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Entropy distribution of a two-level system: An asymptotic analysis
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Although glasses are not in equilibrium, for some purposes they are nearly in equilibrium. The
thermodynamic properties of glasses depend on their thermal history, and when the time scale of
this history is long compared to the microscopic time scale of the glass, we can compute thermo-
dynamic quantities. In this paper, we use matched asymptotic expansions to compute the energy
and entropy distribution of the simplest possible model glass, a single two-level system, in the limit
of slow heating and cooling.

I. INTRODUCTION zero-temperature entropy. Entropy can be defined ei-
ther "statistically, "

Glasses are not in equilibrium. The material properties
of a glass depend upon its entire thermal history. Liquids
and crystals can be approximated as equilibrium systems
because of a separation of time scales: We can average
over the fast degrees of freedom and ignore the slow ones.
In glasses, processes take place on a wide range of time
scales, spanning the time scale of the experiment. ' On
the other hand, there is a separation of time scales in
glasses too. Although the time for transitions between
microscopic states can be very long, very short, or in be-
tween, the microscopic attempt time for transitions is al-
ways very short, about 10 ' s. The macroscopic time
scale of an experiment, involving, say, cooling a glass
from the melting point to zero temperature, is at least on
the order of seconds, much longer than the microscopic
time. We can consider the glass to be a system not far
from equilibrium, in the sense that it has tried many
routes to relaxation, and we can exploit this separation of
time scales in calculations.

The equilibrium properties of ensembles of two-level
systems are often used to model the low-temperature
properties of glasses. ' In this paper, however, we use a
two-level system (TLS) as a model for high-temperature
glassy dynamical properties. A TLS is in some sense the
simplest possible model glass. It has a wide range of time
scales because the transition rate depends strongly on the
temperature. It is glasslike because (1) it falls out of equi-
librium when the cooling rate becomes fast compared to
the transition rate, (2) when out of equilibrium it has mul-
tiple zero-temperature states, and (3) its properties de-
pend on its thermal history. It is simple because it has
only one degree of freedom, the energy, which can be ei-
ther 0 or c.. The model is, of course, too simple to explain
many properties of real glasses, such as nonexponential
relaxation and the Kauzmann paradox. In this paper we
use a separation of time scales to compute the average en-
ergy of an ensemble of identical TLS's cooled and heated
asymptotically slowly.

A characteristic property of glasses is their nonzero

Sst„=—Tr p lnp,

or "thermodynamically, "

therm T

p is the density matrix, Q is the heat flowing into the
glass, and T is the temperature. Reference 5 shows that
the thermodynamic entropy, measured on heating and
cooling, provides upper and lower bounds to the statisti-
cal entropy. This is important, because the thermo-
dynamic entropy is accessible in experiments and com-
puter simulations, whereas the statistical entropy, which
measures the available volume of phase space, and is usu-
ally of greater theoretical interest, is inaccessible. In real
experiments, we estimate the difference between the
upper and lower bounds 4o be about 1%. In computer
simulations the bounds can differ enormously. Further-
more, the measured thermodynamic entropies of an en-
semble of identical TLS's will differ on successive runs of
a simulation, even if the TLS's have the identical thermal
histories, because transitions between the states of TLS's
will take place at different temperatures. These Auctua-
tions create a distribution of measured thermodynamic
entropies. In a real glass, many TLS's will undergo tran-
sitions concurrently, and self-averaging will make the en-
tropy distribution collapse onto its mean. In a computer
simulation, however, as shown in Ref. 5, the distribution
will have structure indicative of the dynamics of the
glass. The structure will be more pronounced the farther
the simulation is from equilibrium. In this paper we cal-
culate this entropy distribution for an asymptotically
slowly cooled TLS.

The starting points for the energy and entropy calcula-
tions are the master equations for the energy and entropy
distribution, which we write in a form that makes the
separation of time scales obvious. We solve these equa-
tions in the limit of asymptotically slow cooling, and
compare the results with numerical computations and
computer simulations.
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II. MASTER EQUATIONS

p(E) =(1—n )5(E)+n 5(E—c. ) .

