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Airy-coordinate Green s-function technique for high-field transport in semiconductors
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We introduce an Airy-coordinate formulation of the Kadanoff-Baym-Keldysh Green s-function
techniques to treat electron-phonon coupling in a high electric field. The resulting Dyson s equa-
tion is simpler than those found in purely momentum-coordinate formulations, and suggests a natu-
ral approximation. We observe oscillations due to phonon coupling which are incommensurate
with those due to standing waves in the unperturbed problem.

Recent e6'orts to understand the physics of semicon-
ductor devices at ultrasubmicrometer dimensions have
brought into focus the limits and weaknesses of tradition-
al semiclassical transport phenomena based upon the
Boltzmann transport equation. ' This theory assumes
that the electrons exist in nearly stationary, free-particle-
like states of momentum k. Scattering is treated as weak
and infrequent, so that an approach based upon perturba-
tion theory can be utilized, while the applied electric field
is assumed to be weak, and slowly varying on both space
and time scales. In submicron devices, however, ordinary
applied voltages lead to very high electric fields, and at
these field strengths the scattering rates can be above 10'
sec '. In fact, when the spatiotemporal scales of the
physical system under study begin to approach those of
the microscopic interactions, we cannot expect any single
collision to be completed before other processes occur
and therefore interfere with it. A transport theory is
therefore needed which can overcome the semiclassical
limits. Two important quantum effects that should be de-
scribed by such a theory are collisional broadening (CB)
and the intracollisional field eft'ect (ICFE). Collisional
broadening has been treated alone for high fields and in-
corporated within a Monte Carlo process, ' while only a
formalism has been proposed for the ICFE.

The development of a tractable quantum transport
theory incorporating both CB and the ICFE, and capable
of dealing with the length and time scales relevant to
modern submicron devices, has proven to be a di%cult
task. Several approaches are based upon the KadanoiT'-
Baym-Keldysh (KBK) nonequilibrium Green's-function
technique. This technique is rigorous in principle, al-
though current approximations have been limited to
weak fields and/or slowly varying systems. Such ap-
proximations have been used, for instance, to obtain the
kinetic equation for the Wigner distribution function (re-
quired for comparison with the previously derived for-
malism for the ICFE). In this paper as well, we utilize
the KBK Green's functi'ons, but describe an approach ap-
propriate for high, homogeneous fields. We will concen-
trate mainly on the properties of the spectral density
function A ( k, co ) which gives a "probability" distribution
for Gnding an electron with energy %co in a momentum
state k.

A constant electric field breaks the translation symme-

try of the system along the Geld direction, so momentum
along the field is no longer a good quantum number. '

Many authors, in the attempt to overcome this diKculty,
have represented the electric field E by a vector potential
A(t) = —fdt'E(t'). This breaks the time translation in-

variance, which is equally important in the proof of con-
servation laws. Low-field treatments can ignore this,
since the field may be treated as a perturbation of a
homogeneous system. Treating phonon interactions in an
arbitrary field, on the other hand, leads to an intertwining
of space and time coordinates in the Dyson equation, so
the usual simplifications do not occur on transformation
to momentum-energy Green's functions. Describing the
system in terms of shifted coordinates, " such as
z fico/eE, also—does not deconvolve the Dyson equation.
The use of center-of-mass (Wigner) coordinates does not
simplify the task, as they have no preferred status in the
theory, and a coordinate transformation is required to ac-
count for the translation —energy-shift symmetry. The
approach which we have found workable is to introduce
an Airy transform of the coordinate (z) parallel to the
field. We emphasize that previous treatments have found
solutions in terms of Airy functions, " '" while the
present use of an Airy transform di6'ers by the incorpora-
tion of the symmetry of the problem at an early stage, di-
agonalizing the unperturbed Green's function and lead-
ing to a considerably simpler expression of Dyson's equa-
tion.

