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We consider an anisotropic planar-rotor model on a two-dimensional triangular lattice to model
the dopant ordering in polyacetylene in the process of alkali-metal doping. With the combination
of a Ginzburg-Landau expansion of the free energy close to the critical temperature and total-
energy calculations at zero temperature, we obtain a phase diagram in the plane of temperature
and alkali-metal chemical potential, which shows various modulated phases which appear in the
process of alkali-metal doping of the polymer. These results are compared with experimental ob-
servations by Winokur et al. [Phys. Rev. Lett. 58, 2329 (1987)].

Undoped polyacetylene is a dimerized semiconductor.
The physical properties of this semiconducting material
can be changed drastically through charge-transfer dop-
ing. Because of the importance of doping in modifying
the electronic properties of conducting polymers, it is im-
portant to investigate the structural evolution of the poly-
mer induced by the insertion of counter ions between poly-
mer chains during the doping. Shacklette and Toth'
identified structural transformations both by electrochem-
ical measurements and by examining samples at fixed con-
centration with x-ray diffraction. An x-ray scattering ex-
periment on Na-doped polyacetylene by Winokur et al. 2
shows new scattering peaks from /3 x+/3 and hexagonally
modulated structures of Na. ions in the plane perpendicu-
lar to the chain direction.

In Ref. 3, which will be referred to as CHM in the
remaining part of this paper, we have investigated an an-
isotropic planar-rotor model on a two-dimensional (2D)
triangular lattice to model the interchain orientational or-
dering of polymer chains in the plane perpendicular to the
chain direction. We found that this kind of a rotor model
can describe a herringbone (HB) ground state with a 55°
setting angle for a certain range of the interaction param-
eters. In this paper, we will extend this previous work to
study the doping-induced phase transition. We will show
that the doping-induced phase transition proceeds from
the undoped HB phase to +/3x+/3 via striped and hexago-
nally modulated phases. In order to study the 2D order-
ing phenomena we project the polymer structure along the
chain direction. The mass density of each polymer chain
is projected onto a rod on a 2D triangular lattice in the
plane perpendicular to the chain direction. We represent
each polymer chain by a rotor with a quadrupole moment*
on a 2D triangular lattice. This approach is appropriate
to Na-doped polyacetylene,® but presumably not for K-
doped (CH),. In the K-doped sample it was observed
that the undoped HB structure is transformed to the
tetragonal structure. ®

Now, we will consider a simple anisotropic planar-rotor
model on a 2D triangular lattice to model transverse
orientational ordering in this system. By a combination of
Landau expansion of the free energy close to the critical
temperature and zero-temperature energy calculations,
we will construct a phase diagram of various orientation-

40

ally ordered phases in the plane of temperature and chem-
ical potential. The interaction between rotors is the same
as in CHM with interaction parameters a and B as fol-
lows:

Hy=a <Z)cos(ZO,- —26;)
i
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where 0; is the angle of the jth rotor, ¢;; is the angle of the
line connecting the ith and jth rotor, with respect to the x
axis of the plane perpendicular to the chain direction, as
shown in Fig. 1, and the summation is over the nearest
neighbors. First and second terms of Eq. (1) are the two
nonvanishing invariant terms resulting from interactions
between quadrupole moments. ¢;; in the second term is
determined by the geometry of the underlying lattice and
this term represents the anisotropic part of the interaction.
Positive and negative a without the g term will favor
V3x%+/3 and ferromagnetic phase, respectively. Positive

FIG. 1. Schematic diagram of the (CH), structure with a
dopant ion labeled n, projected along the chain direction. The
polymer chain labeled i is represented by a rotor on a 2D tri-
angular lattice, with a setting angle 6; with respect to the x axis.
The rotors orient themselves to open a gallery for the dopant.
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and negative S without the a term will favor HB and fer-
romagnetic alignment of rotors, respectively. Phase dia-
grams of Eq. (1) as a function of temperature and interac-
tion parameters are presented in CHM.

