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van der Waals forces in a Monte Carlo and lattice-dynamics study of the thermal
and elastic properties of a rigid-ion model of potassium chloride
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We present benchmark calculations of the thermodynamic and elastic properties of a rigid-ion
model of potassium chloride, at zero pressure, using a combination of Monte Carlo simulation at
high temperatures (300—1000 K) and anharmonic lattice dynamics at low temperature (0—300 K).
A new feature of our results is the fact that excellent agreement with the experimental results re-
quires that, in contrast to the case of sodium chloride, the Born-Mayer repulsive interaction be-
tween nearest and third-nearest neighbors be supplemented by an attractive van der Waals interac-
tion between second neighbors. We briefly discuss the problem of three-body forces.

I. INTRODUCTION

In a recent paper, ' we reported a calculation of the
thermal and elastic properties of NaC1 and compared our
results with experiment. The calculation was based on
anharmonic lattice dynamics up to room temperature
and Monte Carlo simulations from there to the melting
point. All the calculations were performed with care so
that the results could serve as a benchwork for future
work. The theory was based on a Born-Mayer potential
whose two parameters were determined by the zero-
degree volume and compressibility of the crystal, as well
as the familiar, long-range Coulomb forces. We noted
that Boyer has shown that this potential, with very simi-
lar parameters, can be derived ab initio, using the
density-functional method.

While agreement with experiment was remarkably
good, there were, for some properties, deviations between
theory and experiment outside their combined probable
error. In part, we attributed this result to the neglect of
three-body forces, based on the temperature dependence
of the deviation from the Cauchy relations. But we also
noted our neglect of like-neighbor potentials, e.g. , for
Cl—Cl, which was largely supported by the results of
Boyer's calculations.

The first theoretical work on ionic solids, the work of
Born and Lande on NaCl, which led directly to the
discovery of quantum mechanics, was, in principle, not
very different from ours. Of course, we are able to do
much more reliable calculations, for a wider range of
temperatures, and to make a comparison with much
more extensive and accurate data. But it is generally ac-
cepted that the rigid-ion model we are discussing here
cannot account quantitatively for the high-frequency
dielectric properties of alkali halides. Indeed, we believe
that a more Aexible model is needed to describe the opti-
cal properties of these solids. The first steps in this direc-

tion were taken by Dick and Overhauser with the intro-
duction of the shell model to allow for ionic polarizabili-
ty. This work, including subsequent refinements, does
give a quantitative account of some crystal properties, in
particular, of the dispersion law measured by inelastic,
coherent neutron scattering. A review of this work is
given by Hardy and by Bilz et al. However, recent
band-structure calculations, as pointed out by Harrison,
suggest that the shell model's theoretical foundations
must be seriously questioned. The ionic polarizability in
the shell model arises from intra-ionic electronic transi-
tions whereas the application of the band-structure calcu-
lations to the high-frequency dielectric constant suggests
that the polarization effects that arise in alkali halides
originate in interionic electronic transitions. These issues
require further study.

It is, therefore, not surprising that there has been a re-
cent resurgence of work on rigid-ion models. ' All of this
work has focused on Born-Mayer potentials for the repul-
sive part of the interaction. But it has also stressed the
importance of the attractive van der Waals forces which
we ignored in our work on NaC1. ' In this work we will
show that in KC1, with its much larger lattice spacing,
the inclusion of van der Waals attractive forces between
second-nearest neighbors (Cl—Clj is essential to account
for the thermal and elastic properties measured for KC1
using a rigid-ion model. This is support for the same
conclusion reached by Catlow et al. ' who argued that
the van der Waals constant for KC1 obtained by Mayer"
was much too small.

II. RIGID ION POTENTIAL FOR KCl

Here we list the potential we have used to describe the
short-range interactions between ions in KC1. For the
nearest- and third-nearest neighbor cation-anion interac-
tion we used
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with

and

V=V e0

Vo =8223.708 X 10 ' erg (2)

20-

16
p=0. 29713 A .

For the second-nearest-neighbor Cl—Cl interaction

V= C—lr (4)
I

12

with

C =334.494X IO erg cm

we assumed that the Born-Mayer term was absent for K-
K and Cl-Cl forces and also that C=O for K-K second-
nearest-neighbor interactions. The three parameters list-
ed above were obtained from the crystal volume and the
values of c» and cd at 0 K and I' =0.

