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Dielectric response and plasma excitations of a multiwire superlattice consisting of quantum
wires (along z axis) periodically repeated in both the x and y directions are investigated. The
quantum wells are considered to be separated by barriers of finite height, with consequent tunnel-
ing through the potential barriers which we treat employing tight-binding-type envelope wave
functions. The intraminiband electron density-density correlation function is derived, and its nor-
mal modes (plasmons) are examined for various potential barrier heights.

Quasi-one-dimensional systems and semiconductor
quantum-wire superlattices are currently the subject of
considerable research effort. In particular, the electronic
response and collective excitations of these novel struc-
tures are under intensive scrutiny both experimentally! ~3
and theoretically.*™'® Most of these investigations are
concerned with one-dimensional (1D) arrays of wires
(wires repeated in one direction), whereas two-dimen-
sional arrays of wires (wires repeated in two directions)
with equally strong coupling in both directions are less
well understood. In the latter case of finite potential bar-
rier heights, electrons on adjacent wires couple not only
through their mutual Coulomb repulsions, but also
through the overlap of their wave functions. Such a
quasi-one-dimensional system has properties intermediate
between a one-dimensional electron gas and a three-
dimensional electron gas, which can be tuned directly
from 1D to 3D, bypassing the 2D stage, by controlling the
potential barrier height, the superlattice period, and the
electron density. Existing studies”*!" are devoted almost
exclusively to the Coulomb-coupled quantum wires, leav-
ing largely unanswered the important question of the
effect of wave-function overlap upon the dielectric proper-
ties and collective excitations of such quasi-1D systems.
In this paper, we report on our theoretical investigation of
the electronic response properties of a lateral quantum-
wire superlattice with finite potential barrier heights, ex-
amining the consequences of the incomplete electron
confinement. In this, we will first outline the derivation of
the electron density-density correlation function (the in-
verse dielectric function) which encompasses both the in-
trawire and the interwire Coulomb interactions, as well as
the wave-function overlap among neighboring wires, fol-
lowed by an analysis of the collective and single-particle
spectra of the dielectric response function.

Our model of the quantum-wire superlattice is com-
prised of cylindrical wires of radius r¢ along the z axis,
centered on the 2D square lattice sites R = (n,% +n,§)d,
where n| and n, are integers and d is the lattice constant.
Electrons, of linear density no per wire, are free to move in
the z direction, but are partially confined within the cylin-
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drical quantum wells of potential U(7) =0 for r < ro, and
U(F) =V, for r > ro. (7 denotes a 2D position vector in
the x-y plane, with magnitude r.) The electron eigen-
states are of the form yy(r) =L ~'2e/*z%¢. (), with ener-
gy eigenvalues a=k22m+E z- To describe the motion
in the x-y plane we employ the tight-binding scheme
which has proven to be quite useful in treating planar su-
perlattices,'>” !> and quantum-wire superlattices with
wires strongly coupled in one direction only.*>'® The
tight-binding wave function is given by ¢7(F) =AgN ~'/2
x X re'® Ry (F— R), corresponding to the miniband ener-
gy Er. N is the total number of lattice points (equal to
the total number of wires), and #(7) is the normalized
single-well wave function for the lowest bound state in the
cylindrical well.  Furthermore, Az =(1+2acosk.d
+2acosk,d )"Y2 is a normalization factor, and
a=fd?ru(F)*u(F—dR). Only the lowest miniband is
considered, and the wave functions are considered to be
strongly localized in the wells such that only nearest-
neighbor wave-function overlap is taken into account.
Within these approximations the tight-binding miniband
energy is given by Ep=A(2—cosk.d —cosk,d), with a
miniband full width 4A. Here, A=2fd*ru(F)*
xU(F)u(F — dR) is the overlap integral.