The interactions between a dopant and its surrounding
rotors are modeled such that the rotors are rotated to open
a gallery for the dopant. This effect can be represented by
the following interaction:

Hint‘(Z) {ylcosQy,; —26,)1 — udx, , ()
n.Jj

where x, represents the density of dopants along the nth
column, 6,; is the angle of the vector connecting the jth
rotor and nth dopant, and g is the chemical potential
which controls the doping density. For positive values of
7, this term will orient the rotor to be perpendicular to the
vector between the rotor and the dopant. We take in-
teraction parameters a = —1 and =2 to ensure that the
HB phase is realized as the ground state for the undoped
problem.?> Then, the Hamiltonian is given by H=H,
+ H;,,. We solve the Hamiltonian with a Landau expan-
sion of the free energy close to the critical temperature
and by energy calculation at zero temperature, and inter-
polate between these to obtain a phase diagram in the
plane of the temperature and chemical potential.

We want to calculate the free energy F, which can be
expressed in terms of the density matrix as F=FE — TS
=Tr{pH+ Tplnp}. The mean-field approximation con-
sists of taking p as the product of single-site density ma-
trices as p=JT; p;. Close to the critical temperature, the
order parameters become very small, so that we can ex-
pand the free energy in powers of the order parameters.
Here, we generalize CHM and carry out the analysis for
the interaction between a dopant and surrounding rotors
given by Eq. (2). We take

b= |1+ 3 [C,(m)cos(2me;) +S; (m)sin(2m6)]1 | |

m=1
3)

with order parameters C;(m) and S;(m), which are al-

lowed to depend on the site index i. The dominant order .

parameters are C;(1) and S;(1) which correspond to
quadrupole interactions, other ones can only be induced
by either C;(1) or S;(1). Then, the thermal averages are
given by

(cos(2m6;)) =Trlpcos(2m6,)1 = 5 C;(m) ,

(sin(2m6;)) =Trlpsin(2mo;)1 = + S;(m) .

In the mean-field approximation,” we can write the free
energy as

Fint=z (An —,u)xn+T[xnlnxn+(l —xn)ln(l —x,,)]

“@
with

An =Y, yl{c0s26;)cos2y,; +(sin26,)sin2y,,] .
J

By minimizing Eq. (4) with respect to x,, we eliminate x,
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from the free energy in favor of A,. We obtain

Fii=X Tln(1 —x,) ==X Tln(1+e“ T )

Close to the transition temperature A4,, which is expressed
in terms of {cos26,) and {sin26,), and thus in terms of C,
and S,, becomes very small. Hence, we expand the free
energy of Eq. (5) in powers of C, and S,. Then, we make
a Fourier transform to momentum space as

1 iqT;
Ci(m)“FrZiCmelqr )

along with the similar expression for S;(m). The second-
order term of F (=Fy+ F;,,), within the space spanned by
C,(q) and S,(q) which are the dominant variables in this
problem, is

Ci(q)
. 6)

FQ@ =(C(q),S:1(q))x "' (@) [Sx(q)

The inverse susceptibility tensor y ~'(q) is not diagonal in
general. However, for an appropriately chosen wave vec-
tor q, it can be diagonalized to yield eigenvalues

1—~2
rcc(q) = 2722 ﬁ+a_7

| |35”|I2
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1"2
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with

- — Y A

72 cos(gya) and T 2cosh(a/2T)
The transition temperature at a given chemical potential
u corresponds to the maximum temperature with respect
to q, which satisfies either I'..(q) =0 or I';;(q) =0. The
transition temperatures from orientationally disordered to
ordered phases obtained this way are plotted in Fig. 2. At
the tetracritical point where the disordered and V3x+/3
phase meet (point C in Fig. 2), the transition tempera-
tures corresponding to C,(q) and S,(q) are the same.
The parameter y is chosen to be three, such that the dop-
ing density at point C is about 10%, assuming that there is
one dopant ion per four carbons along the chain in the
V3x+/3 phase. The overall structure of the phase dia-
gram is not sensitive to the small variation of the parame-
ter, and in fact the /3 x+/3 phase is stabilized for any pos-
itive y. The transition line to the left-hand side of point C
corresponds to the ordering of S;(q) and the transition
line on the right-hand side to that of C,(q). Note that the
transition temperature from disordered to HB,s corre-
sponds to the criticality of S,;(q) at temperature
T.=a+ % B, in agreement with the result of CHM.