The evolution of n is governed b thy e master equation,

dn =I (T)[e ~'(1 n) n] —.— (4)

The equilibrium population is

Athi h'gh temperatures, the transition rate I ( T) is much

(See Fig. 2.) At low temperatures I (T) is very small, so
n ( ) is nearly constant. The value of n at zero tempera-

of the s
ure the "residual" population) is roughl the 1

o e system at the "freezing" temperature, T* where
the rate of tran

'
o ransitions over the barrier is comparable to

the cooling rate:

A
of two

TLS, such as the one shown in Fi 1 big. , can e in one
o two states or wells. The energy of the two wells differs
by an asymmetry c., and there is a barrier V to tr

the o
between the wells. We will take V t be o e measured from
t e ottom of the upper well to the top of the be amer. In

the
e a sence o quantum-mechanical tunnelin th h

'
g roug

e barrier, transitions take place b th 1y erma excitation
over the barrier, with a rate given by

I (T)=I oe

where P= 1/T is a function of time, t. Consider an en-
semble of identical TLS's with identical thermal histories,

the
ut with different individual histories [ V d T(
e same for each TLS in the ensemble, but each makes

of the u
transitions independently]. Let n = b th
o t e upper well, averaged over the ensemble. The popu-
lation of the lower well is n =1— Th—n. e energy distri-
bution for the ensemble is

dno =I"(T*)n o(T*) .

p&(S, T)dS=n .

When the system makes a transition from the 1 11

o e upper well, it absorbs energy c, from the environ-
ment, an its thermodynamic entropy increases by PE.

pward transitions therefore deplete p~(S, T) and con-
tribute to (S+ E T .p& &, . Similarly, downward transitions
deplete pt(S, T) and contribute to p&(S —PE, T). The
coupled master equations are

0.80 I I I I I I I I I I I I

0.15—

When the TLS i's now heated from zero temperature,
its population remains constant until the transition rate
becomes comparable to the heating rate. At this point,
t e population will be above no, so although the tempera-
ture is increasing, the population will decrease. The mea-

gion. As the temperature rises further, no increases, and
when it becomes greater than n n 'll bwi egin to increas,
until n ~ no at higher temperatures.

We can also write down a master equation for the evo-
ution of the entropy distribution, p(S). First, we split

representing the probabilities of finding the system in ei-
t er t e upper or lower well, and simultaneously
measuring the thermodynamic entropy to be between S
and S+dS. Obviously,

p(S, T) =p&(S, T)+pt(S, T),
and

0.10—

0.05—

4 0 4 4 4 0 4 4 4 4 0 + 0 l0 4 0 S

0.00
0.0 0.3

FICy. 1. A two-level system, showing the barrier height V d
asymmetr

an

y y c, . The ensemble average populati f huaion o t e upper
is n, an the small oscillation frequenc in the b

the wells is I p.

cy in e ottom of

T/V

FIG. 2. Po uopulation vs temperature (Ref. 12) for TLS wit
asymmetr =0.5y p= . cooled linearly to zero temperature with

or with

cooling rate 6=10 and then heated at the same rate. The
data points are the resultult o~ direct numerical integration of {4)
and the solid lines are te t"e asymptotic expressions, with
xo=6(1nxo)'. The dashed line is th 'l'b '

e equi i num population
no.
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Opt(S, T) = I (T)[—pt(S, T)+e ~'pi(S —Ps, T)],
Bpi(S, T)

=I'(T)[p&(S+Ps, T) e—~'p&(S, T)] .

Unlike the master equation for the population, (6) does
not completely determine its own equilibrium solution.
This is because the thermodynamic entropy is only
defined up to an additive constant, and, in principle, the
constant could have been chosen differently for each TLS
in the ensemble. In other words, (6) determines the evo-
lution of an arbitrary initial entropy distribution. When
we need to specify an initial condition, we will make the
natural choice:

pt(S, T= ao ) =pi(S, T= ~ ) =—,'5(S —ln2) .

What happens to the entropy distribution as the en-
semble of TLS's is cooled to zero temperature at a
nonzero rate'? (See Fig. 3.) At high temperatures, where
the transition rate is large compared to the cooling rate,
the system will be nearly in equilibrium. The entropy dis-
tribution will still be sharply peaked, because each TLS in
the ensemble will have nearly the same history. Howev-
er, since transitions between the wells change the entro-
py, there will be two peaks in the distribution separated
by Ps. The upper peak is p &

and the lower peak is p &.

