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Simulations without critical slowing down: Ising and three-state Potts models
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We have developed a novel simulation method that combines a multigrid technique with a sto-
chastic blocking procedure. Our algorithm eliminates critical slowing down completely, as we

demonstrated previously by simulating the two-dimensional Ising model at criticality. Here we de-

scribe results of much more extensive simulations of the two-dimensional Ising and three-state Potts
models and provide a heuristic argument to explain why our method works.

I. INTRODUCTION

Simulation techniques have considerable importance in
the study of many-body systems, since rigorous analytic
results can be obtained only for the simplest models. In
particular, Monte Carlo simulations are widely used to
calculate properties of systems in statistical physics' and
in lattice gauge theories. One of the major problems
that simulations must overcome is that of system size; in
a variety of cases the main theoretical (and experimental)
interest in a model lies in the thermodynamic limit, i.e.,
when the number of degrees of freedom is macroscopic.
To reliably estimate the behavior in the thermodynamic
limit one has to perform simulations of large systems.
Such large-scale simulations become prohibitively long
(in terms of computer time) and expensive, since the basic
time unit is proportional to the system size. Beyond this
trivial scaling with size, simulations are even more prob-
lematic near critical points, because of critical slowing
down (CSD). This phenomenon causes the divergence of
a relaxation time ~ as the critical point is approached.
Thus the times needed to equilibrate the system and to
generate statistically independent configurations at equi-
librium become exceedingly large. At critically, ~ grows
as

with the linear size L of the system. Here ~ is measured
in units that scale with the total number of sites (i.e., L ),
and z is the dynamic critical exponent.

In the last few years there have been several attempts
to invent simulation techniques that eliminate CSD.
The physical origin of CSD is the manner in which the
system moves in phase space, e.g. , by changing one de-
gree of freedom (spin) at a time. At a critical point fluc-
tuations that involve creation of arbitrarily large correlat-
ed domains have significant statistical weight; reaching
such configurations by "incoherent" single-spin moves
takes a long time. Hence, in order to eliminate CSD one
should clearly seek an algorithm that performs collective,
nonlocal moves. Multigrid techniques ' appear to be a
sensible choice for such a task. They were developed for

accelerating iterative solvers of partial differential equa-
tions, where slowness arises from similar reasons to the
one discussed above. One of the first successful applica-
tions of multigrid methods in statistical mechanics, aimed
at accelerating convergence to equilibrium of a model,
was carried out by Goodman and Sokal. They applied
such a method to the P model on the square lattice and
reduced the relaxation time by an order of magnitude;
they did not, however, reduce the value of z. On the oth-
er hand Swendsen and Wang (SW) did succeed in reduc-
ing z. They generalized a method due to Fortuin and
Kasteleyn, based on a mapping between percolation and
Potts models, " to accelerate simulations of the latter.
For the Ising model on the square lattice, for example,
their method yields z =0.35 rather than z =2. 1, the value
obtained in standard simulations. ' '

We have recently demonstrated that CSD can be elim-
inated completely for a nontrivial model. ' Our algo-
rithm combines multigrid ideas with a stochastic block-
ing (coarsening) technique similar to the one used by SW.
In fact, the SW procedure can be viewed as a special case
of ours. In this sense the new method is a generalization
of the SW method, but it is essentially difI'erent from oth-
er known generalizations. ' Ideas underlying our ap-
proach were first presented in Appendix B of Ref. 9.
General aspects of the method are outlined there in a
manner applicable to discrete, as well as continuous-state
Hamiltonians, with a wider class of coarse-to-fine inter-
polations (not just simple blockings).

The basic idea, or strategy, of our method is as follows.
We perform a few Metropolis sweeps' of the original lat-
tice, using its associated Hamiltonian to generate (single-
spin-flip) transitions in phase space. Next, a stochastic
coarsening procedure is used to generate a new problem,
with fewer degrees of freedom, coupled by a different
Hamiltonian. This process is referred to as going from
fine to coarser level, or coarsening. The reverse process,
of restoring finer scale degrees of freedom and Hamiltoni-
an, is called uncoarsening. In the course of our simula-
tion we perform an organized self-similar sequence of
coarsening and uncoarsening steps, with a few standard
Metropolis sweeps at each level. Sweeps performed at a
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II. THE ALGORITHM

As outlined in the Introduction, our algorithm com-
bines a multigrid approach with a stochastic method that
creates blocks of spins. In what follows, we first give a
general description of the stochastic blocking techniques.
Next we explain how it was implemented in our previous-
ly reported study of the square-lattice Ising model, and
show how stochastic blocking was incorporated in the
multigrid cycle.

A. The stochastic coarsening procedure

Our coarsening procedure has two effects. First, from
a problem with L degrees of freedom ("fine spins") we

go to a new problem, with a smaller number, (L/b) of
"coarse spins. " Each new degree of freedom is, in effect,
a block of the original fine spins, all aligned. This "freez-
ing" of the fine spins is equivalent to restricting the phase
space of the original problem. The second effect is the re-
placement of the full original Hamiltonian with a new
one. Thus our process contains Monte Carlo simulations
of a stochastically generated, simplified Harniltonian,
over a restricted phase space with fewer degrees of free-
dom.

To explain the manner in which coarsening is done,
denote the fine-level Hamiltonian as

&=&,+ V, (2.1)

where factors of 1/kii T have been absorbed into & and
where &„the coarse-level Hamiltonian, is in some sense
easier to simulate than the original &. Assume that the
fine system is in a state Q, obtained for example in a stan-
dard simulation. We now may eliminate, or "kill" the in-
teraction V by either "deleting" it with probability

p„(Q)=c,e "~' (2.2)

level n use the Hamiltonian &„ that corresponds to that
level to generate transitions in the phase space of the lev-
el being simulated.

This paper contains a detailed description of the tech-
nique and its performance on the two-dimensional Ising
and three-state Potts models. We describe the algorithm
in Sec. II and show in Sec. III that it satisfies detailed bal-
ance. Section IV contains results of extended simula-
tions, performed on the (square lattice) Ising and three-
state Potts models. All simulations were done at the crit-
ical temperature of the infinite lattice. We describe the
manner in which we analyzed the data, and determined
relaxation times for systems of varying sizes 4&1. & 128.
We measured equilibration times of the energy and the
susceptibility, and demonstrated that they did not diverge
as L was increased. We also studied the relaxation of
time-delayed energy-energy correlation functions in equi-
librium. Section V presents an argument that explains
why our algorithm does eliminate CSD completely,
whereas the SW procedure does not. The argument is
based on a scaling ansatz, whose validity is checked in
Sec. VI, which also contains new results on-the SW
method.

or "freezing" it with probability pf(Q) =1—pd(Q). If the
interaction is frozen, only states Q' with V(Q')= V(Q)
are considered in the ensuing simulation. If the interac-
tion is deleted, no such restriction is placed on the states.
In either case, the thermodynamics are subsequently
governed only by the simplified Hamiltonian &, for a
fixed number of steps, after which the original Hamiltoni-
an & and the original space of states are restored. One
must choose Cv so that pd, pf K[0, 1] for any Q. It is
shown in Sec. III that the rule (2.2), with any such Cv,
guarantees the entire process to be statistically legitimate.

