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Chemical potential oscillations near a barrier in the presence of transport
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(Received 22 May 1989)

The electrochemical potential drop across a single scatterer in an otherwise perfect conductor
measured by weakly coupled probes is investigated. Phase sensitive probes yield a spatially oscil-
lating voltage over distances of a phase-randomization length away from a scatterer. In a single-
channel conductor these oscillations have a period XF/2 similar to the Friedel oscillations. The
amplitude of the oscillations is the same on either side of the scatterer. The potential drop across
the obstacle also oscillates and is, in general, not positive. Averaging the chemical potential over
these oscillations yields a potential drop which is positive but smaller than the potential drop pre-
dicted by neglecting these oscillations altogether. In a multichannel system the chemical potential
fluctuations are more complex with oscillatory components of a much longer period than kF.
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FIG. 1. (a) Multiprobe conductor with one or more weakly
coupled probes. Aside from the probes, the only scattering pro-
cess considered is that due to a barrier. (b) Schematic represen-
tation of the conductor depicted in (a). a and P are the current
amplitudes which need to be calculated to determine the overall
transmission probabilities.

In this paper, we discuss the chemical potential near a
scattering center in an otherwise perfect-conductor subject
to current transport. The electrostatic potential near such
a barrier was investigated by Landauer ' many years ago
and continues to be a subject of interest. In this paper we
focus on the chemical potential as measured by weakly
coupled probes (see Fig. 1). It has been understood be-
fore, that there are Friedel-like oscillations in the electric
potentials near the barrier. In particular, we are con-
cerned with the effect of these oscillations on the mea-
sured chemical potential difference across a scatterer. In
small conductors on a length scale short compared to the
phase-breaking length, these oscillations have a profound
effect if the measurement is made with weakly coupled
probes (characterized by a conductance much less
than e /It). A possible realization of weakly coupled
probes is provided by a tunneling microscope or by split
gates operated near pinchoff. ' We make no attempt to
describe weak coupling probes in a realistic way, ' ' but in-

stead expand on the approach by Engquist and Ander-
son. This leads to a discussion which is free of
mathematical complexities but points to the effects of in-
terest.

The chemical potential measured with probe 3 in the
presence of transport from probe 1 to probe 2 is '

T31P1+T32P2
P3 T31+T32

Here, T;~ is the probability for transmission from the
reservoir with chemical potential pj to the reservoir with
chemical potential p;. Since both the denominator and
the numerator oscillate on a length scale of X,F as the
probe is moved along the conductor, the averaged chemi-
cal potential differs from a chemical potential calculated
by using only averaged transmission probabilities.

We study the simple geometry of Fig. 1 for the case of
an effectively single-channel transmission problem. In the
setup of Fig. 1 oscillations in the chemical potential are a
consequence of the interference of the reflected wave with
itself. A wave incident from terminal 1 gives two contri-
butions to the current in probe 3. First, there is direct
transmission into the probe and second, a portion of the
carriers which are transmitted past the probe are scat-
tered back at the barrier and enter the probe on their re-
turn trip. It is the superposition of these two amplitudes
which determines the transmission into probe 3. Thus, the
transmission probability T31 contains a quantum interfer-
ence term. We term a voltage measurement which is sen-
sitive to interference effects at the probe, phase sensitive.
An averaged chemical potential can be determined by
imagining that we move the probe along the conductor
and take the average of these measurements. A potential
obtained in this manner is termed a phase-averaged volt-
age measurement. We can compare a phase-sensitive or
phase-averaged voltage to the result which is obtained by
neglecting interference terms altogether. Physically, this
requires a process which acts on the carriers between the
barrier and the measurement probe in such a way that it
destroys the phase memory of the carriers but does not
aff'ect their momentum. Alternatively, there might exist
more complicated measurement probes which exclude the
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interference described above by construction. We term
the result of such a measurement phase insensiriue T.hat
voltage measurements can be sensitive to phase has be-
come well appreciated with a series of papers on voltage
fluctuations' ' in microelectronic conductors and has
been highlighted in electron focusing experiments.

Oscillations of short wavelength would not be of great
importance if it turned out that averaging over the oscilla-
tions leads to a result which could be obtained by neglect-
ing these oscillations altogether. Our example demon-
strates that situations exist where the phase-averaged and
the phase-insensitive voltage measurement lead to very
different answers. For a barrier (or sequence of obstacles)
with transmission probability T, a phase-insensitive mea-
surement yields the resistance found by Landauer, '