These peaks will move, but will remain sharp, as long as
the transition rate remains high. As the transition rate
falls, the degree of self averaging also falls, and the peaks
will broaden. Erratic transitions at random temperatures
transfer random amounts of entropy. Near the tempera-
ture T'=I/P', where the system "freezes, " the peaks
will not be able to move fast enough to maintain their
equilibrium separation and magnitudes. There will still

be transitions from the upper well to the lower well, but
they will transfer an entropy Ps)P*s, so weight in the
distribution will move from the upper peak to the low en-
tropy side of the lower peak, creating a long tail. This
effect is clearly seen in Fig. 3.

III. ASYMPTOTIC CALCULATION OF THE ENERGY

The residual population of the TLS was calculated for
small cooling rate by Huse and Fisher (see Appendix).
Our result is slightly different from theirs; we present our
calculation as a prelude to the calculation of the entropy
distribution. The first step in the solution of the master
equations (4) and (6) is to write them in terms of a dimen-
sionless cooling rate, so as to identify the small parame-
ter. To do this, it is of course necessary to specify the
cooling schedule T(t). The easiest choice might seem to
be linear cooling, T(t) = To rt, but, —in fact, the calcula-
tions are simplified if we set T(t)=TO/(I+Et) Th. is
choice does not fundamentally alter the results. The
linear cooling schedule is discussed in the Appendix.

Making the change of variables x =exp( —PV), and
(following Huse and Fisher) defining a dimensionless
asyminetry p =s/ V, and a dimensionless cooling rate
5=R V/I OTO, Eq. (4) becomes

5 = —x"+(1+x")n(x) .dn
dx

(8)

This equation can of course be integrated directly, but
the result is not particularly illuminating, and the method
cannot be applied to the entropy distribution. Since we
are primarily interested in the hmit 5—+0, asymptotic
analysis is the appropriate technique. (5 is the ratio of
the microscopic to macroscopic time scales, so for physi-
cal systems, we expect 5 ~ 10 ' .) We begin by finding a
high-temperature approximation, nh;(x), for n (x) by ex-
panding in a power series in 5. Equating powers of 5 in
(8), we find

nh;(x) = x"
1+5p 1 +O(5 )1+x" x(1+x")

T=O

p

FIG. 3. Entropy distributions from a Monte Carlo simula-
tion of a TLS mith asymmetry c.=0.5V at temperature (a)
T=2V, (b) T ~ T*,and (c) T=O. The cooling rate was 5=0.01.

5 dN = —X~+(1+x IOX")N(X),
xo dX

(10)

There are two things to notice. First, when the cooling
rate 5 vanishes, we recover the equilibrium value of n, as
expected. On the other hand, as x ~0, the second term
in (9) diverges, so it cannot be correct for low tempera-
tures. The size of the divergent region is roughly of order
5.

A standard technique in asymptotic analysis is to re-
scale the independent variable x by the size xo of the
divergent region (the "boundary layer" ).' The solution
of the original equation was valid where x was O(l), in
the so-called "outer" region. The solution to the rescaled
equation will be valid when x is 0 (xo), in the "inner" re-
gion. The appropriate identification of xo will result in
an equation equivalent to (8), but in which the small pa-
rameter appears in a different position, leading to qualita-
tively different behaviors in the inner and outer regions.
Let X—=x/xo and N(X) —=xo "n(x). Then
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and we see that setting x0=5 has the desired effect. This
is not surprising —we expect the character of the solution
to (4) to change at the freezing temperature T'. Solving
(5) for T* shows that the transition occurs for x=5IM.
Different cooling rates require different choices for xo but
otherwise lead to substantially the same analysis. [For
example, linear cooling requires xo =5(lnxo); see Appen-
dix. ] For this reason, the calculations will be presented in
terms of xo rather than 5.