In practice, killing a single interaction V does not leave
an &, that can be simulated trivially (i.e., without CSD).
To achieve that, additional terms of the Hamiltonian
must be killed. A sensible course of action to generate an

that is obviously trivial to simulate was taken by
Swendsen and Wang. They chose to kill all the interac-
tions in &; this gives rise to a system which consists of
frozen blocks Qf degrees of freedom that are completely
decoupled from each other. Such a system is, of course,
trivial to simulate —but is subject to a large set of restric-
tions on its states. To obtain good statistics these restric-
tions must be averaged over, by repeating the process. It
is clear that the largest choice of Cv (under the constraint

pd, pf H [0, 1]) produces the best statistics, since with this
choice the probability for deletion pd is maximal. Then
coarsening leads to a minimal set of restrictions on the
states, and the number of coarsening-uncoarsening cycles
needed is the smallest.

For the two-dimensional ferromagnetic Ising model

%=—g K,,s, s (2.3)

B. Stochastic multigrid method

To eliminate CSD completely, we combine this sto-
chastic blocking technique with multigrid ideas. We use

where K, - 0, the procedure described above can be car-
ried out by killing the interactions K; s, s one at a time.
The optimal probability for deletion of bond (ij), then, is

(ij ) ij i j—K, .(1+s-s. )

d (2.4)

With this choice, interactions between antiparallel spins
will always be deleted; only parallel spins have positive
probability to be frozen together, thereby forming blocks
of aligned spins. The relative orientation of spins within
a block may not be changed before the original Hamil-
tonian is restored. Hence, each such block can be viewed
as a single coarse spin. Once all the interactions have
been killed, we are left with a system of completely
decoupled coarse spins. Any random assignment of
coarse-spin values is a legitimate Monte Carlo move of
this new system. The new coarse-spin configuration cor-
responds to a new configuration of the fine spins. Using
this new fine-spin configuration with the original Hamil-
tonian on the fine lattice, we can repeat the coarsening
process. This is precisely the procedure followed by SW.
As mentioned above, it still exhibits CSD, although with
a considerably reduced dynamical exponent. We discuss
in Sec. V the reason this procedure does not eliminate
CSD completely.
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FIG. l. A demonstration of the coarsening procedure. (a) A

configuration of the fine lattice. Boxed spins constitute the
coarse lattice and lines between sites denote bonds. {b) A possi-
ble coarsening. Single (double) lines denote living (frozen)
bonds. Deleted bonds are not marked. (c) The corresponding
block configuration, and the (original) bonds between the
blocks. {d) The coarse lattice. Numerals near the lines denote
coarse-lattice bond strengths.

the coarsening procedure to transform a lattice with L
spins (the fine lattice) to a lattice with (L/b) spins (the
coarse lattice). Each coarse spin is associated with a (sto-
chastically determined) block of fine spins, and a new
Hamiltonian is defined on the coarse lattice. There are
many ways to do this; here we describe the algorithm we
introduced recently, leaving description of computation-
ally more efficient ones for future publication. ' Our
method is demonstrated in Fig. 1. We start from a par-
ticular fine-spin configuration [Fig. 1(a)], and choose the
boxed sites as our coarse lattice; here the length rescaling
factor is b =2. This is strongly reminiscent of a decima-
tion transformation used frequently in position-space
renormalization-group calculations. We, however, do not
trace over the unboxed spins; rather, we coarsen the sys-
tern by visiting sequentially' all pairs of coupled sites i,j.
At any such bond we encounter one of three possible situ-
ations. First, we may find that both i and j have already
been frozen to di6'erent coarse spins. By this we mean
that there exists a path of frozen bonds connecting site i
to a boxed spin (and the same holds for j). In this case we
move on to the next pair, leaving the bond i,j alive. The
second possibility is that at least one of the two sites has
not been frozen to a coarse spin; in this case we kill (i.e.,
freeze or delete; see above) the interaction E, s;s . The"
third possibility is that both i and j have been frozen to
the same coarse spin. In this case the bond between them
is frozen. Since the decision to freeze or delete a bond is
stochastic, a coarsening step, performed on a given fine-
spin configuration, may have diAerent outcomes. One
possible outcome of coarsening the fine-spin configura-
tion of Fig. 1(a) is shown in Fig. 1(b). Single (double)
lines between sites indicate living (frozen) bonds; deleted
bonds are not marked. Each cluster of fine spins, con-
nected by frozen bonds, constitutes an irregular, stochast-

ically generated block [Fig. 1(c)]. A block which contains
a boxed spin is viewed as a single coarse spin. It is easy
to see that a block that is not frozen to any boxed spin
has to be completely disconnected from the rest of the
lattice. These disconnected blocks are not part of the
coarse lattice. ' They will be considered again only when
we uncoarsen, i.e., return to the fine lattice. Then, each
of them is set to an arbitrary value of spin.

Next, the coarse Hamiltonian is constructed: the cou-
pling between coarse spins s; and s. is the sum of the cou-
plings that are alive and connect fine spins associated
with coarse spins s; and s. . This is illustrated in Fig. 1(d):
numerals on the lines between sites indicate the number
of fine couplings that contribute to the coarse bond. The
new Hamiltonian is inhomogeneous, but contains pair-
wise interactions only, which may be of 1ong range.
However, finite couplings between distant spins are un-
likely, and their probability drops exponentially with the
distance. The same procedure can be reapplied to the
coarse lattice to obtain multiply coarsened systems with
their associated Hamiltonians. In all of them the average
number of interactions per spin turns out to be small (less
than 3).

Our algorithm moves back and forth between coarser
and finer levels. In order to do this, we need, in addition
to coarsening, also an "uncoarsening" prescription. As-
sume we arrived at a particular coarse-spin configuration.
To "uncoarsen" the system, every decoupled block is set
to some arbitrary value of spin, and all finer-lattice spins
take the value of the block spin to which they were
frozen. Finally, the couplings that were present at this
finer level are restored.

The final ingredient of our procedure is the manner in
which we move in phase space at any level of coarsening.
This is done by standard Monte Carlo updates, per-
formed at any length scale, using a Metropolis algo-
rithm' on the coarse spins at that scale. The corre-
sponding Hamiltonian is used to determine transition
probabilities.