Using this formulation, we solve Dyson's equation for
the single-particle retarded Green's function 6"(ki,z,
z', co). For this, we are able to derive a spectral density
function for the weak electron-phonon interaction which
accounts for both collisional broadening and the intracol-
lisional field effect. Using Airy coordinates we are also
able to distinguish straightforwardly between two kinds
of oscillatory e6'ects that are combined in other represen-
tations: In real space, the potential of the electric field
acts as a sharp barrier, and standing waves are generated
on the real-momentum side of the classical turning point.
This leads to nodes in the spectral density, when that is
viewed as a function of coordinate z. These Grst oscilla-
tions are absent when the spectral density is viewed as a
function of Airy coordinate. When the phonon interac-
tions are included the oscillations are changed as a conse-
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2 (k, co) = —21m[6'(k, co)] . (2)

The retarded Green's function satisfies the familiar
Dyson's equation, which can be formally written as

G P' —G
f' +G

P' g P G P'

0 0

where G0 is the retarded free-particle propagator and the
self-energy X"describes the scattering processes.

The electric field is usually included with the scattering
processes in X'. As noted above, this leads to a perturbed
Green's function 6' that is no longer translationally in-
variant. The usual Fourier transformations then yield a
Dyson's equation in terms of a center-of-mass time T and
a center-of-mass R, in addition to k and cu. These
"Wigner coordinates" have been used in many earlier at-

quence of the interaction between the Geld and the
scatterers, and oscillations are present in the real part of
the self-energy. These latter oscillations are the only ones
present in the self-energy in the Airy coordinate represen-
tation. As a result, it is possible to see clearly the oscilla-
tions which are due to the electron-phonon interaction.
These oscillations are incommensurate with the
standing-wave oscillations.

The spectral function can be defined in terms of the an-
ticommutator of the fermion creation and annihilation
field operators P(r, t) and g (r, t) as'

A (r, t;r', t') = ( I% (r, t), q (r', t')
I ),

where the angular bracket ( . ) indicates the none-
quilibrium expectation value. If the system is translation-
ally invariant in space and time, we can Fourier trans-
form the spectral function into (k, co) space. Then
A (k, co) obeys sum rules that give it the meaning of a
weighting function: 2 (k, co)/2n. represents the probabili-
ty that a particle with momentum A'k has energy fice. The
spectral function is calculated from the nonequilibrium
retarded Green's function

tempts to go beyond perturbatively small fields. The
coordinates are convolved in a way that depends on the
gauge used to describe the electric field, and both scalar
and vector gauges have been used in attempts to solve the
equation.

We take a different approach, including the electric
field (represented by a scalar potential P= —Ez) as a part
of the unperturbed Hamiltonian. While this has been
done previously, we choose as a basis set the eigenstates
of the Hamiltonian: plane waves in the plane normal to
the field and Airy functions of the first kind along the
direction of the field. This allows us to define a coordi-
nate system (ki, s), where ki=(k, k ). The transforma-
tion that connects the two coordinate systems (x,y, z) and
(ki, s) is defined by the integral operation

(4)

where L =(irt /2mE)' and p is the transverse position
vector. The Airy transform variable s has a physical in-
terpretation as the turning point in z of a (noncoupled)
electron with energy s(ki, s)=A' ki/2m+eEs. In this
space, a function diagonal in both k7 and s variables is
translationally invariant in the transverse direction, but
not along the z direction. This is a very appealing prop-
erty since it implies the possibility of dealing with diago-
nal functions without requiring an assumption of transla-
tional invariance along the direction of the applied field.

The unperturbed, field-dependent Green's function can
now be written down quickly as

Gz(ki, s, t t') = —i 6(t ——t')exp ——ei, , (t t')—l

Dyson's equation becomes

6"(ki,s, s', co) =GE(ki, s, co)5(s —s')+ 6@(ki,s, co)IdszX"(ki, s, sz, to)G "(kJ ysz, s', co),

and the self-energy 2 now contains only information about the scattering mechanisms. For a nondegenerate system,
this can be approximated as

X"(r,t;r', t')=iDO (r, t;r', t')6 "(r, t;r', t'),
where D0 is the equilibrium phonon correlation function

Do (r, t;r', t')=(y(r, t)y(r', t))

with y and cp the phonon field operators.
We consider nonpolar optical processes, and consider only one-phonon scattering with the approximation G"=GE in