In terms of the second-quantized electron operators cj
and cx (suppressing spin indices) the system Hamiltonian
can be written as

H=Y aclcx+ + k; V(q,k,k")ci+qcd —qcrck s (1)
k ol ’q
where the Coulomb matrix element is given as

V(q,k,k') = (2eZ/K)fdZrdzr'¢;;+,7(7')*¢);n-q(F')*
xKolg, |F—F')op(For (F),

2
in which « is the background dielectric constant (con-
sidered to be the same in and out the quantum wells), and
Ko(x) is the zero-order modified Bessel function. As is

well known, the solvability of the random-phase approxi-
mation (RPA) integral equation for the density-density
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correlation function of an interacting electron system de-
pends critically on the form of the Coulomb matrix ele-
ment. To facilitate such a solution, we cast the Coulomb
matrix element in a matrix form following previous treat-
ments of planar superlattices'> ! based on wave-function
overlap involving nearest-neighbor quantum wires only,
thus we obtain

V(Q,k, k) = Ay ;Ap - ; Ap A T OV (T KN T, (3)

where T'(k) is a column matrix [T(k)7 is its transposel
given by
T(k)T=(1, cosk,d, sink,d, cosk,d, sink,d). (4)

In Eq. (3), V(q) is a 55 square matrix whose elements
are

Vii(q) =(4re/x) L 1i(g+G);(g+G)*/I(G+G)*+q71,
G .

(5)

where G is the 2D rec;procal -lattice vector conjugate to R,
and the form factor /() is again a column matrix with
elements

1,(7) =fd2rexp(ic7-7)|u(f')|2, (5a)

1@ = [ drexpliq- Pu®)* wF—dR) +uF+dd],
(5b)

13@) =i [ d?rexp(ig- PuP)* lu(F = d%) —uG+dD],
(5¢)

14@) = [ d*rexplig- Pu)* w(F—d§) +uG+ay)],
(sd)

and

I5@) =i [ d*rexplig- Pu®) * luF— d§) —uF+a§)].
(5¢)

In the same spirit the electron density operator can be
written as

p(q) =5 T1(g), (6)
where
p(q) ==f|:‘, f‘(E)AE_,.aA,;cchk. @)

To formulate the RPA integral equation we consider
the equation of motion of the electron density matrix
i9p/0t =[H+H',p], where H is given by Eq. (1) and
H'=3,0(q,t)p(q,t). Here, ¢(q,t) =¢(q,w)explio?) is
an arbitrary external potential. Following standard pro-
cedures, we evaluate the commutator to linear order in ¢
and employ the result to generate the RPA integral equa-
tion for the density-density correlation function

7(q,0) = —i [ dte”©()[p(q,1),(—q,01),  (82)

where ©(z) is the Heaviside unit step function. This has a

matrix counterpart 7(q,) through the relation
n(q,0) =1 (@) T#(q,0) (), (8b)

which obeys an algebraic-matrix RPA equation in Fourier
space corresponding to

1@ T#(q,0)1(G) =1(3)"#(q,w)(g)
+i(c7)T:?(°)(q,w)l7(q)7?(q,w)i((i) s
9)

where the nomnteractmg electron density-density correla-
tion functlon is also cast in matrix form = ©(q,w)
=7(7)"#9(q,w)I(g) with

9 (q,0) -z Th+TKE) AR, ;AR
eato+is),

(10)

and fo(e) is the Fermi dlstrlbutlon functlon Thc matrix
form of Eq. 9), #(q0)=29qw)+z° (q,w)V(q)
x #(q, ), is readily solved by a 5% 5 matrix inversion as

#(q,0)=[1-V(@)#?P(q,e)] '79qw). a1

The collective modes of the interacting electron system
are given by the singularities of the function 7(q,®),
which are the roots of the secular equation

det|1—7V(q)2®(q,0) | =0. (12)

X [folex+q) — fola) 1/ (ex+q—

The dielectric response properties of the multiwire su-
perlattice under consideration are completely embodied in
the real and imaginary parts of z(q,») given by Eq. (8)
jointly with Eqgs. (10) and (11). These explicit expres-
sions are of essential importance in studies such as high-
frequency transport and static and dynamic screening.
Our present purpose is to utilize them in examining the
collective excitation (plasmon) spectrum of the system.
To proceed we need first the solution of the single-well
Schrodinger equation, u (7). For cylindrical quantum
wells this is given in terms of the Bessel functions Jo(r)
and K(r), subject to the boundary conditions that both
u(F) and du(7)/dr be continuous at r =r;,. However, to
simplify subsequent numerical computations we employ a
variational ground-state wave function u (¥) = (C/zrrz)‘/ 2
xexp(—Cr?/2r), with C=In(2mréVy), in licu of the
exact wave function. A comparison of these two functions
shows a small difference (less than 10%) for the values of
ro and Vo used in the present work. Use of this variational
wave function renders the integrals of Egs. (5a)-(5¢) ele-
mentary, and they are readily evaluated as