(2)

phase, P2 s2~ =expi(82+8~). A portion of these carriers
is reflected with probability amplitude r at the barrier and
gives rise to a wave P2 expi(82+ b~+2&)r incident from
the right-hand side. Here, p-krdL is the phase accumu-
lated between the probe and the barrier separated a dis-
tance dL. Thus we find, P3 s3~+s32expi(b2+8~+2p)r.
The total amplitude is thus P& Jeexpi(B&+b3)
x [1+expi(282+2&)r]. Therefore, we obtain a transmis-
sion probability Ti~ !P3! e(1+R+2R ' cosy').
Here we have expressed the reflection amplitude in terms
of the reflection probability R and the phase hp associated
with reflection, r R'~ exp(ih, p). We have also intro-
duced the abbreviation g3 282+2&+6& for the overall
phase of carriers transmitted into probe. 3. The transmis-
sion probability T32, in contrast, does not contain an in-
terference term. Et is simply Ti2 !s32t'! eT. Using
these results and Eq. (1), we obtain the chemical potential
measured at probe 3,

Below we show that the same assumptions as made by
Engquist and Anderson in deriving Eq. (2), but viewing
the sample and the probes as a coherent entity, yields a
phase-averaged resistance,

p]+p2 R+R' cosg3 p f p2
P 3

~ + l+ R ]"cos~3
(4)

h 1 —MT (3)
e2 T

The dependence on JT rather than T alone is a conse-
quence of interference effects,

To calculate the transmission probabilities in Eq. (1),
we need first to specify the conductor and the coupling of
the probes in more detail. As in Ref. 4 we proceed by
specifying the elastic scattering properties in terms of
scattering matrices s;~. The scattering obstacle in the con-
ductor is characterized by transmission amplitudes r and t
for carriers incident from the left-hand side and r' and t'
for carriers incident from the right-hand side [see Fig.
1(b)]. The junction of the conductor and the probe is
determined in the following way: ' The coupling param-
eter is e and is assumed to be small. A version of the cou-
pling matrix with real coe%cients is given by
$3] $32 Je. Transmission for carriers from branch 1 to
branch 2 is almost unity and is given by
s2~ 1 —e/2+O(e ). Carriers incident from branches 1

or 2 suffer very little reflection back into these branches,
s)) s22 —[e/2+O(e )]. Most carriers incident from
probe 3 are reflected back into probe 3,
$33 [1 —e+ O(e )]. These elements of the matrix to-
gether with the requirement that s is symmetric in the ab-
sence of a magnetic field completely specify the matrix.
(A more general coupling matrix which breaks the sym-
metry !si~! !s32! is discussed in Ref. 15.) Since we
deal with phase-coherent voltage measurements we want
to take into account that the scattering matrix is, in gen-
eral, not real. %'e multiply the element s;~ of the matrix
given above with a factor expi(b;+bj), where the b; are
arbitrary phase shifts. Such a choice preserves the sym-
metry and unitary property of the scattering matrix. We
can now evaluate the transmission probabilities. Consider
a unit current incident from probe 1 specified by P& 1.
The amplitudes P3 and a2 are zero. We want to calculate
the amplitude P3 s3~P~+si2P2. Carriers which directly
pass the junction from branch 1 to branch 2 acquire a

If the probe is to the right-hand side of the barrier, a re-
petition of the steps that led to Eq. (4) gives

p]+p2 R+R cosg4 p] p2p4—
2 l+R ]~2cosg4 2
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FIG. 2. Chemical potential oscillations as a function of the
distance dL and dR of the probes away from the scatterer for the
transmission probabilities, T=0.9, 0.5, and O. l.

The overall phase is given by g4 2b~+2p'+hp', where

kFdg is the phase accumulated between the barrier
and the probe to the right-hand side and Ap' is the phase
change associated with reflection of carriers incident from
the right-hand side, r'=R'~ expihp' The c.hemical po-
tentials are oscillatory functions of the distance of the
probes di, and dR from the barrier (see Fig. 2). Et is very
remarkable that the amplitude multiplying (p~ —p2)/2 is

the same for both p3 and p4. The amplitude of the oscilla-
tions is proportional to R ' and proportional to the chem-
ical potential difference between reservoirs 1 and 2,
hp R '

(p~ —p2). The ainplitude, therefore, gives also
the upper and lower bounds of the chemical potential
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difference measured across the scatterer,

R (p & p2) ~ (p3 p4) ~ R (pl p2) ~ (6)

In Fig. 2 the chemical potentials p3 to the left-hand side of
the barrier and p4 to the right-hand side of the barrier are
plotted as a function of the distance from the barrier. In
Fig. 2(a) the potentials are shown for a very transparent
barrier T 0.9. For the transparent barrier the oscilla-
tions are nearly harmonic and the only effect of the bar-
rier is a phase shift Bq —6'~+hp —Ap'+n across the bar-
rier. In Fig. 2 the phase shift is taken to be m. As the bar-
rier becomes more opaque the amplitude of the oscilla-
tions increases and so does the anharmonic content of the

oscillations. Figure 2(b) shows the oscillations for a bar-
rier with transmission probability T 0.5. For a very
opaque scatterer, T 0.01, Fig. 2(c) shows that the oscil-
lations are strongly anharmonic. p3 reaches its minimum
value in sharp troughs and p4 reaches its maximum in
sharp spikes. The spikes (and troughs) are Lorentzian
with a height —,

' (1+JR ) and a width 242[(1 —R '~2) 1 '~2.