The general solution to (10) is

10

10

I I I I I I I I I I I I I I I I

xIO
N(X) =exp X+ X'+"

1+p

N( ) f x —[Y+xoY + /( I+A IY)Id1Y.
0

10-'

10

10

This inner, low-temperature solution must match the
outer, high-temperature solution (9) in a region where
both are valid. To be precise, we want to adjust the arbi-
trary constant N(D) in (11) so that

limnh;(x) = lim xgN(X) =n, «—h(x)
X~O g —+ oo

to lowest order in 5. The only choice that prevents (11)
from diverging as X~~ is

10 I I I I I I I I I I I I I I I I

—20 —15 —10
log10(5)

FIG. 4. Residual population vs cooling rate. The solid lines
are our asymptotic result (14), the dashed lines are the result of
Huse and Fisher (31), and the data points come from numerical
integration of {4). All three curves were computed with a linear
cooling schedule.

N(0) = f d Y Y"exp —Y— Y'+"
0 1+p (12)

Combining the low- and high-temperature formulas into
one expression, uniformly' valid in x, we get (see Fig. 2)

Unless the asymmetry p is very small, we have xo «1,
N(0) =—I'(1+@),and N(X) =e I ( I+IM, X), or

n(x ~0)=xIoe 'I ( I+p, x/xo) .

N(X ) = exp —X— X'+"
1+p

0

The inter and outer solutions match as x —+0 and X~ ~
for any choice of N(0), as they should, since for warming
the population at T=O is a free parameter. The solution
uniform in x for p not too small is

n(x ):—nh;(x)+xoN(x/xo) —n „,h(x)

X /Xp x"2
=xIoe 'I (1+@,x /xo)— 1+x" (13)

When p « 1 and x Io = 1, Eq. (12) reduces to N(0)
=1/(I+xIO). Therefore, uniformly in IM, the residual
zero-temperature population is

xo"
n(0) =x(~) I (1+III,)—

1+x~0

(14)

—5 = —x"+(1+x")n(x) .dn
dx

(15)

The outer solution does not change, to lowest order in 5,
and the inner solution becomes

Figure 4 shows n(0) plotted as a function of 5, for two
different asymmetries, in the case of linear cooling.

The master equation for the population while warming
the TLS is identical to that master equation for cooling,
except that the sign of 6 must be changed:

x /xp x /xp
n( x)= xIoe ' N(0)+ f eYYI'dY x 2P

1+x"

In Fig. 2, N(0) for the heating curve is given by (14).
There is a dip in the heating curve because, initially, at
low temperature, the TLS is frozen above equilibrium.
As the temperature increases and the TLS thaws, the
population relaxes downwards towards its equilibrium
value. The minimum population occurs when n =no,
where dn /dt vanishes.

IV. ASYMPTOTIC CALCULATION
OF THE ENTROPY DISTRIBUTION

There are two impediments to applying the above
analysis directly to the master equations for the entropy
distribution (6). The first is that there are two equations,
not one, and they cannot be integrated directly, so we will
not be able to find an expression like (11). The second
and more important problem is that the equations are
nonlocal —the distribution at one value of S is linked to
the distributions at all others. Both of these problems
can be fixed by a judicious change of variables.
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[The Fourier convention is chosen so that
n(x}=jt(0,x).] Then

so that

1 8"lnp

l Bo cr =0

and

rc, =&S&, q

~,= &s'&, ,—&s &2t,

and so forth. Define gt =lnp~, and g&
—= lnp&. The mas-

ter equation (6) for the distributions becomes

5 =1—x"" ' 'exp(gg —gt),

I

The next best thing to computing a distribution func-
tion is to compute its cumulants. If p(cr, x ) is the Fourier
transform of p(S,x), then inp(o, x) is the generating
function for the cumulants sc„ofS. Let

pt t(cr, x ) =f e' pt i(s, x)ds .

Furthermore, the initial entropy distribution has
dropped out of one equation. At infinite temperature
both distributions, pt(S) and pi(S), must be identical.
Any initial distribution can be written as a convolution
with a delta function,

pt i(s,x=1)=ff(S—S')5(S' —St i)ds',

where f is the same function for both distributions. f ap-
pears as a multiplicative function of a when the distribu-
tion is written in terms of the g's and does not appear in y
at all. In this sense y is the fundamental object —it con-
tains only information about the evolution and dynamics
of the TLS, with the irrelevant initial conditions factored
out.