L(g)=A4(qg), (5a")

I,(g) =B(q)cos(g.d/2) , (5b")

I3(g) = — B(q)sin(g,d/2) , (5¢")

1,(g) =B(q)cos(q,d/2), (5d")
and

I5(g) = — B(q)sin(q,d/2) , (5e")
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where A (g) =cxp(—q?r$/aC), and B(g)=24(q)
xexp(— Cd*/4r§).

Before turning our attention to numerical solutions of
Eq. (12), we should point out that a closed-form analytic
solution is attainable in the long-wavelength (close-pack)
limit. Under these limiting conditions ¢gd <1 and gq.d
<1, we arrive at the conclusion (after some lengthy alge-

bra) that
(13)

where w?=4nnoe?/xd? is the square of the bulk close-
pack plasma frequency and w?=4e2AV;(2m/er) .
Also, cos20=¢2/(q*+q?) and sin’60=¢?%/(q*+q2). The
Fermi energy & is assumed to lie above the lowest mini-
band, and its value is self-consistently determined for a
given electron density no.

The most striking difference between the present result
and that of an infinite-barrier model!! is the appearance
of the second term in Eq. (13). While the latter model
features a plasma band bounded at the top by the “opti-
cal” branch whose long-wavelength limit is given by ),
going down continuously in frequency with increasing 6 to
the “acoustic” branch having ®— 0 as g, — 0 (6— =/2),
the introduction of finite wave-function overlap elevates
the lower branch of the plasma band to a nonvanishing
value having w— w, as g.— 0. Moreover, the linear
dependence of wg on the miniband width 4A is consistent
with the understanding that the lower limit of plasma fre-
quency is at the top of the single-particle spectrum, which
in the infinite-barrier model is given by eq-qz2/2m, for
g =0, whereas in the case of a tunneling superlattice it is
given by &g =g2/2m+4A. Similar considerations apply to
planar superlattices, where the effect of finite potential
barrier height on the plasmon dispersion relation is well
documented. !>~ 13

The model system we consider in the ensuing numerical
calculation is a GaAs(wells)-Al,Ga, —As(barriers) mul-
tiwire superlattice. Material parameters pertaining to
such a system are electron effective mass m=0.07mq (mo
is the free-electron mass), and background dielectric con-
stant x=12.9. The wire radius is taken as ro=50 A, and
the 2D lattice constant d=150 A. The linear density of
electrons per wire is assumed to be np=10" m ~!, and two
values of the potential barrier height V(=100 meV and
V=200 meV are considered. With these parameters the
intraminiband plasma frequency has the value w,=8.2
meV. Our computations are carried out at zero tempera-
ture.

The plasmon dispersion relation for V(=100 meV is
graphed in Fig. 1. The upper bound of the plasma band is
defined by gx =g, =0, representing the parallel propaga-
tion of plasma excitations along the direction of the wires
(6=0). The curve defining the lower bound of the plasma
band corresponds to a spread of propagation angle 6 for
various g, values. The largest angle possible (6=r/2) is
at g; =0 and g0, for which the minimum excitation fre-
quency is g, which is 1.1 meV for the given value of
Vo=100 meV. For a chosen g, value, the maximum
propagation angle (corresponding to minimum excitation
frequency for that g, value) is determined by requiring
that both the real and imaginary parts of Eq. (12) vanish

w?=w?lcos?0+w?sin?0,

RAPID COMMUNICATIONS

3445

w/wp

o o5 . T4

FIG. 1. Plasmon dispersion relation for a multiwire superlat-
tice. ro=50A,d=150 A, ¥o=100 meV, and no=10"m ~"'.