The nature of the phase transition can be determined
from higher-order terms of the free energy. As explained
in Appendix A of CHM, we introduce normal modes x4,
X, XC, Y4, ¥B, and yc to diagonalize the second-order
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FIG. 2. Phase diagram in the plane of temperature and alkali
chemical potential, showing various phases occurring in the pro-
cess of the alkali doping. Interaction parameters are chosen for
a=—1, =2, and y=3. DS, V3, HB, S, H, and IC represent
orientationally disordered, /3 x+/3, striped, hexagonally modu-
lated, and incommensurate phases, respectively. The HB,c
phase and the HB,s phase imply that cos(26) and sin(28) be-
come critical first as the temperature is reduced, respectively.
See the text for further details.

terms of the free energy.®’ We then minimized F with

respect to the y’s, which is less critical than the x’s in the
incommensurate (IC) phase between HB,s and NEP ﬁ,
and obtain F in powers of the x’s up to the fourth order.
After some straightforward algebra, we obtain

F=Fo+Fin= s [T =T (13 +x3+x3)

tulxi+xi+xd)?
+w(xixd+xixé+xéx3), )
where
u=—z—+6R4b4 (9a)
16 ’
b*R*n(1—n)y*
w= =
2201 —
X [(1—6n+6n2)-— 6TR "F(l 2n) ] (9b)
with
1 Rr=2n—n)
e "2 T
2
a= [l+cos [%t” and b =3sin? [-git] . (10)

In Eq. (10), t varies within O to 1, =0 and 1 correspond
to HB and +/3x+/3 phases, respectively. Both of 3u+w
> 0 and u > 0 are satisfied at all u, which implies that the
transition from disordered to ordered phases is continu-
ous. The first term of Eq. (8) is the second-order term of
the free energy investigated so far. 7,(u) is determined

RAPID COMMUNICATIONS

3441

from Eq. (7b). The second and third terms of Eq. (8) are
the isotropic and anisotropic part of fourth-order terms
with coefficients u and w as given in Eq. (9). Note that
the expansion is valid near the transition temperature, ex-
cept very near the tetracritical point C. Positive w corre-
sponds to a single condensation with one of x4, x5, and x¢
nonvanishing, while negative w implies a simultaneous
condensation of the three. Then w <0 (w>0) corre-
sponds to a striped (hexagonal) modulated phase. We
find that w is positive at point 4 and changes sign between
points A and C of Fig. 2. Therefore, we have a first-order
transition from striped to hexagonally modulated phases
within the IC phase between HB,s and V3x/3.

It is straightforward to calculate energies of various
periodic structures at zero temperature. We find a first-
order transition from HB,s to +/3x+/3 phases at pc“)
=3(4+ + 28— ), which is equal to —3 for 8=2 and
y=3. There is another first-order transition from v3x+/3
to HB,c phases at u@=3(— 1+ 3p—y), which is
equal to — 3 for =2 and y=3. Combining these energy
calculations at zero temperature and the Landau expan-
sion close to the critical temperature, we obtain the phase
diagram in the plane of temperature and chemical poten-
tial, as shown in Fig. 2. DS, HB,s, V3, and HB,¢ respec-
tively, represent orientationally disordered, herringbone
“sine” [in the sense that S,(q) becomes critical firstl,
V3%x+/3, and herringbone “cosine” phases. There are IC
phases between HB,s and V3x+/3, and between V/3x/3
and HB,c. Within the IC phase between HB,s and
V3x+/3, S and H represent striped and hexagonally
modulated phases, respectively. The striped phase
configuration is schematically shown in Fig. 3(a). A small
amplitude of the rotors in the diagram represents the re-
gion where the rotors are thermally orientationally disor-
dered, it consists of undoped HB,s phases separated by
orientationally disordered regions. A hexagonally modu-
lated phase is shown in Fig. 3(b), a hexagonal network of
domain walls separates three states of the +/3x+/3 phase.
The dopants go into the open galleries formed by the ro-
tors. The period of modulations of both of these incom-
mensurate phases varies continuously as the temperature
and chemical potential are varied.