The equations for y(o, x) and z(o, x) are nonlinear,
which is a disadvantage, but they are local, and they are
partially uncoupled. Equation (16) for y is independent of
z. Although (17) depends on y, we can, in principle, solve
(16) for y and substitute the solution into (17).

Finding the distributions now involves solving (16}for
all cr and asymptotically small 5. It is convenient to re-
strict the explicit o. dependence to a single term, so define

5 =x"—x' "exp(gt —gi),
which is simplified further by another change of vari-
ables,

it =y i cry l—nx .

Then

5 ' =x"(1+e~) (1+—e ~) —5
dib l CTP

dx X
(19)

y(cr, x)=g&(o, x )—gt(cr, x)

=in[Pi(cr, x )/pt(o, x )],

z(o,x ) —=g t(o, x )+g&(o,x),
in terms of which we have

and

and the equilibrium value go= —plnx is real for all o.
We follow the same procedure as for the population
n (x). An expression for g valid at high temperatures is
obtained by expanding in powers of 5,

0= & 5'4k .
k~o

(16) The first two terms in the outer solution are

go= —p lnx,

as expected, and
(17)

The equilibrium distribution function is found by setting
5=0, yielding y, =(i o —1)p lnx, or

p)(s, T ) =e~'pt(s+Pe, T),
Since

1 —io.
1+x"

n =
I 1+exp[/(o )]I

(20)

as implied by (6).
An additional advantage to using y and z as the depen-

dent variables is that y has a simple physical interpreta-
tion:

we see that (20) is consistent with (9), also as expected.
For the inner, low-temperature expansion, let

X—=x/xo and 0'(X)—:g(x) in (19). Letting x0=5 is again
appropriate, yielding

=[&s &, —&s &, ]=p*e
dO.

o
(18)

=xioXr (1+e ) —(1+e )—
dX

(21)

is the distance between the peaks in the entropy distribu-
tion. The distance between the peaks at zero temperature
measures the "freezing" temperature T*, as shown ear-
lier.

Expanding %' in powers of xylo appears to be the obvious
tactic, but unfortunately it produces nonsensical results
for o =0. The a =0 solution is known from the inner ex-
pression for n:
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0 X)—ln[ 1 ii(x)]—inn(x)
—~(x ) —inn (x)

xgexl (1+@,X) lnxo

—lnI (1+p,»
=O(x g )+O(l~ g )+«1) .

be ne ative powers of xp on gt e ri ht-handThere will be nega i
Collecting terms ofde of (21) unless we set @0

equal or er ind
'

(21) we find, to lowest order,

lOP
1dx X

the solution of which is

nx"ust ex and %' in powers of xp and nxp,Therefore we m p
and possi y ad bl all combinations thereo . t is su
tunately, to write

q x = y xIO'[e„(X)+C„(X)lnxo]
k+p

Then

4' (X)= —X—ln[X' "I'(1+p(1 i—o', X0 (22)

o. could be added to the gammaAn arbitrary function F(o ) cou
ns match, tobut the inner and outer solutions ma c,

=0. The uniformly valid expres-lowest order, only for F=o.
b 'd ntica1 to the inner solutionsion turns out to e i en

'

1 s efind"Unraveling the changes of variables, we fin

e+~=e* 'x, " 0I1+x([a,+in(x~o)~, ]

+O(x ")+O(xo"lnxo)I .

'I (1+@(1 to—),x'lx )=X)p e
pi(o, x)

(23)

P y 1 +&P+&P(1— )ln[p)(o, x )pt(cr, x )]=f(o.)+ g z
pt(o, z)—z' P

pi(o, z)
(24)

o depends on the initial high-—1)1 2 for the i i-temperature distribution, and is 2(io— n.

h d' t 'b t d d
b h the asymptotic curve

line in Fig. 5 is t e is ri

11 =0.5
3) and (24). For bot e a

Monte Carlo calculation, e a
rate 5=0.01. Considering that 0.01 is

kbl. F hr small, the agreement is remar a e.
'

) the e entsho ldbcal cooling rates (5510 t e agre
cellent.