Our dynamic procedure "cycles" through all length
scales, starting from the finest. At each intermediate
length scale, one has to decide on the next step; whether
one should continue by going to a coarser level or by un-
coarsening. This decision is made according to the fol-
lowing rule: Uncoarsening will take place only if the last
y "visits" of the present level were continued by coarsen-
ing. Otherwise, one proceeds by coarsening. In other
words, each level is coarsened y times before it is uncoar-
sened. Figure 2 is an example of a cycle with @=2 and
b =2, where coarsening (uncoarsening) is denoted by an
arrow pointing downwards (upwards). The finest lattice
consists of 64 spins (L =8), and since b =2, there are
three coarser levels (L =4, 2, and 1). Consider, for exam-
ple the third level (L =2); it is coarsened twice before
each time it is uncoarsened. The rationale for choosing
such a self-similar cycle is explained in Sec. V. When the
coarsest level is reached, the fine spins of the original
problem are grouped into decoupled blocks, one of which
belongs to the coarsest lattice. Each time this level is
reached a new coarse-spin configuration is (trivially) gen-
erated, and it is immediately uncoarsened. The cycle
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L=8 III. PROOF OF DETAILED BALANCE

FIG. 2. An example of a cycle on an 8 X 8 lattice, with length
rescaling factor b =2 and y=2. Coarsening (uncoarsening) is
denoted by an arrow pointing downwards (upwards).

ends when the finest level is reached. Whenever we ar-
rive at a level, we perform a few Metropolis sweeps be-
fore going to the next level. The number of sweeps per-
formed has some effect on the relaxation time, as de-
scribed in detail in Sec. IV. If no Metropolis sweeps are
used at all, transitions are generated only by coarsening
and uncoarsening (note that during uncoarsening discon-
nected blocks may get flipped). Even with no sweeps, we
get z =0.0 (when using a y ~ 2, b =2 cycle), but the ap-
proach to this result is slower (i.e., happens at larger sizes
I.), as discussed below.

Lastly, note that the SW procedure corresponds to
y=l with b =L, going directly from the finest to the
coarsest level and back, without Metropolis sweeps at the
finest level. In fact, we argue that any y=1 cycle is
equivalent to the SW procedure, independent of the re-
scaling factor used, as long as no Metropolis sweeps are
performed. To see this, note that differences between the
SW scheme and the y=1 scheme with b &L may arise
only from the fact that whenever a coarse level is created,
all fine bonds that connect the same two coarse spins are
combined and treated as a single bond. On the other
hand, in the SW procedure bonds are never combined,
are treated separately. Consider two coarse spins that
were created at a certain level of the b &L cycle. In the
SW scheme, at any intermediate stage of coarsening, the
probabilities of freezing or disconnecting the two blocks,
represented by the coarse spins, depend through Eq. (2 4)
on the strengths of all the living bonds that connect the
two blocks. In the b (L scheme, however, the probabili-
ties of occurrence of the same events depend (through the
same equation) on the strength of a single bond whose
value is the sum of living bonds connecting the two
blocks. One might have thought that the resulting distri-
bution of blocks at the coarsest level differs in the two
schemes. Remembering, however, that pd depends ex-
ponentially on the bond strength, the probability of
deletion of a sequence of bonds one after the other is the
same as that of deletion of a single bond, whose value is
the sum of the bonds in the sequence. Therefore the
probability of disconnecting the two coarse spins from
one another is the same in the two procedures, and so is
the probability of freezing, since the sum of the two prob-
abilities is 1. Thus we have excluded the only possible
difference between the schemes, and deduced that the SW
method is equivalent to y = 1 cycles with no Metropolis
sweeps.

where 8'and 8' are transition probabilities that satisfy
detailed balance with respect to & and &„respectively.
Hence,

lV(g gt) v(Q) c ~ N(Q')—
gI'(Q~~Q ) y(g ~

.& (Q) /t(Ql. (3.2)

where the fact that the rates 8', satisfy detailed balance
with respect to &, has been used. Alternatively, if Q and
Q' are such that V(Q)= V(g'), the interaction V may
have either been deleted or frozen:

w(g g') =c,e "(-"w,(g g )

+(1—C e (~')W~(Q Q')

(3.3)

where W, are transition probabilities with the reduced
Hamiltonian over the restricted space. We have used
here the detailed balance condition:

w, (Q~Q')
w, (Q'~Q)

wf(g g )

wf(Q' —+Q)

—A' (Q')
e

—+,(Q)
e

(3.4)

Remembering that V(Q') = V(Q) yields

—W( Q')
W(Q~Q')= W(Q'~Q) —wg) (3.5)

If every point in phase space can be reached in the
course of a simulation, and transition probabilities satisfy
detailed balance, the simulation procedure is legitimate;
i.e., it takes the system to equilibrium and allows evalua-
tion of thermal averages. Clearly, our procedure is
strongly ergodic (even without Metropolis steps) since
there is always a nonzero probability that no restriction
will be placed on the simulation, allowing nonzero transi-
tion probabilities between all states. Transitions between
coarse-spin states are generated either by Metropolis
sweeps or by Aipping disconnected blocks during uncoar-
senings. Both processes satisfy detailed balance with
respect to the coarse Hamiltonian. Consider such a tran-
sition, at coarse level n. It can be viewed as taking place
between the two corresponding spin states of level n —1.
We want to show that if the probability of generating &„
is also taken into account, detailed balance with respect
to the Hamiltonian &„,is satisfied. Once proven, this
implies (by induction) that the transitions satisfy detailed
balance with respect to the finest Hamiltonian.

Start from some level in state Q with a Hamiltonian &,
and "kill" an interaction V to get the coarse Hamiltonian
&,=&—V. Then, a transition from Q to another state
Q', with V(Q)W V(Q') can take place only if V has been
deleted, i.e., by (2.2):

(3.1)
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completing the proof of detailed balance.
One final remark is, though, in order. Going back to

our actual procedure, as described in Sec. II, one may no-
tice that when we visit a bond, we not only decide wheth-
er to delete or freeze it. Prior to that, we check whether
it connects two (effective) coarse spins; if it does, we leave
the bond alive. One may wonder whether this decision
on the fate of a bond, which depends on previous de-
cisions, made about other bonds, does or does not destroy
detailed balance. Obviously, detailed balance is
"threatened" only by decisions that depend on the spin
configuration Q. The decision to leave a bond alive de-
pends on Q indirectly, through the fact that whether the
other relevant bonds were or were not frozen, did depend
on Q. However, this dependence arises only through pre-
vious freezing and/or deleting decisions, for which our
proof of detailed balance definitely holds.

IV. DETAILS OF SIMULATIONS

In this section details and results of simulations of the
d =2 Ising and three-state Potts models on the square
lattice are given. First, we describe tests of the computer
program. We compare equilibrium values of energy, sus-
ceptibility, and specific heat of the Ising model (at various
temperatures) obtained using the new algorithm, with an-
alytic results, values from simulations done using the
Metropolis algorithm, and scaling laws at the critical
point.

In the second part we show results of relaxation of en-

ergy and susceptibility of the Ising model from a fully
magnetized state to equilibrium, and compare them to
standard (Metropolis algorithm) and SW results. We an-
alyze in detail the infiuence of two parameters (the mul-
tigrid cycle parameter y and the number of Metropolis
sweeps at intermediate levels, p, ) on the results. In the
third part relaxation of time-delayed energy-energy
correlations is examined. Lastly, we report results of
simulations performed on the three-state Potts model. In
particular, we show the improvements of our algorithm
on the SW method by measuring relaxation times from
energy decay.