Initially, we used the potential of Eq. (1) with C=O
and the two Born-Mayer parameters fitted to the lattice
volume and the bulk modulus at T=O, I'=0, as in our
work on NaC1." We wanted to explore whether the ex- 0
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FIG. 2. Zero-pressure volume expansivity of KC1 as a func-
tion of temperature; triangle, Monte Carlo simulation with
4.0824X 10 configurations without the van der Waals contribu-
tion to the rigid-ion potential; solid circles, Monte Carlo simula-
tions with 4.0824X 10 configurations. The error bars represent
one standard deviation of the mean due to purely statistical un-

certainties. Dotted line, anharmonic lattice dynamics; dash-
dotted line, quasiharmonic lattice dynamics; solid line,
smoothed experimental data (Ref. 13).
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FIG. 1. Molar volume of KCl as a function of temperature at
zero pressure; triangle, Monte Carlo simulation with
4.0824 X 1.0 configurations without the van der Waals contribu-
tion to the rigid-ion potential; solid circles, Monte Carlo simula-
tions with 4.0824X 10 configurations; dotted line, anharmonic
lattice dynamics; dash-dotted line, quasiharmonic lattice dy-
namics; solid line, smoothed experimental data (Ref. 13).

cellent agreement with experiment for that substance also
extended to KC1 whose cell volume is 50%%uo larger. Our
results, shown as triangles on Figs. 1 —8, are in striking
disagreement with experiment for most but not all prop-
erties. It is at this point that we included van der Waals
forces between second-nearest neighbor chlorine ions us-
ing Eqs. (1)—(4). This approach is supported by the work
of Catlow et al. on rigid-ion interionic potentials in alkali
halides. ' They showed that the van der Waals constant
for second-nearest-neighbor Cl—Cl interactions at I'=0
in KC1 is surprisingly large, about five times that for
second-nearest-neighbor K—K interactions. This con-
tributes importantly to the region of the potential corre-
sponding to the crystal volume reached in the tempera-
ture range we study. In NaC1 (Refs. 1 and 12) the region
of the potential sampled by the crystal is much closer to
the minimum where the van der Waals interactions have
been largely quenched by the repulsive overlap effects.

In our work on NaC1, the potential we derived by
fitting experimental quantities was in good agreement
with a potential calculated by Boyer, using a local



3296 ZHAOXIN GONG, G. K. HORTON, AND E. R. COWLEY

20-
80—

I 60—

+~

I

0

16-

C)

lA

40-

V
CL

M 20—

12-

200 400 600 800 1000
0

200 400 600 800 1000

FIG. 3. Zero-pressure adiabatic bulk modulus of KC1 as a
function of the temperature; triangle, Monte Carlo simulation
with 4.0824 X 10 configurations without the van der Waals con-
tribution to the rigid-ion potential; solid circles, Monte
Carlo simulations with 4.0824 X 10 configurations. The error
bars represent one standard deviation of the mean due to purely
statistical uncertainties. Dotted line, anharmonic lattice dy-
namics; dash-dotted line, quasiharmonic theory; solid line,
smoothed experimental data (Ref. 14); dashed line, smoothed
experimental data (Ref. 15); dash-dot line, smoothed experimen-
tal data (Ref. 16).

FIG. 4. Zero-pressure molar specific heat of KC1, at constant
pressure and at constant volume, as a function of temperature;
triangles, Monte Carlo simulations with 4.0824 X 10
configurations without the van der Waals contribution to the
rigid-ion potential; solid circles, Monte Carlo simulations with
4.0824X10 configurations. The error bars represent one stan-
dard deviation of the mean due to purely statistical uncertain-
ties. Dotted lines, anharmonic lattice dynamics; dash-dotted
lines, quasiharmonic theory; solid lines, from smoothed experi-
mental data (Refs. 17 and 18 for C~) (Refs. 13—20 for C„).

density-functional method. In the case of KC1, Boyer's
potentials include a significant attractive component,
which presumably corresponds approximately to the van
der Waals potential. In the interest of simplicity, we
have lumped all of these eft'ects into a Cl—Cl force, and
thus our fitted potential is not directly comparable with
8oyer's.

III. CALCULATION OF THERMAL AND ELASTIC
PROPERTIES OF KCl

Our method for calculating the thermal and elastic
properties of KC1 is similar to that used in our work on
NaCl. " At low temperatures we used anharmonic per-
turbation theory which overlaps nicely with our high-
temperature Monte Carlo simulations at room tempera-
ture. For the latter we used a crystal with 216 atoms
with periodic boundary conditions and about 4X 10
configurations. (See Tables I and II.) The Monte Carlo

calculations were broken up into blocks of size 5X10
configurations to enable us to obtain standard deviations
for our results. In the real-space part of the Ewald sum-
mation for the Coulomb energy we included 256 neighbor
ions within a distance of r, =3I /4 from a given ion
where I.=6a and a is the nearest-neighbor distance. The
parameter a, ' which divides the Ewald sum between
real space and reciprocal space, was chosen' so that
aI =5.05, and the reciprocal space sum was taken over
369 reciprocal lattice vectors for which 0& ~n~2~ 1,=30.
Our results are, therefore, of very high accuracy, superior
to our earlier work on NaCl.