jointly. In contrast to the infinite-barrier model,'! where
the minimum. excitation frequencies always obtain for
perpendicular propagation (6=x/2) and vanish in the
limit g, =0, wave-function overlap makes such minima
finite, even for g, =0. As V) is reduced to zero, the plas-
ma band collapses into the upper curve of Fig. 1, which is
just the 3D plasma dispersion relation for a bulk electron
gas of effective density no/d%. Thus it is possible to exam-
ine the continuous transition from insulated 1D wires to a
3D bulk system by varying the barrier height V. This is
further supported by Fig. 2, where a higher value of the
potential barrier is assumed, i.e., ¥, =200 meV, and all
other parameters are unchanged. The upper bound of the
plasma band is essentially unaffected by the increased
barrier height, while the minimum plasma frequencies are
much reduced. In particular, the long-wavelength limit of
the lower bound is now at w, =0.1 meV, showing the ten-
dency toward infinite-barrier behavior.

Plasma excitations for small propagation angles
(gd < 1) are essentially undamped in the range of g,
shown in Figs. 1 and 2. These excitations represent the
collective oscillations (parallel to the wires) of electron
density in the periodic array of wires, which experience
strong Coulomb restoring forces, whence they propagate
with higher frequencies. Large-angle propagation, on the
other hand, projects a large Coulomb force component
perpendicular to the wires, which is canceled by the

a)/wp

0 re SR R
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qzd f
FIG. 2. Plasmon dispersion relation for a multiwire superlat-
tice. ro=50A,d =150 A, V=200 meV, and no=10"m ~..
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FIG. 3. Single-particle excitations of a multiwire superlattice.
ro=50 A, d=150 A, no=10" m~'. (a) Vo=100 meV,
gx =g, =0; (b) V=100 meV, gx =g, =nx; (c) V=200 meV,
gx =qy =0; (d) V=200 meV, gx =g, =r.

confining force of the potential walls, thus lessening the
restoring force and leading to much reduced frequencies.
Since the walls are not rigid, the force cancellation can
never be complete, and the frequencies depend upon the
“hardness” of the walls as measured in terms of potential
barrier height, with lower frequencies for harder walls
having higher barriers. These features are clearly exhibit-
ed in Figs. 1 and 2, and are also known to exist for mul-
tiwire systems with infinite-barrier height,'! except for the
fact that the restoring force in the latter case vanishes
identically for perpendicular propagation of long-
wavelength excitations, and consequently o — 0. Howev-
er, unlike the infinite-barrier case, in which the plasma
band never merges with the single-particle spectrum, the
low-frequency and large-propagation-angle plasma modes
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for finite ¥ are Landau damped into electron-hole pairs.
Such damping is more pronounced for lower barrier
height, as the 3D limit is approached. Single-particle
spectra of representative values of ¢ are shown in Fig. 3.
The “holes” in the single-particle spectra are characteris-
tic of 1D electron systems, associated with the restricted
nature of the phase space.!' Departures from purely 1D
characteristics are seen as the “holes” are not extended in
q. from zero to twice the Fermi wave number, and that
they move to the right as ¢ is increased. These features
are direct consequences of the finite barrier height.
Another effect of finite ¥ is that the single-particle spec-
trum acquires a finite width for g, =0 and nonzero g, a
common signature of tunneling superlattices,'® as is evi-
dent in Fig. 3(b).

In summary, we have examined the electronic response
and plasma excitations of a multiwire tunneling superlat-
tice having finite potential barrier height. Within a tight-
binding scheme we solved the RPA integral equation in
closed form, as a 5% 5 matrix inversion, obtaining an ex-
plicit expression for the density-density correlation func-
tion of the interacting electron system. Plasma spectrum
influenced by the finite wave-function overlap between
neighboring quantum wires is discussed, along with the
single-particle excitations, emphasizing the role of the
barrier height as the key parameter in controlling the
dimensionality of the electron system. Many of the
features of the quasi-1D plasma spectrum are of strong
current interest, and may be examined experimentally in
comparison with this analysis. We must point out, howev-
er, that the present treatment considers intraminiband ex-
citations only. Interband effects can be incorporated in
the tight-binding scheme in principle, and will be taken up
in a future study.
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