A. Equilibrium properties

tigrid algorithm a typical relaxation time of E is of the
order of two cycles. Hence, when (E ) is estimated as an
average over X measurements, the standard deviation is
well approximated by o z/VX/2. We measured energy
with accuracy of 0.1%, while the accuracy of susceptibili-
ty measurements ranged from 0.1'Fo for L =4 to 2% for
L =64. Specific heat is much more diScult to measure
with high precision; in our measurements the error
ranged from 2% for a 4X4 lattice to 30% for a 64X64
lattice.

After taking averages over the measurement cycles we
compared our results to known ones. First, we calculated
the equilibrium values of the energy and specific heat
from the exact expressions obtained by Ferdinand and
Fisher. The upper part of Fig. 3 shows the deviation of
our results from the exact energy values for various lat-
tice sizes, evaluated at the critical temperature of the
infinite lattice. Such comparisons were done for all tem-
peratures and for the specific heat as well, and the agree-
ment with the analytical results is satisfactory. Secondly,
we compared our results for the susceptibility with values
obtained from simulations with the Metropolis algo-
rithm. Lastly, we used the scaling of the specific heat C
and the susceptibility y with the linear size of the system,
L, at the critical temperature: '

C- Iogio(L)' y L

In the lower part of Fig. 3 our results for the specific heat
are shown to behave linearly with log, o(L), while the
middle part of the Figure is a log-log plot of our values
for y(L), with the solid line marking the slope 1.75. The
boxed data points denote results from simulations with

0.OO l
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IO
XkBT io'-

N io'—

In order to be sure that our computer program works
properly, we performed a number of simulations. We
measured the equilibrium values of the energy, specific
heat, and susceptibility, for lattices of linear sizes L =4,
8, 16, 32, and 64 with periodic boundary conditions, at
various temperatures ( T/T, =0.6, 0.8, l.0, 1.3, 1.5; T, is
the critical temperature of the infinite lattice). Multigrid
cycles characterized by y = 1, 2, and 4, with rescaling fac-
tor b =2 were used to perform these measurements.
Each run consisted of 30 equilibration cycles followed by
a large number of measurement cycles (from 4000 cycles
for L =64 to 10 cycles for L =4). Averages were calcu-
lated using a single data point from each cycle, measured
at the finest level. Standard deviations were measured as
well. The deviation of a single measurement of the ener-
gy E, for example, from the average (E), was estimated
as o z = ( (E ) —(E ) )'! . As shown below, for our mul-

NkB

2.0-
l.5-
l.o ™

50 lOO

FIG. 3. Tests of the program: The upper graph shows AE—
the deviation of equilibrium energy values, measured with the
new algorithm, from exact values (Ref. 20)—plotted vs linear
system size L (on logarithmic scale). The deviations are of the
order of 0.1%. The middle graph is a log-log plot of the dimen-
sionless susceptibility per spin, yk&T/X, vs linear system size,
with the solid line marking a slope of 1.75. Squares denote re-
sults from simulations using the multigrid algorithm, while re-
sults from Metropolis-type simulations are denoted by circles.
In the bottom graph the specific heat per site, C/(Xk& ), is plot-
ted vs L (on logarithmic scale).
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the multigrid algorithm, while results from Metropolis
simulations are marked by circles. These comparisons
clearly show that our algorithm yields the correct equilib-
rium values for the two-dimensional Ising model.

B. Relaxation to equilibrium —Ising dynamic exponent

We used the multigrid Monte Carlo (MGMC) algo-
rithm to simulate lattices of linear sizes I, =4, 8, 16, 32,
64, and 128 with periodic boundary conditions. Cycles of
y =1, 2, and 4 with rescaling factor b =2 were used. To
check the inAuence of Monte Carlo sweeps at different
scales we performed runs with @=1,2, or 4 Metropolis
sweeps at each level. Starting from a fully magnetized
state we measured the energy and the square of the mag-
netization as a function of time. After repeating this
measurement many times (up to 3 X 10 systems for L =4
and 300 for L =128), we averaged over the ensemble to
get time-dependent averages, which in the long-time limit
decay exponentially to an equilibrium value. The loga-
rithm of such an average (after subtracting the appropri-
ate equilibrium value) should decay linearly with time,
with slope I/r, where r is the relaxation time. Figs. 4(a),
5(a), and 6(a) contain log plots of the deviation of the en-
ergy from its equilibrium value versus time for L =8, 32,
and 128, respectively. Error bars denote one standard de-
viation with respect to the ensemble at any given time.
The multigrid cycle (MGC) served as our basic time unit.
Here a cycle of y=2 with a single Metropolis sweep at
each level was used. A measurement was taken once at
each level, arrived at after coarsening or uncoarsening
(measurement algorithms for the energy and susceptibili-
ty at coarse levels are described in the Appendix). Note
that our data points fall into clusters; measurements
within the same cycle seem to be highly correlated. Thus
one cannot gain efficiency by performing many measure-
ments in a cycle. This fact tells us that the natural time
unit io the simulations is the multigrid cycle.

In order to eliminate the inhuence of fine details of the
multigrid cycle, we also present values of the energy aver-
aged over each cycle. Thus each cycle is represented by a
single point in the plot. These cycle averages do not
reduce Auctuations in a significant manner, since mea-
surements in the same cycle are strongly correlated. The
cycle averages that correspond to Figs. 4(a), 5(a), and 6(a)
are shown in Figs. 4(b), 5(b), and 6(b), respectively. From
the slopes of such plots we extracted the equilibration
times of the energy, rF(L), and of the square of the mag-
netization, rz(L). Similar behavior was found for the
square of the magnetization, although with different re-
laxation times. The exact (finite size) equilibrium values
of the energy were calculated from the analytic formulas
of Ref. 20, while equilibrium values of the susceptibility
were taken from our simulations, described in Sec. IV A.

One should note that here, in contrast with standard
simulations, the transients do not get longer as the size of
the lattice is increased. This indicates that the nonlinear
dynamic exponent (z„i) vanishes; the Racz scaling law,
derived for local dynamics, z„i =z& —P (P is the order pa-
rameter exponent), does not apply for MGMC. In stan-
dard simulations the time beyond which the system is

linear (i.e., relaxes with a simple exponential time depen-
dence) also diverges at criticality. Our method, as we
demonstrate below, has no divergent time scale at all;
hence the uncommon fast termination of the nonlinear
regime.