The current from reservoir 1 to reservoir 2 is
I (e/h)T(p~ —p3) up to corrections of order e. The
four-probe resistance %~243 (p~ —p2)/eI, where the first
two pairs of indices indicate current source and current
drain and the second pair of indices indicates the probes
used to measure the voltage, ' will for simplicity be denot-
ed by%. Using Eqs. (4) and (5) yields

e2
2R+ (1+R)R ' (cosg3+ cosg4) +2R cosg3 cosg4

2 (I+R'i'cosg3)(1+R'i cosg4)
(7)

This resistance is maximal for cosg3 cosg4 1 and given
by R (h/e )R' /T, and for cosg3 cosg4 —1 this
resistance is minimal and given by %' —(h/e )R'~ /T,
consistent with the bounds given in Eq. (6). Due to the
oscillatory nature of the chemical potential the four-
terminal resistance can be negative as has been demon-
strated in a number of experiments (see Refs. 6 and 9).
The negative four-terminal resistance does not violate any
fundamental principle. The overall dissipation (to lowest
order in e) is given by the two-terminal resistance and is
equal to W (1/h)T(p~ —p2) .

Suppose we move probe 3 along the conductor over a
distance much larger than kF/2, record these measure-
ments and calculate the average chemical potential. From
Eq. (4) we find

&P3,4&- P)+@2 + —, (1 —vT)(p) —p2),

where ( ) denotes an average over g;. In Eq. (8) the plus
sign applies for p3 and the minus sign applies for p4. The
phase-averaged resistance obtained from these potentials
is given by Eq. (3). Note that after phase averaging we
obtain a resistance which is positive.

If the oscillations are neglected altogether, we find

p3-p2+ —,
' (1+R)(p~ —p2) and p4-p2+ —,

' (1 —R)
34 (p~ —pz). This leads to the resistance given by Eq. (2).
In Fig. 3 we compare p3 —p4 normalized by p~

—p2 for
the different voltage measurements. The dashed line gives
the upper and lower bounds of the phase-sensitive voltage
measurement and is obtained using Eq. (6). The solid line
is the phase-averaged voltage difference [giving rise to the
resistance Eq. (3)l and is obtained from Eq. (8). The
dash-dotted line depicts the chemical potential difference
for the phase insensitive voltage measurement [leading to
the resistance given by Eq. (2)]. Figure 3 also shows the
root mean square of the voltage fluctuations which we cal-
culate below.

An additional measure of the significance of the oscilla-
tions discussed here is the root-mean-square deviations of
the phase-sensitive voltage difference away from the
phase-averaged voltage. (The mean-square deviations

I

would be a complete characterization of these fluctuations
only if their distribution were Gaussian. ) We introduce
8V=p3 p4 and using Eqs. (4), (5), and (8), we find
after performing the integrals,

((ev —(eV&)'&- —,
' JT(1 —JT)(p) —p2)'.

The resistance fluctuations are defined by—(%) (V —(V))/I. With the help of Eq. (9) we find

(( ~)2) h 1 1 —JT
2 2 T 3/2

Equations (9) and (10) show that the fluctuations in the
measured resistance due to the self-interference of elec-
tron waves in the measurement probes are substantial.
While these resistance fluctuations tend to zero for a com-
pletely transparent scatterer, they increase and grow over
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FIG. 3. Potential drop as a function of transmission probabil-
ity for the phase-averaged measurement (solid line), the phase-
insensitive measurement (dash-dotted line). A phase-sensitive
measurement is bounded by the dashed line. Also shown (dot-
ted) are the root-mean-square voltage Auctuations for the
phase-sensitive voltage measurement.
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every bound as the scatterer becomes opaque. We stress
that Eqs. (9) and (10) have been obtained by considering
a very special ensemble: We move probes along a specific
conductor and do not, as typical in fluctuation theory, con-
sider an ensemble of different conductors coupled to dif-
ferent probes.

We have illustrated the difference between phase-
sensitive, phase-averaged, and phase-insensitive voltage
measurements by discussing a very simple example. The
differences between these measurements are very severe
for an effectively single-channel transmission problem. In
a multichannel channel conductor the effect depends sen-
sitively on the particular way the probes couple to the con-
ductor. There are many-channel probes which by con-

struction avoid, at least in the geometry of Fig. 1, the in-
terference of the incident wave with the reflected wave,
and in our terminology are, therefore, phase insensitive.
In a many-mode conductor each channel contributes
phase-sensitive terms which depend on the longitudinal
momentum k„of the nth transverse channel and, in gen-
eral, the sum and differences between these. Consequent-
ly, the oscillations do not only contain components with
wavelength A,F/2 only but contain much longer periods of
the order of the width of the wire. Since the accumulated
phases are different for each mode the chemical potential
is not periodic but fluctuates in a complicated manner,
similar to voltage fluctuations, but caused only by the in-
terference of the incident wave and the reflected wave.
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