Whereas the results are unacceptable when van der
Waals forces are omitted (triangular points), it is clear
from our figures that the potential listed in Eqs. (1)—(4)
leads to spectacular agreement with experiment along the
zero-pressure isotherm. And this holds true for all prop-
erties at all temperatures. %'e point out that our work is
based on a theoretical framework that is beyond
reproach, in that the terms we have included in the po-
tential are certainly there, and are important, and that we



ygn der WAALS FORCES IN. . . POTASSIUM CHLORIDE 3297

0

U
CP

0

05

8

0

CP

'a
c5"a
CS

CP

~ »»}
c5

8
OO

I

O

Ch
QO ~

O O

Ch t

O O

t O

QO

QoOQot
QO t

O
O
+I

O
O
+I

CD

CD
+I
Qo
Ch

Cv)
O
O
+I
Qo

CD

O
+I

CD

CD
+I

O
+I

O

CD

+I
O

O. O
+I +I

O

Q
CD
+I

O

+I

CD
+I

O
O

O

+I

O
Q
+I

O
O
+I
Qo

O
O
+I

+I

Ch

O
+I

O

O
+I

0

0

V
OP

0

a5

0

"a
Ct'a
c5

~ »»I

8

CO

O

ao

Qo QO

'40

QO 45 ~ Ch

O
+I

O
CD
+I

O
CD
+I

O
O
+I

O
O
+I

OOO
O O O
+I +I +I

O
O
+I

O O O
+I +I +I

Qo
Qo Qo

O
+I

CD O
+I +I

O O O CD
+I +I +I +I

Qo
Q n

V

CA

0
o 0

q$

~ »»} ~ '@~I

CA

c0 U"
CP

0 eS

8

ce

06

o
N

ch

o o
Qo a5

bQ

S4

~ X
05

~ QO

E
0

00

oo

0
8

0

0
8
E'
O

M

Ot u5 Qo

Qo

QOO O
I I I I

OOOO

rl O

th

0 ce
8

O
+I

O
O
+I

I

+I

I

O
+I

Ch

O
O
+I
O

I

+IO
I

+I
CD

O
O
+I

O

I

+I

I

Qo

QO
cv)

CD
+I

CD

+I

I

+I

I

+I

O
+I
O

I

+I

I

4P

CP

8

0
0

~ W

05

CO

V

0
~ 1+&I

0

O
~ ~ 0Oh

CC
~++M g$

8 ee
cia
4h
OJ

0
~ X

QoO

o

o

Qo
QOM~QO

Qo CD t

QO

Qo Qo Om Ch QO M
Ch Qo

O
O
+I

O
+I

CD

+I

O
O
+I
O

O
O
+I

0

V

O O O
+I +I +I

Ch~t

QO QO MO O O
O O O
+I +I +I

Ch

O O O
+I +I +I
O C



3298 ZHAOXIN GONG, G. K. HORTON, AND E. R. COWLEY

2 50-

1.5- I

E 4o
O

C)

30—
Vl ~

V

0.5-

20-

0—
0 200 400 600 800 1000 200 400 600 800 1000

FIG. 5. Gruneisen's parameter y for KC1, at zero pressure,
as a function of temperature; triangle, Monte Carlo simulation
with 4.0824X 10 configurations without the van der Waals con-
tribution to the rigid-ion potential; solid circles, Monte Carlo
simulations with 4.0824X10 configurations. The error bars
represent one standard deviation of the mean due to purely sta-
tistical uncertainties. Dotted line, anharmonic lattice dynamics;
dash-dotted line, quasiharmonic theory; dashed-dot line,
smoothed experimental data (Ref. 16); solid line, from smoothed
experimental data (Refs. 18 and 20).