In all our measurements the time unit was taken to be
one multigrid cycle, parametrized by y and b. In order
to calculate the ainount of work (or computer time) per
cycle, W(y, b), we assume that the amount of work per-
formed at each level is proportional to the number of
spins at that level. Calculation of W involves summing a
geometric series, where each term is the number of times
a level is coarsened in a cycle weighted by the number of
spins at that level:

m 2

W(y, b)-L" g
=o

where I= log&1. +1 is the number of levels. For large
systems the asymptotic behavior of this quantity is given
by
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FIG. 4. {a) Log plot of ~F. —Z, q ~

—the deviation of the ener-

gy from its equilibrium value —vs time t [in units of multigrid
cycles (MGC)], for a lattice of linear size L = 8. Measurements
are taken at each level, arrived by coarsening or uncoarsening,
and error bars denote one standard deviation with respect to the
ensemble. (b) Cycle averages of (a). The decay is exponential
with a slope consistent with ~= 1. 1 MGC.
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1 for y&b
W(y, b)

L d
—. logbr for y=b'

10gb P db for y)bd

(4.1)

In the simulations presented here we used cycles with
b =2. Hence, for large L the work per cycle is propor-
tional to the number of spins provided y &b =4, and
diverges with L for y ~4. Whenever we make detailed
comparisons between different cycles, and between our al-
gorithm and other methods, the computer time per cycle
should be taken into account.

In Figs. 7, 8, and 9 the equilibration times are plotted
versus L for the three types of multigrid cycles we used.
As expected the @=1 results (Fig. 7) agree with those of
SW (z=0.35). In fact, when no Metropolis sweeps are
performed, not only the scaling, but also the actual values
of the relaxation times agree. For y ) 1,z is much small-
er; the manner in which r(L ) flattens as L increases clear-
ly indicates a tendency for asymptotic saturation, i.e.,
z =0. Figures 8 and 9 from our finite size simulations
yield upper bounds: zE(y =2) &0.02 zr(y =2) &0.04,
zz(y=4) &0.09, and zr(y=4) &0.2. Better bounds can
be obtained by going to larger lattices and by performing
longer simulations.

We did not detect any inAuence of the number of
Metropolis sweeps at intermediate levels on the dynamic
exponent. However, such sweeps reduce the relaxation
times by a constant factor, with a relatively low cost in
computer time. For example, the energy relaxation time
of the 128X128 lattice, in the cycle characterized by
y=2 and b =2, is reduced from 2.8 cycles when no
Metropolis sweeps are performed to 1.4 cycles, as ob-
tained when four sweeps are performed at each level. As
can be seen from Figs. 8 and 9, the saturation of the re-
laxation time occurs at smaller systems when more inter-
mediate Metropolis sweeps are performed.

Figure 10 is a comparison of the dependence of relaxa-
tion times on system size, between the three simulation
techniques: Metropolis, ' the SW procedure, and the
y =2, p= 1 cycle of our algorithm (MGMC). Taking into
account computer time overheads, the crossing point be-
tween MGMC and the SW procedures is at L =100. In
more complicated models we expect the dynamic ex-
ponent of the SW procedure to be higher and the crossing
to occur at smaller lattice sizes.

Needless to say, our algorithm uses more computer
storage than that needed for the SW method. We cannot
give a definite quantitative statement about this storage
overhead, since it depends crucially on the speci6c com-
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FIG. 5. (a} The same as Fig. 4(a}, for a lattice of linear size
L =32. (b) Cycle averages of (a). IE E,q I decays exponential-—
ly with time, with a relaxation time ~= 1.6 MGC.

FIG. 6. (a) The same as Fig. 4(a}, for a lattice of linear size
L =128. (b) Cycle averages of (a). IE E,„I decays exponen-—
tially with time, with a relaxation time &= 1.8 MAC.
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puter program one is using. We can, however, state that
everi when no attempt is made to reduce the amount of
storage used, t;he overhead factor is less than 10.

C. Time-delayed energy-energy correlations in equilibrium

In Sec. II 8 we estimated relaxation times from the de-
cay with time of various quantities starting from a fully
magnetized state. There are, however, other ways that
are commonly used to extract relaxation times. For ex-
ample, one can measure the time dependence of time-
delayed energy-energy correlations at equilibrium (see
Ref. 6}. The method we have used in Sec. II 8 is easier to
implement since energy-energy correlations Auctuate
more strongly than the energy. One should, however, be
careful since in such a nonequilibrium measurement the
system may not encounter typical equilibrium states. To
ensure that the complete elimination of CSD, implied by
our results, is not an artifact of the particular method of
measurement we have used, we performed equilibrium
measurements of time-delayed energy-energy correla-
tions.

The simulations were done on systems of linear sizes
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4 ~ I.~ 128, using three different multigrid cycles charac-
terized by the parameters y=1, p=0; y=2, p=l; and
y =2, p=4. The first cycle was expected to be consistent
with the SW results, while the remaining two were used
to detect the elimination of CSD. Each run consisted of
80000 cycles; the first 200 were discarded, and the
remaining 79 SOO were used to calculate averages. Once
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FIG. 7. Log-log plot of the energy and susceptibility relaxa-
tion times, ~z and v~, vs linear system size for the Ising model.
Cycles with y=1 were used. (a) y =1 cycle without intermedi-
ate Metropolis sweeps (p=0); this is equivalent to SW (see text).
Both relaxation times grow exponentially with exponents
z~ =z~=0.35. {b) y=1 cycle with a single intermediate sweep
at each level (@=1). Both relaxation times grow exponentially
with exponents z& =z~ =0.38.
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FIG. 8. Log-log plot of the energy and susceptibility relaxa-
tion times, ~E and v~, vs linear system size for the Ising model.
Three types of cycles, all with y=2, were simulated. (a) y=2
cycle without intermediate Metropolis sweeps (p=0). Upper
bounds for the dynamic exponents are found to be zz (0.09 and

zz &0.23. (b) y=2 cycle with a single intermediate sweep at
each level (p=1). These results are consistent with the follow-

ing upper bounds for the dynamic exponents: z~ &0.02 and

z~ &0.16. (c) y=2 cycle with four intermediate sweeps at each
level (p=4). Upper bounds for the dynamic exponents are
found to be z~ & 0.07 and z~ & 0.04.
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cle with @=2 and @=4. h(t) decays exponentially with
time, and relaxation times can be estimated from this de-
cay as was demonstrated in Sec. IIB. The relaxation
times obtained from the y = 1, p=O cycle are in perfect
agreement with Swendsen and Wang's results. Results
from cycles with @=2 are shown in Fig. 12; relaxation
times are plotted versus linear system size. We see that
the behavior of ~(L ) as a function of L is similar to what
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FIG. 9. Log-log plot of the energy and susceptibility relaxa-
tion times, ~z and ~~, vs linear system size for the Ising model.
A cycle with y=4 and p=1 was used. The results yield upper
bounds for the dynamic exponents: zE &0.09 and z~ & 0.2.
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in each cycle we measured the average energy, and from
the sequence of energy values we calculated the time-
delayed energy-energy correlations & E(0)E(t) ); here & )
denotes time averaging:
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T —t

&E(0)E(t))= y E(t')E(t'+t),
T (4.2)

where T is the length of the sequence of energy values ob-
tained from the simulation. We extracted the relaxation
times from the time dependence of the normalized corre-
lations:

IOO

l.5

&E(0)E(t) ) —
& E )

&E') —&E)' (4.3)
Io i

where exact values of the average energy & E ) were
used, and values of &E ) were taken from our simula-
tion.