't lf s a probe of the glassy
1 to relate it to other properties

distribution itse is a p

he freezing temperature erivdemonstrate that the r
'

g
re intuitiveis consistent with morethe distribution is c

Usin the asymptotic orm oM ~

~

) (distribution by combining Eqs. 1 an

2pXp
no( T» ) =xio I (1+p)— (26)

0.1

s 25) and (26) are plotted in Fig. 6 along with
kthe distance between t p k t oe eaksint e o

simulations. All the expressions agree, provi ing a c
on the asymptotic analysis.

= —lnxo — lnI (1+@) .
a

Qp
(25)

i
~ ~

with thee uate the freezing temperature w'We can also q
width of the inner reg'o,

T*=—lnxp. The temperature at w ic e r
o

' '
rium o ulation equals the transi-

b (5), which implies V = —n
r e 5, h three expressions are all

h. ---.-, - h.
r e and small 5, t ese r

equivalen, p1 nt es ecially given t e un
11 the expressions dift'er,

' ' nof T*. Whenpissma, e
f h TLS are nearly identicalbut because the twtwo wells o t e

ich the TLS falls out ofin this case, the temperature at whic t e
1 b m is even less well defined.

o
' f T* '

the temperature at which
'

n e uals the asymptotically cal-
other estimate o is

the equilibrium population equa s e a
culated residual population,

Oo
2

20
Residual Entropy S

distribution for a TLS with asymmetry
5=0 01 Th 1 d 1p =0.5, cooled to T =0 at a cooling rate

while the dotted line1 f a Monte Carlo simulation, w i eistheresuto a o
' '

w Ie
is the asymptotic expression {23)and
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1.5,
T(x)(lnx ) dn „+(1+

I pV dx

1.0

where T(x) =dT(x(t) }!dt F. or the "simple" cooling
rate used in the text, T(t)=To/(1+Rt), the term in
braces on the left-hand side of (27) is constant, and set
equal to 5. For linear cooling, T(t) = To rt—, we define
5= r /I o V, and the master equation is

1
[—x"+(1+x")n(x)] .

(lnx )
(28)

0.5 The outer expansion proceeds as before: Expanding n (x)
in powers of 5, we find

r

n(x) = x"
1+5@ +O(5 )

(lnx )

1+x" x(1+x")' (29)

0.0
10-' 10 10 10 10

FIG. 6. "Freezing" temperature T* for a TLS as a function
of dimensionless cooling rate 5. The solid curve is predicted
from the distance between the peaks in the entropy distribution
[Eq. (25)], the dotted curve is predicted from the residual popu-
lation [Eq. (26)], and the points are extracted from the entropy
distributions measured by Monte Carlo simulation of a TLS.

V. CONCLUSIONS
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APPENDIX: LINEAR COOLING

We have shown two things: The energy and the entro-
py distribution for a simple model glass can be calculated
in the limit of slow cooling, without making any assump-
tions about equilibrium, and information (in the form of
T', in this case) can be extracted from the entropy distri-
bution. The technique, here applied to a simple glass,
should be applicable to more complicated models. In a
follow-up paper, we will present numerical studies of the
entropy distribution of the TLS and spin glasses.

which diff'ers from the equivalent expression (9) for the
simple rate only in the factor of (ln x ) in the first-order
term. This factor will not affect the asymptotic match,
since we matched the inner and outer formulas only to
zeroth order.

Rewriting the master equation in terms of the inner
variables, X=x /xo and N(X) =x o "n (x), now yields

5(»xo)' dN 1+
dX lnxxp

' —2

[ —X"+(1+x~&)X")N(X)].

(30)

As before, we identify the width of the inner region by re-
quiring that the coefficient of the derivative not be small.
Hence

2p
5 $2p

n(0)=K' ln — I (1+p, )—
p 1+5" (31)

xo =5(lnxo)

Since X=0(1) in the inner region, and xo ((1, the term
in braces on the right-hand side of (30) is unity, to order
O(1/lnxo). Therefore, neglecting the term in braces, the
inner solutions for the linear simple cooling schedules
will be the same, except for the differences in xp. The
uniform solution, matched to zeroth order, will therefore
be identical to (13).

Huse and Fisher found

Given an arbitrary cooling or heating schedule T(t),
the master Eqs. (4) for the population, in terms of x and
p, reads

which agrees asymptotically with our result as 6~0. For
unknown reasons, our expression is slightly better than
theirs at larger cooling rates.
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