(7). Because GE is diagonal and X"(ki,s, s', co) is highly peaked about s =s, a diagonal approximation for X" is ap-
propriate here. We then obtain the expression

X(see)=
i Vi g No+ F(st),=2~ 2 g+1

3/2

Re[F (s, co) 7
= — — O' Ai'(g)Bi'(g) —gAi(g)Bi(g) +

27T f72Im[F(s, co)]= — — e' [Ai' (g) —gAi (g)],&2 fz2
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where 8= [3(AeE) /2m]', g= [eEs —A'(co —ilcoo)] le,
and

~ V~ is the square of the electron-phonon matrix ele-
ment. The terms with q=+1 correspond to emission
and g= —1 to absorption of a phonon of frequency coo by
the electron.

Dysons's equation (6) is now a multiplicative equation
and an expression for the full, retarded Green's function
is obtained as

Re[G "(ki,s, co)]

fico —si, , —ReX"(s,co)

[itic —sk, —ReX"(s,co)] + [ImX"(s,co)]
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FIG. 2. The imaginary part of the self-energy, which is the

scattering rate in normal circumstances, as a function of the re-
duced coordinate g. The steps in the scattering rate are essen-
tially the onset of new quasi-two-dimensional structures corre-
sponding to the zeroes of the real part of the self-energy in Fig.
1.
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FIG. 1. The real part of the self-energy, in arbitrary units, is
plotted as a function of the reduced coordinate g [defined fol-
lowing Eq. (8)].

In Fig. 1, we plot the real part of the self-energy X" as a
function of the argument g. The oscillations in the self-
energy have not been seen previously in other treatments
of the high field behavior, and arise from the Airy func-
tions in (8). The oscillatory nature means that we have
regions in which the energies are lowered, and other re-
gions where the energy is raised, and that these regions
alternate with one another. In fact, the negative-slope
zero crossings in Fig. 1 are quantized energies towards
which ihe quasiparticle energy concentrates. The zero
crossings occur asymptotically where g = [(3m /8 )( 2n
+1)] ~ . Because of the irrational factor in 6=3'~ eEI.,
these oscillations are incommensurate with those due to
standing waves of the phonon-decoupled problem. The
redistribution of spectral density is also re/ected in the
imaginary part of the self-energy, plotted in Fig. 2, where
the appearance of steplike behavior signals the onset of
additional densities of final states corresponding to the
subbands generated by each quantized level.

The spectral density found in (10), using definition (2),
satisfies the normal sum rules in that in Airy coordinate it
is positive definite and integrates properly. However, in
the real space along the field this does not carry through,
and nonpositive definiteness is found as in the case of ear-
lier work. ' ' ' Here, however, we believe the results
suggest that the oscillations (which are Airy-function-
like) are related to the "subband" tendencies discussed
above in relation to the real part of the self-energy. The
structure in the imaginary part of the self-energy rein-
forces this view. In addition, the spectral density in the
Airy coordinates exhibits an unusual double peak near
the zero point (where the limiting 5 function occurs,
which is the semiclassical turning point). This double-
peak structure suggests that there is a length scale associ-
ated with the motion along the electric field direction.
We conjecture that this motion might therefore be more
appropriately treated in terms of "hopping" transport in
the z direction between states described by discrete values
of the Airy coordinate. A state-counting argument then
implies the need for another quantum number. (An ap-
proximately analogous situation occurs in crystals. The
continuous reciprocal-space coordinate is replaced by a
quasimomenturn restricted to the first Brillouin zone, and
is augmented by a band index. ) The levels represented by
zero crossings of the real part of the self-energy in Fig. l
could serve as a kind of sub-banding in which the partic-
ular crossing, or subband, plays the analogous role of the
band index.

We have introduced a treatment in which the momen-
tum coordinate representation along the field direction is
replaced by a representation in terms of an Airy coordi-
nate. This yields the mathematical advantage of
simplified Dirac equations involving fewer coordinates.
It also yields the heuristic advantage of separating
phonon-coupled from phonon-free effects in the Green's
function and spectral density. %'e have applied this to
the case of nonpolar optical-phonon scattering in semi-
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conductors in high electric fields. The results provide
new insight to the coupled electron-phonon system in
these high fields.
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