Examples of b,(t) for various lattice sizes are shown in
Fig. 11. The results are taken from a simulation of a cy-

IO

IO

t{MGC)
IO I5

(c)

IOO

1PBX128
I I I

IO

5V)
C3

I

Io I

Q
2

5 IO 50 IOO

IO
0 IO l5

FIG. 10. Relaxation time ~ vs linear system size L. Three
methods are compared: Metropolis algorithm (Ref. 13},
Swendsen and %'ang's method {Ref.6} (SW},and the y =2, p= 1

cycle of the multigrid Monte Carlo technique (MGMC}. Time
is measured in Monte Carlo steps (MCS}. A MCS is equivalent
to a single sweep over the lattice in the Metropolis algorithm,
and to a single cycle in the SW and MGMC methods.

t(MGC)

FIG. 11. Log plots of normalized time-delayed energy-energy
correlations h(t) [see Eq. (4.3) for exact definition] vs time [in
units of multigrid cycles (MGC)] for various system sizes: (a)
L =8, (b} L =32, and (c}L =128. Relaxation times (estimated
from the exponential decay) are given on each plot.
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Potts model is inaccurate; as is explained in Sec. VI our
simulations are more consistent with zsw=0. 4 in this
case.
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FIG. 12. Log-log plots of relaxation times (in units of MGC)
obtained from b(t) (see Fig. 11) vs linear system size L, for two
types of multigrid cycles: y =2, p = 1 (diamonds) and y =2,
p =4 (squares}. The upper bounds on the dynamic exponent are
z & 0.2 from the first cycle, and z & 0. 1 from the second one.

was observed in nonequilibrium measurements (see Fig.
8); ~(L) tends to saturate with increasing L, indicating
that z =0. Upper bounds on the dynamic exponent,
determined from our data, are z & 0.2 from the p = 1 cy-
cle, and z &0. 1 from the @=4 cycle. Thus the time
dependence of energy-energy correlations confirms our
previous statement, that CSD is eliminated completely.

D. Three-state Potts model

To see that the MGMC method eliminates CSD for the
three-state Potts model, we measured energy relaxation
times using a cycle of y=2 and @=2. Relaxation times
are plotted versus lattice linear size in Fig. 13, on a log-
log scale. From this plot we can deduce an upper bound
for the dynamic critical exponent, z &0.2, while SW re-
ported zsw =0.6 for this model. Since finite size effects
are more pronounced here than in the Ising model, we
have to simulate much larger lattices in order to get a
better upper bound for z. Because of these finite size
effects we suspect that the SW result for the three-state
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FIG. 13. Log-log plot of the energy relaxation time ~& vs
linear system size for the three-state Potts model. A cycle with
y =2 and p =2 was used. These results are consistent with
z &0.2.

V. WHY DOES IT WORK?

In order to understand why CSD is eliminated by the
MGMC procedure, we first review briefly the physical
origin of slowing down, and explain why the SW algo-
rithm does not eliminate it.

At criticality, configurations with correlated clusters of
spins on all length scales are probable, and hence must be
reached by the simulation in order to produce correct
equilibrium measurements. The simulation must be able
to induce transitions between configurations with very
different clusters on arbitrarily large scales. To do this,
large clusters have to be broken up, to be replaced by
different ones. That is, the process has to destroy correla-
tions on all length scales, present in any typical
configuration. CSD is a reAection of the fact that elim-
ination of long-range correlations takes a long time for a
process that uses single-spin-Aip dynamics. Both the
MGMC and SW algorithms attempt to overcome this
difFiculty by allowing Aips of large domains. This is done
by the coarsening transformation, which identifies a pos-
sibly large block of fine spins with a single coarse spin.
Long-range correlations on the fine lattice are trans-
formed into short-range ones, and hence are easily elim-
inated by block-Aip dynamics.

Had this been the entire picture, the SW algorithm
should have eliminated CSD completely. However, coar-
sening introduces into the system correlations that do not
allow the elimination of CSD. If two correlated fine spins
i and j have been absorbed into the same block of a cer-
tain coarse level, their correlation cannot be eliminated.
This happens when bonds along a path that connects
these spins are frozen during the coarsening process. The
correlation between such spins can decay only after a
finer level, in which spins i and j are in separate blocks, is
reached. This is a manifestation of the restrictions on the
phase space caused by the coarsening transformation.
Due to these restrictions it is impossible to get indepen-
dent fine-lattice configurations by simulating a single real-
ization of a coarse level. To be more specific, let us start
from a given fine-lattice configuration, and use the coar-
sening procedure to obtain a new lattice with a new Ham-
iltonian. Even if we simulate the coarse lattice for a very
long time, we cannot get a coarse-level configuration
whose fine-lattice representation is independent of the ini-
tial fine-lattice configuration. Hence, a long enough se-
quence of coarse-level realizations (generated by a se-
quence of coarsening-uncoarsening steps) is needed in or-
der to decorrelate the system. Let us denote the
"decorrelation time" (i.e., the number of coarsening-
uncoarsening steps needed in such a sequence) by rd(b)
When the sequence of coarse-level systems exceeds rd(b),
we say that the coarse level represents the original system
faithfully.

To understand the dependence of ~d on b, consider a
fine-spin cluster, roughly of size b Xb, in which all the
spins point in the same direction. In most coarsening at-
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tempts almost all spins in this cluster will be frozen to the
same coarse spin, since typical frozen blocks of spins are
of size b . rd(b) is of the order of the number of
coarsening-uncoarsening steps needed in order to break
the fine cluster into two (approximately equal) parts, each
frozen to a diA'erent coarse spin. With this interpreta-
tion, it is clear that rd(b) increases with increasing length
rescaling factor b. At this point we note that the SW pro-
cedure can be viewed as a single coarsening step, with
b =I. (see Sec. II B). Also note that the SW procedure is

completely local; the decision whether to freeze or delete
a bond does not depend on L, and the Hamiltonian ob-
tained after coarsening is completely trivial, and hence its
relaxation time is independent of L. Nevertheless, SW do
find a divergent relaxation time ~-L ' . Since the only
time scale that can possibly diverge in the SW algorithm
is the decorrelation time, we identify rd(b =I.) with the
relaxation time ~. Thus we propose to interpret the
growth of ~ with L as arising from the need for more
coarsening-uncoarsening steps with increasing b. From
this identification, and the SW results, we infer that the
decorrelation time rd(b) grows with b as

(5.1)

In the remainder of this section we assume validity of this
relation, and present its substantiation, as well as various
interesting consequences of its validity in Sec. VI.