In our mean-field calculation, the doping-induced
structural phase transition proceeds from the undoped
herringbone to the +/3x+/3 phase via striped and hexago-
nally modulated phases. Both of the striped and hexago-
nally modulated phases are incommensurate ones, and
their periods vary continuously as the temperature and
chemical potential are varied. Because their symmetry
groups are not related to each other, the transition from
one to the other phase is first order. It is interesting to
note that the transition from striped to hexagonally modu-
lated phases is first order and occurs at about 6% doping
level, where the first-order-like “insulator-metal” transi-
tion® was observed. It will be very interesting to investi-
gate the possible interplay between these transitions. In
the x-ray scattering experiment of Na-doped trans-
(CH),, however, Winokur et al. observed that the doping
induces a structural transition from the HB,s to the
V3%+/3 phase via disordered and hexagonally modulated
phases.? We should point out that an important parame-
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FIG. 3. Schematic diagram of S and H phases of the phase diagram shown in Fig. 2. The periods of modulation of these phases
vary continuously as the temperature and the chemical potential are varied. A small amplitude of a rotor represents the orientational-
ly disordered region, and the size of a circle is approximately proportional to the excessive density of dopants. (a) is for the striped
phase, where a solid circle represents excessive doping density and an open circle depleted density. (b) is for a hexagonally modulated
phase, where a hexagonal network of domain walls separates three states of the +/3x~/3 phase.

ter in comparing our mean-field calculation with experi-
mental observations is the correlation length & along the
chain direction for the orientation of the (CH), chain. If
& is much larger compared with a lattice constant, then
the mean-field analysis presented in this paper is appropri-
ate. On the other hand, if £ is comparable with the lattice
constant, then the fluctuation effects neglected in this
treatment should be important. We expect that in this
case there may be a disordered region between the HB,s

and +3x+/3 phases extending down to the low-
temperature region, as was first pointed out by Cop-
persmith et al.® Further research including both of these
ordering phenomena will be quite interesting.

We are grateful to A. B. Harris for very useful conver-
sations. This work was supported through National Sci-
ence Foundation Grants No. DMR-87-03551 and No.
DMR-85-19059.

L. W. Shacklette and J. E. Toth, Phys. Rev. B 32, 5892 (1985).

2M. Winokur, Y. B. Moon, A. J. Heeger, J. Barker, D. C. Bott,
and H. Shirakawa, Phys. Rev. Lett. 58, 2329 (1987).

3H.-Y. Choi, A. B. Harris, and E. J. Mele, Phys. Rev. B (to be
published).

4We should also include a dipole moment in addition to the
quadrupole moment to represent the chain, because a polymer
chain is not perfectly symmetric under a rotation by n with
respect to the chain axis. However, because of the dominance
of quadrupole over dipole moments, it does not make any
difference close to the critical temperature if we do not in-
clude the dipolar interaction.

5In the x-ray diffraction experiment on Na-doped (CH), (020)
and (110) peaks are always very close to each other (Ref. 2),
which implies that the underlying triangular Ilattice is

preserved. Therefore, translational displacements are not im-
portant in the process of structural modulations of Na-doped
trans-(CH).

6R. H. Baughman, L. W. Shacklette, N. S. Murthy, G. G. Mill-
er, and R. L. Elenbaumer, Mol. Cryst. Liq. Cryst. 118, 253
(1985); D. Djurado, J. E. Fischer, P. A. Heiney, and J. Ma,
Synth. Met. (to be published).

7A. B. Harris, O. G. Mouritsen, and A. J. Berlinsky, Can. J.
Phys. 62, 915 (1984); A. B. Harris and A. J. Berlinsky, ibid.
57, 1852 (1979).

8J. Chen, T. C. Chung, F. Moraes, and A. J. Heeger, Solid State
Commun. 53, 757 (1985).

9S. N. Coppersmith, D. S. Fisher, B. I. Halperin, P. A. Lee, and
W. F. Brinkman, Phys. Rev. B 25, 349 (1982).



FIG. 1. Schematic diagram of the (CH), structure with a
dopant ion labeled n, projected along the chain direction. The
polymer chain labeled i is represented by a rotor on a 2D tri-
angular lattice, with a setting angle 6; with respect to the x axis.
The rotors orient themselves to open a gallery for the dopant.



