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Exact perturbative solution of the Wolff model with electron-hole symmetry
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The spin and charge susceptibilities of the Wolff model with electron-hole symmetry-and the
Lorentzian density of band states are obtained exactly by standard perturbation theory. The solu-
tion is valid for any value of the Coulomb interaction and exhibits features which are observed ex-
perimentally in some strongly-interacting-fermion systems.

The presence of local Coulomb correlations in metallic
systems gives rise to many remarkable phenomena like
the Kondo effect,! valence fluctuations,? heavy fermions,>
high-temperature superconductivity, etc. Although
different in detail and described by different models, all
these phenomena seem to appear when the on-site
Coulomb repulsion U becomes the largest relevant energy
parameter. That would suggest that theoretical treat-
ments of strongly interacting fermions, the common
name associated with the above-mentioned systems,
should start from the large-U limit of the appropriate
models. Unfortunately, although easy to formulate, such
a program encounters many difficulties.® For example,
the obvious metallic character of strongly interacting sys-
tems becomes a nontrivial property to obtain theoretical-
ly.

Surprisingly enough, a qualitative description of many
of the phenomena observed with strongly interacting fer-
mions can also be obtained by perturbation theory, start-
ing from the normal metallic state and treating U as an
expansion parameter. The low-order expansions seem to
reproduce many of the experimentally observed features®
-and even allow one to discuss the small-U —large-U tran-
sition, which is an essential feature of the models describ-
ing strongly interacting fermions. Furthermore, there are
nontrivial examples for which the U expansion provides
the exact solution.” ° Experimentally, despite all the
peculiarities the data might display, one seems to be deal-
ing with metallic systems. All this, and the reasons of
simplicity, would recommend the perturbation theory as
a useful approach to strongly interacting fermions. How-
ever, one should mention that the basic question regard-
ing the applicability of the perturbative approach to
strongly interacting fermions, i.e., the existence of the
normal Fermi-liquid ground state, has no definite theoret-
ical answer even for the most often used models like the
Hubbard or the periodic Anderson model.

In this Brief Report we show that the U expansion can
be used to obtain the exact solution for the spin and
charge susceptibilities of the Wolff model, a particular
model of strongly interacting fermions. The results are
valid for any value of U and agree with the predictions
obtained by the numerical renormalization group
method.!® The paper is organized as follows. First, we
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define the model, next, formulate the perturbation expan-
sion for the susceptibilities and, finally, derive the exact
results.

The Wolff'! or spin-fluctuation!? model has been used
to discuss the properties of some transition-metal-based
alloys13 (e.g., Rh Fe, Ir Fe, etc.) and some heavy fer-
mions'* (e.g., UPty). In these systems, the Kondo
anomalies appear in the thermodynamic data, but the
electric resistance does not show the typical Kondo
minimum (or maximum in heavy-fermion intermetallics).
Rather, the electric resistance increases monotonically,
albeit very fast, with the increase of temperature. The
enhanced magnetic susceptibility, specific heat, and the
negative magnetoresistance indicate that the anomalies
are due to the presence of large Coulomb correlations at
the “magnetic” sites.

The model Hamiltonian is given by

H=73 ’ijcitxcja"’sozcgacoc + UCST"OT"S&"OL . (1)
L], 0 o

The first term in Eq. (1) characterizes the host conduction
band in which the on-site Coulomb correlations are
neglected. The hopping matrix elements 7;;=¢(R;—R;)
connect different sites and are assumed to remain un-
changed upon alloying. The second and the third term in
(1), characterizing the impurity placed at site 0, lead to
the potential scattering, proportional to g, and to the
many-body effects, due to the on-site Coulomb repulsion
U. The difference with respect to the Anderson model
appears because the symmetry of the relevant “magnetic”
impurity states and “nonmagnetic’ host states is assumed
to be the same. The parameter space for the Wolff model
can be defined by dimensionless quantities 7 and u, where
n=++¢,/U measures the deviation from the electron-
hole symmetry and u = U /7D measures the strength of
the Coulomb interaction. Here, D is the characteristic
energy of the unperturbed conduction band.

The perturbation expansion is formulated above the
nonmagnetic mean-field state so that the Hamiltonian is
rewritten as H =Hyr+H', where Hyy is the Hartree-
Fock approximation of H and

H’zU(chCOT_<n00>HF)(c(§lcol—(nOcy)HF) - @
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To obtain the expressions for the spin and charge suscep-
tibilities, ¥, and Y., one adds the appropriate conjugate
fields to H' and evaluates the second derivative of the free
energy with respect to those fields. The standard S-
matrix expansion generates the power series for
Xs=[27D /(gup)*1x, and x,=1nDy,, with u =U/wD
as the expansion parameter. Thus, we obtain for the di-
mensionless quantities x; and Y. the result

|
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and D2(7y,...,7,) are defined as the nth-order deter-
minants constructed from the local Hartree-Fock Green’s
functions, G (; —7;), with zeros on the main diagonal:

D(Ty, ..., 7,)=det[(1—8,)G35 (r,— ;)] . (6)

The Fourier transformation of G3J(7) leads to the stan-
dard diagrammatic expansion in which the unperturbed
propagators, G 86’(2), are given by

G¥ (={[gd(2))'—EF} . (7

Here, E§=gy+{nq, )urU, and g, =g; is the local
Green’s function in the absence of the impurities. In the
thermodynamic limit it reads
(0)
1 ro Po(€)
g;;(z V== ~
NJ-w

where p{®'(¢) is the density of the unperturbed host states.