We now turn to explain how the MGMC method does
overcome the problem of CSD. Whereas in the SW algo-
rithm we have b =L, the MGMC method allows for in-
creasing L without changing b, simply by increasing the
number of multigrid levels m. L is related to b and m by
L =b '. lt is important to understand that in order for
the coarsest level to represent the original system faith-
fully, each intermediate level should also be a faithful
representation of the finest lattice. This arises from the
fact that any phase-space restrictions present at level n,
persist to the (n +1)st level. Now level n can be viewed
as obtained from the fine lattice by coarsening with
length rescaling factor b" ', and hence it will faithfully
represent the fine lattice only if it has been reached

rd (b" '
) -(b ' )" ' times [where Eq. (5.1) for the

decorrelation time was usedj. That is, the coarser the
level and higher the value of n, the more visits to the level
are needed. This observation explains the manner in
which MGMC overcomes CSD, whereas the SW method
does not.

As explained in detail in Sec. II 8, the SW procedure
can be viewed either as a single coarsening step with re-
scaling factor b =L, or as a sequence of coarsening-
uncoarsening steps. This sequence constitutes a y =1 cy-
cle with an arbitrary length rescaling factor, and no inter-
mediate Metropolis sweeps. Therefore SW eA'ectively
visit every level the same number of times during the
simulation. The number of these visits equals the re-
quired number of times the coarsest one has to be
reached. We know, however, that for decorrelation fine
levels need not be visited as often as coarse ones. Hence,
one could save time and work by visiting levels the more
often the coarser they are, and precisely this is accom-

plished by the multigrid method. In other words, since in
a cycle with y & 1 coarse levels are reached more often
than fine ones (see Fig. 2), we can improve on the SW al-
gorithm by increasing y.

To see how this comes about, note that with the
definition of y, the number of times the nth level is creat-
ed by coarsening during a cycle is JV~(n) =y" '. Hence,
the number of cycles needed in order to decorrelate the
system is

sw- ~"» .-iN, ~, -max =max(b ' ' )" ', (5.2)
n

1 for zsw log&y &d

log&L for 1ogby =d
10gb p d

L " for log&y&d .

Hence we see that CSD is eliminated completely if

b sw (y &bd

(5.3)

(5 4)

For the Ising model, this condition translates to
bo ~y &b for d=2 and b ~y &b for d=3. For
the three-state Potts model in two dimensions we show
below that zsw =0.4; hence y and b must satisfy
b &y &b . For values of b and y that do not satisfy
these bounds, Eq. (5.3) predicts CSD. In particular, for
the three-dimensional Ising model, with y =2 and b =4,
we expect to get z =0.25.

If, however, a model is found for which zsw &d, Eq.
(5.4) is replaced by

ZS~ Ogb P

sw log L for log

zS~ —d
L ' for d &log&y &zsw

10gb y d
L for logby zsw .

(5.5)

For a model with such high value of zsw the MGMC
method will reduce CSD significantly, but will not elimi-
nate it completely.

UI. TESTS QF THE ARGUMENT

We now present evidence for the validity of Eq. (5.1),

r (b)-b ' (6.1)

Surprisingly, we found that this expression for the
decorrelation time has interesting consequences, which
we now also present.

The main mechanism responsible for decorrelation in

which implies that X,„, diverges as X,„,-L if
zsw & log&y. On the other hand, for zsw ~ log&y we get
a finite Xyp Taking into account the amount of work
performed per cycle W(y, b) [see Eq. (4.1)], we have
r = W(y, b ) XN, „,( y, b ), which yields, for zsw & d,

zS~ 10gg PL for log&y &zsw
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the SW and MGMC algorithms is the deletion of bonds.
We can think of the coarsening transformation as a series
of attempts to delete bonds. A reasonable ansatz is that
the decorrelation time is proportional to the average
number of attempts needed to delete (rather than freeze)
a bond. Let us denote by Pd(n) the average probability
that a coarse bond of the nth level, which is killed during
the coarsening of that level, is deleted. As long as b is
small enough, we can consider attempts to delete bonds
during coarsening as independent events. We may then
approximate the average number of attempts needed to
delete a given bond by 1/Pd(n —1). According to our
ansatz this implies that

1)P„(n)-r„(b"),
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which together with Eq. (5.1) leads to

P( ) (bsw) —n (6.2)
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This is an important result. It means that rather than
measuring the relaxation time, we can calculate zsw from
measurements of deletion probabilities at various levels.

To obtain deletion probabilities we first measured
bond-strength distributions. The statistics were obtained
from simulations of a 128X 128 lattice, using a cycle of
@=2 and b =2. Starting from a fully magnetized state
we first performed 30 equilibration cycles and then start-
ed the measurement. The number of bonds of any given
strength was counted separately for each level (each time
it was reached during the simulation). We also separated
satisfied from broken bonds (i.e. , counted the satisfied and
broken bonds of the same strength separately). The aver-
age normalized distributions of levels 2—7 at criticality
are plotted in Fig. 14. In the positive J side of each plot
one finds the part of the satisfied bonds in the distribu-
tion, while the part of the broken bonds is plotted in the
negative J side. Both broken and satisfied bond distribu-
tions seem to decay exponentially as the strength of the
bond is increased. While the broken bond distribution is
essentially independent of the level, the distribution of
satisfied bonds flattens at coarser levels.

Remembering that the deletion probability of a broken
bond is 1, and that of a satisfied bond of strength E is
exp( —2K), we can calculate (numerically) the average
probability to delete a bond at any level, assuming that
the value of the bond is picked randomly from the distri-
butions of Fig. 14. The result is shown in Fig. 15; the nu-
merically determined average probability to delete a bond
is plotted versus level number. This deletion probability
is seen to decrease exponentially with the level number:

I I I (, I I I I I

0 25 50 75 100 0 25 50 75 lpp
J J

FIG. 14. Bond-strength distributions for levels 2—7 of a mul-

tigrid cycle y =2 for a 128 X 128 Ising model. The measurement
was performed at the critical point of the infinite lattice. J
denotes bond strengths in units of k&T. The left part of each
graph (J & 0) corresponds to unsatisfied bonds (see text for de-
tails). This graph was calculated from the numerically obtained
data of Fig. 12; see text [above Eq. (6.3)] for details.
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zsw =0.34

in excellent agreement with the SW result.
A further consistency check of our assumptions and re-

sults is provided by measuring the deletion probability
for noncritical systems. We have established a direct
connection of slowing down to the exponential depen-
dence of the deletion probability on the level index. Since
slowing down is observed only at criticality, we expect
that once the temperature is changed from T„we should

Pd(n)-1. 27 (6.3)

This numerically found exponential decay is in perfect
agreement with (6.2), which was derived from the expect-
ed form of rd(b) as given by Eq. (5.1). The agreement
can be viewed as confirmation of the assumptions on
which Eq. (5.1) was based, as well as the ansatz that relat-
ed the decorrelation time to deletion probability. More-
over, using Eqs. (6.3) and (6.2), we get for the two-
dimensional Ising model 2 = 1.27, or

O. I

0

FIG. 15. Log plot of the bond deletion probability Pd vs level
index n for the Ising model. The exponential decay is consistent
with Eq. (6.2), and yields an estimate for the SW dynamic ex-
ponent zs~ =0.34.