FIG. 6. Adiabatic elastic constant c» as a function of tem-
perature, at zero pressure; triangle, Monte Carlo simulation
with 4.0824X 10 configurations without the van der Waals con-
tribution to the rigid-ion potential; solid circles, Monte Carlo
simulations with 4.0824X 10 configurations. The error bars
represent one standard deviation of the mean due to purely sta-
tistical uncertainties. Dotted line, quasiharmonic theory; solid
line, smoothed experimental data (Ref. 14); dashed line,
smoothed experimental data (Ref. 15); dash-dotted line,
smoothed experimental data (Ref. 16).

have used techniques which give numerically accurate re-
sults for this potential. We have neglected the effects of
ionic polarizability and of three-body forces, but we be-
lieve that these will affect our results for the thermal and
elastic properties only in detail. They may in fact be in-
cluded to some extent in our model in an effective way
because of our use of fitted parameters. Including a van
der Waals term for large lattice parameters is given fur-
ther support by our results. As for NaCl, the lattice
dynamical calculations fail badly, as expected, at higher
temperatures where perturbation theory diverges. By in-
cluding the results of the quasiharmonic approximation,
as well as those for a full anharmonic calculation includ-
ing both cubic arid fourth-order anharmonic corrections,
we illustrate how perturbation theory fails as a function
of temperature. A more detailed description of our
theoretical procedures can be found in Ref. 7. We believe
that a self-consistent theory is needed to cope with this
problem. We plan to report on such work in a subse-
quent paper.

IV. CQNCLUSIQN

The rigid-ion model for alkali halides continues to
surprise us with its ability to account quantitatively for a
wide range of experimental data on the thermodynamics
and elasticity of these solids along the zero-pressure iso-
therm. We confirm this conclusion here for KCl. We
found that for such an expanded solid, we had to supple-
ment the Born-Mayer repulsion by a large van der Waals
attractive term for second-nearest neighbor Cl—Cl in-
teractions. This supports the ideas of Catlow et al. '

The agreement between lattice dynamics and Monte Car-
lo simulations, on the one hand, and the experimental
data, on the other hand, is excellent from 0 K to the
melting point of KC1. We note that all the experimental
elastic data are not in agreement with each other within
their stated probable error. Thus a definitive test of the
model must await a resolution of these experimental un-
certainties. The large size of the van der Waals terms in
the potential required for agreement with the experimen-
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FIG. 7. Adiabatic elastic constant c» as a function of tem-
perature, at zero pressure; triangle, Monte Carlo simulation
with 4.0824 X 10 configurations without the van der Waals con-
tribution to the rigid-ion potential; solid circles, Monte Carlo
simulations with 4.0824X 10 configurations. The error bars
represent one standard deviation of the mean due to purely sta-
tistical uncertainties. Dotted line, quasiharmonic theory; solid
line, smoothed experimental data (Ref. 14); dashed line,
smoothed experimental data {Ref. 15); dash-dotted line,
smoothed experimental data (Ref. 16).

FICx. 8. Adiabatic elastic constant c44 as a function of tem-
perature, at zero pressure; triangle, Monte Carlo simulation
with 4.0824X 10 configurations without the van der Waals con-
tribution to the rigid-ion potential; solid circles, Monte Carlo
simulations with 4.0824X 10 configurations. The error bars
represent one standard deviation of the mean due to purely sta-
tistical uncertainties. Dotted line, quasiharmonic theory; solid
line, smoothed experimental data (Ref. 14); dashed line,
smoothed experimental data (Ref. 15); dash-dotted line,
smoothed experimental data (Ref. 16).

tal data is in agreement with the conclusions reached ear-
lier by work on interionic potentials for alkali halides us-
ing 0 K experimental data. ' Since we have not included
any three-body forces in our potential, our theoretical re-
sults obey the Cauchy relations c&2 =c44 for the static lat-
tice at zero pressure. This is not observed experimental-
ly. Experimentally, c&2 «c44 at 0 K and P=O. As in
NaCl, the deviation from the Cauchy relation changes
sign close to room temperature which proves that there
are explicit three-body forces which we have not included
and that the deviation from the Cauchy relation is not
merely due to anharrnonicity. There is also a large con-
tribution to the deviation from three-body forces at low
temperatures which is of opposite sign.

Gur work shows clearly that the quasiharmonic and
lowest-order-anharmonic-theory approximations give re-
sults very di6'erent from each other and from the Monte
Carlo values at high temperatures. It would be possible
to adjust the potential so that it would give agreement
with experiment for some properties and perhaps over a

limited range of temperature and pressures when used
with one of the approximate methods, but this would
clearly be misleading. As an example, we note that in
Fig. 2, the thermal expansivity calculated by the Monte
Carlo method for a model neglecting van der Waals
forces happens to give the same result as a quasiharmonic
calculation including van der Waals forces. Also, the
quasiharrnonic calculation will usually give good results
for certain properties such as C„. The only unambiguous
procedure is to calculate a wide range or properties, using
an accurate numerical technique. We believe we have ac-
complished this.
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