From the structure of the expansion it is clear that any
quantity calculated perturbatively for the Wolff model as-
sumes the same form as the corresponding perturbative
result for the Anderson model and that all the general
identities derived for the Anderson model,%!° retain their
validity for the Wolff model as well. For example, the
linear specific-heat coefficient is given by

y'=3D 2nkd )y =1(x,+x.) .

de , (8)
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To proceed, one has to make explicit assumptions about

the shape of p°'(¢), and here we take

ND
O)g)=—""— | 9)
Po &2+ D?)
which leads to the result
G¥(z)=[z —E§ +iD sgn(Imz)] ! . (10)

Thus, for the case of the Lorentzian density of unper-
turbed band states, all the perturbative results for the
Wolff model, obtained in the site representation, are the
same as the corresponding perturbative expressions for
the Anderson model with the rectangular density of un-
perturbed band states, provided the parameters E;, and
A of the Anderson model are replaced by E§ and D for
the Wolff model.

In general, the coefficients cZ=c (EJ /D,ky T /D) can

B B n+2
e | d D e
deTl fo To+2 DT 707y

+D3 (7, ...
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Xs=>c, u" (3)
n=0
and
Xe= Ecn"'u" ’ @)
n=0
where the expansion coefficients are given by
s T2 D (T ooy Ty 1)
’Tn+1)D’l!+l(7-2""’Tn+2)]con (5)
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be calculated to finite order only and the analysis of the
model properties along these lines will be given else-
where. Here, we note only that the analogy between the
Wolff and the Anderson model allows the conclusion that
in the large-u limit either the Kondo or the valence-
fluctuation features will be obtained, depending on the
value of the asymmetry parameter.

In the particular case of the model with the electron-
hole symmetry, E§ =0, and for T =0, the solution which
is valid to all orders in U can be obtained. The
coefficients ¢%, evaluated with G33 given by Eq. (10), are
known to all orders and it follows”? that Y. and y. are
given by

Xo=e""o(u), (1D
Xe(w)=xs(—u), (12)
where
pu)=3 (—D"a,u" . (13)
n=0
The coefficients a,, obey the recursive formula
a,=[(17*)"/n!]—(2n —1)a, _, (14)

for n 21, with a,=1, and have the limiting properties
a,—0 and |a, ;,/a,|—0 for n — . Thus, @(u) defined
by the series expansion (13) is a well-defined function for
any value of 4 and so are y;(u) and x.(u).

The function ¢(u) has a completely different behavior
in the small- and large-u limits, which are given by

pyw)=1—Er*—1u as u—0 (15)
and
@ (u)=V'Tr/2ue 1 asu—ow . (16)

This is illustrated in Fig. 1 where @(u) is plotted together
with its asymptotic, large-u form ¢, (u) and its first-order
and second-order approximations, ¢(u#) and @(u).
Note that the transition from small-u to large-u behavior
takes place already around u =1. Furthermore, the
small-u result, which would be obtained by the finite-
order perturbation theory, retains its validity at those
values of u for which the exact result is already close to
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FIG. 1. Function ¢(u), defined by Eq. (13), together with its
asymptotic, large-u form @,(u) and its first-order and second-
order approximations, @;)(u) and @,)(u).

the asymptotic ¥ — co result. This is due to the extreme-
ly quick convergence of the series (13) which defines @(u):
for the first four coefficients one has ay=1, a;=0.2337,
a,=0.0599, a;=0.0134, and for n >>1 they diminish as
a,+1/a, <(7*/8)/(n +2). Thus it seems that the finite-
order u expansion reproduces, to arbitrary accuracy,
even those properties of the model which, at first sight,
could be obtained only by studying the large-u limit.
Next, we notice that the self-energy expansion and the
expression for the conduction-electrons’ T matrix allow
the conclusion that the electric resistance of the Wolff
model will increase monotonically with temperature and
that at low temperatures the power law will be obtained,
with the T? coefficient being inversely proportional to the
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square of the spin susceptibility. If the Kondo tempera-
ture is defined as kyz Ty /D =1/x;(T =0), the transport
and thermodynamic functions of the model obey, for the
physically relevant values of parameters, the scaling laws,
as is also the case for the Anderson model. Thus, qualita-
tively at least, the model exhibits the properties which are
experimentally observed in the transition-metal-based di-
lute alloys and some heavy-fermion systems above the
coherence temperature.

In summary, the properties of the Wolff model, which
describes particular strongly-interacting-fermion systems,
can be obtained by the perturbation theory. The exact
solution for the spin and charge susceptibilities, at T =0,
is obtained analytically for the case with the electron-hole
symmetry and the Lorentzian density of band states. In
the asymmetric case, the low-order perturbation theory
still allows one to discuss the large-u limit in which the
scaling laws hold. In that limit the phase diagram of the
model comprises the Kondo region (7=0), the valence-
fluctuation region (9=1), and the “nonmagnetic region,”
in which the many-body effects are not pronounced. The
numerical analysis of the perturbative results valid for ar-
bitrary asymmetry and for various densities of band
states, i.e., the study of the changes in the model proper-
ties caused by the interplay between the correlation
effects and the band-structure effects, will be discussed
elsewhere.

A note added: The single-impurity Anderson model
proved to be very useful for the understanding of the
periodic Anderson model. Likewise, we believe that the
solution of the Wolff model might contribute to our un-
derstanding of the “periodic Wolff model,” that is, the
Hubbard model.
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