342 DANIEL KANDEL, EYTAN DOMANY, AND ACHI BRANDT

o.so:' '~]'
' I I I I

m
I I I I I I I I

5

20

Pd

0 tO—

0.05-

lO

8

O. OI
0

4-
II

5 IO 50 IOO

FIG. 16. Log plot of the deletion probabilities Pd vs level in-
dex n for the Ising model at various temperatures. Numerals
near the solid lines denote the temperature in units of T, . Ex-
ponential dependence occurs only at criticality. Note that
deletion probabilities get higher as the temperature is raised [see
Eq. (2.3)]. Therefore at coarse levels the spins are disconnected
and all the bonds vanish. This is the reason for the disappear-
ance of the last levels at high temperatures.

FIG. 18. Log-log plot of the energy relaxation time rs [in
units of SW cycles (SWC)], vs linear system size for the three-
state Potts model. These results were obtained from simulations
with the original SW algorithm. The behavior at small L
(dashed line) is consistent with the SW result (zs~ =0.6), while

the large L behavior (solid line) is more consistent with our pre-
diction (zs~ =0.4).
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no longer find an exponential function. Indeed, in Fig. 16
average deletion probabilities are plotted versus level
number for a range of temperatures, and we see that only
at the critical temperature is exponential decay seen.

To further check the validity of Eq. (6.2) we repeated
the measurement of deletion probabilities for the three-
and four-state Potts models in two dimensions. We used
the same lattice size and the same type of multigrid cycle
as in the Ising model, and obtained bond-strength distri-
butions. From them we calculated the average deletion
probabilities which are plotted as a function of level num-
ber in Figs. 17(a) and 17(b), for the three- and four-state
Potts models, respectively. As in the Ising model, the
deletion probabilities decay exponentially with the level
number, except at very coarse levels, where finite size
effects are important. For the three-state model we de-
duced that Pd(n) —1.31 ", while for the four-state model
Pd(n)-1. 30 ". Using Eq. (6.2) we predict the values of
zsw to be 0.39 and 0.38 for the three- and four-state mod-
els, respectively.

SW reported zs~ =0.6 for the three-state Potts model
in contradiction with our prediction. To clarify the situa-
tion we performed simulations with the SW algorithm,
and measured the decay of the energy with time, from a
fully magnetized state. The relaxation times are plotted
versus lattice size in Fig. 18. We see that for small lat-
tices (L (32) the SW result is indeed reproduced. A
clear crossover is observed, however, and the slope be-
comes smaller for larger lattices. For the largest sizes
simulated the slope is consistent with zsw =0.40, in
agreement with our prediction.

FIG. 17. (a) Log plot of the deletion probability Pd vs level
index n for the three-state Potts model. Statistics were taken
from simulations of a 128 X 128 lattice at the critical point of the
infinite lattice. The exponential decay is consistent with Eq.
(6.2), and yields an estimate for the SW dynamic exponent
zs~ =0.39. (b) The same as (a) for the four-state Potts model.
The corresponding SW dynamic exponent is zs~ =0.38.

VII. SUMMARY AND DISCUSSION

In this work we have discussed a new multigrid Monte
Carlo simulation method, which is especially efficient
near critical points. For Ising and Potts systems, it per-
forms moves on all length scales, as produced by a sto-
chastic coarsening process. Coarsening introduces, how-
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ever, correlations, and our procedure is designed so that
the amount of work performed at each length scale (level)
is of the order of the amount of work needed to eliminate
these correlations; hence, CSD is eliminated completely.
We have demonstrated elimination of CSD for the Ising
model on the square lattice, and obtained an extremely
small upper bound for the dynamic exponent z (0.02.
Significant improvements were achieved for the three-
state Potts model in two dimensions as well, but due to
large finite size effects the upper bound for z is higher.
We do believe that CSD is eliminated completely in this
case too.

We have devised a scaling argument that explains how
the MGMC technique eliminates CSD while the SW
method does not. The main point is that in order to
decorrelate the system one needs to create a sequence of
lattices and Hamiltonians at the coarsest level. In the
SW algorithm the average amount of work needed to
create a coarse system in this sequence is proportional to
the number of spins in the original (finest) lattice (L").
The MGMC method succeeds in reducing the amount of
work without need for a longer sequence. The average
amount of work performed, in the MGMC procedure,
while creating a coarse lattice in this sequence scales as

d —zs~L ' (if y is chosen appropriately). Using bond-
strength statistics on various levels, we were able to ob-
tain predictions of zsw (based on our scaling argument),
which were used to test the validity of the argument.
Our predictions agree very well with the SW results for
the Ising model in two dimensions, but disagree in the
case of the three-state Potts model. We attribute this
disagreement to finite size effects that reduced the accura-
cy of the SW measurement.

In both SW and MGMC algorithms the lattice is
transformed into a new lattice with fewer degrees of free-
dom. A spin of the new lattice represents a block of spins
of the original problem. For the Ising and Potts models
each of the blocks created in this way is a cluster of spins
found in one of the ground states of the model. This
property of the method may be essential for elimination
of CSD. If the method is applied to models with frustra-
tion or competing interactions, the clusters are not neces-
sarily in a ground state, which may reduce the efficiency
of the simulation. Thus the MGMC method will not
necessarily eliminate, without modifications, slowing

down in spin glasses. We intend to explore the inAuence
of frustration on the effectiveness of our method, aiming
at a modified technique that will simulate spin glasses
efficiently.

ACKNOWLEDGMENTS

We wish to thank E. Y. Loh for fruitful collaboration.
We thank R. Benav for stimulating discussions and R.
Swendsen for helpful discussions and correspondence.
This research was supported by the Air Force Office of
Scientific Research, United States Air Force under Grant
No. AFOSR-86-0127 (A.B.) and by the US-Israel Bina-
tional Science Foundation (E.D.).

APPENDIX

In order to perform on coarse levels, measurements of
quantities defined on the finest level, we carry with each
block of spins its internal magnetization and energy on
the finest levels. These values are not changed until we
come back to the level where the block was created. We
also carry with each bond of the coarse level its "finest
value" (what would have been its value had no bonds
been deleted). The energy of the finest lattice is evaluated
at the coarse level by summing the "finest values" of all
satisfied bonds, subtracting from the result the "finest
values" of all broken bonds, and adding the sum of all
internal energies of all blocks (including disconnected
ones). Note that in this procedure fine bonds that con-
nected disconnected blocks are disregarded. This is
justified, since we are interested only in averages, and
such bonds do not contribute to the average energy. The
reason for this is that each disconnected block has the
same probability of being up or down. Hence, each of the
fine bonds that connected such a block to other blocks is
satisfied or broken with equal probabilities, and its contri-
bution to the average energy vanishes.

The square of the magnetization is evaluated by sum-
ming the internal magnetizations of all coarse spins,
squaring the result, and adding to it the sum of squares of
the internal magnetizations of all disconnected blocks.
Here, as in the case of the average energy, we took into
account the fact that disconnected blocks are up or down
with equal probabilities.
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