicate that the regime L «P
is more di%cult to attain for the first relaxed excited state
than for the ground state. Also the corrections to excited
state remain small for typical values of the parameters
(less than 10% for typical polar crystals). This is expect-

ed since the erst-relaxed-excited-state wave function is
more extended than the ground-state wave function. The
ls~2p transition energy calculated using our formalism
is also compared to experimental values for the bound
polaron, when available. This comparison is not expect-
ed to be quantitative since an important part of the
central-cell corrections were neglected from the begin-
ning. The numerical values are given to estimate the or-
der of magnitude of the corrections to the continuum ap-
proximation for these crystals. These corrections are
found to be negligible for the bound polaron in real crys-
tals. In three cases (GaAs, CdTe, and CdS), we obtain a
good agreement with experimental values if correction
for the use the Gaussian spectrum is taken into account.

In conclusion, we have shown that for weakly polar
crystals, like the III-V compounds and the II-VI com-
pounds, the continuum approximation is well justi6ed,
the corrections being of the order of a few percent. The
energies obtained for optical transitions on defects are
generally good. On the other hand, the case of more po-
lar crystals is less clear (alkali halides, for example). In
that case, even if our formalism does not allow us to cal-
culate the Coulombic excited states, we predict important
corrections to the continuum approximation. The largest
part of these corrections comes from a reduction in the
screening of the defect by the phonons. Also in these
cases, the radius of the polaron becomes of the order of
magnitude of the unit cell and a perturbative approach to
the calculation of the corrections to the continuum ap-
proximation is questionable. In this case, a small- or
intermediate-polaron approach would be in order. We
have also shown in this paper that the corrections to the
continuum approximation are much smaller for an excit-
ed state than for a ground state because of a larger exten-
sion of the wave function. It would thus be interesting to
compare with experiment the value of the ionization en-
ergy of the excited state instead of that of the EO~Epp
transition, should it become available. A better agree-
ment is expected in this case.
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