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Critical point in the solution of the two magnetic impurity problem
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We discuss in a physical fashion the key results obtained in the solution of the two interacting
Kondo impurity problem via the numerical renormalization group. Special emphasis is placed on
the nature of the unstable fixed point separating the regimes of flows to the correlated Kondo effect
fixed point and the locked-impurity singlet fixed point.

I. INTRODUCTION

Wilson! devised a remarkable numerical renormal-
ization-group method to solve the single-impurity Kondo
problem given by the Hamiltonian

H=—JSgplove+ 3 t;l4,.+H.c. (1)
i<j
where an impurity spin at site O has a local antiferromag-
netic interaction with conduction electrons. The latter
have a kinetic energy specified by ¢;;, and move in a band
of width D. Subsequently, the problem was solved?
analytically using a generalized Bethe ansatz with the re-
sults in agreement with the Wilson solution. In the last
few years we>* have used Wilson’s method to solve the
problem of two magnetic impurities interacting with con-
duction electrons and through them with each other [the
RKKY (Ruderman-Kittel-Kasuya-Yosida) interaction].
This problem does not appear soluble analytically.
The model Hamiltonian is

H= [ d% €af,a,,—JI[s(r,)'S;+5(r,)S,] . )

It is useful to work with states which have even (e) and
odd (o) parity about the midplane of the two impurities
at sites 1 and 2. With some simplifications, the second
term in H is transformed to

H= 3 (S,+8,)-
k, k'

t O a
Jeak’e ?ake +J0 alz’a —2_ako

+(SI_S2)' (3)

Jmalz’e%ako +H.c.

The expressions for J,, J,, and J,, in terms of the vari-
ables in (2) have been given.® The relevant energy scale
governing interactions on site is the Kondo temperature
Ty =~ exp(—1/|J]), with J?=J2+J2+2J%. (The half
bandwidth has been taken to be unity.) To second order
in the J’s an interaction (RKKY) between the two mo-
ments is generated,

Hgxxy=1,8,"S; , (4)
with

I,=21n2(J2+J2—2J2%) . (5

40

If we adjust the ratios J,, /J, and J,, /J,, so that the gen-
erated I,=0 but add a term of the form (4), the
renormalization-group results are identical to those for
Eq. (3).

We found that the ground state of a pair of spin one-
half impurities with nonzero separation is always a sing-
let. The principal physical results of this solution are the
following.

(a) For the initial interaction between the moments I,
ferromagnetic (>0), or antiferromagnetic ( <0), with
I,> —2.2T, the low-temperature behavior is that of a
correlated Kondo effect. The fixed-point Hamiltonian is
that for two independent Kondo impurities but the
ground-state expectation value (S,-S,) is not zero, as for
two independent spins, even for |I,|/Tx <<1. The quan-
titative behavior is given in Ref. 4. The low-energy (or
low-temperature) properties, determined by the leading
irrelevant operators about the fixed point, depend on
both I, and T as shown in Fig. 3 of Ref. 4. The univer-
sality in the properties characteristic of the single-
impurity Kondo problem is lost in the two-impurity
problem.

The phase shift of the conduction electrons in this re-
gime is asymptotically 7 /2 in both the even and odd par-
ity channels, and not larger than 7 /2 in one and less than
/2 in the other with the sum equal to 7 as naively ex-
pected for interacting resonances (see Fig. 1). At the
fixed point there is then particle-hole symmetry in each
channel separately. The fixed-point Hamiltonian con-
tains no coupling between the odd and the even
channels—the problem asymptotically becomes that of
two pointlike orthogonal scatterers.

(b) For larger antiferromagnetic interactions
I,<—2.2Tg, no Kondo effect occurs. The asymptotic
phase shift is zero. The two magnetic moments are not in
a singlet state until I, << — T, but the total spin includ-
ing the conduction electrons is zero. The Kondo correla-
tions clearly persist in this regime.

(c) The transition between the regimes described in
paragraphs (a) and (b) is marked by an unstable fixed
point (a critical point) at which the staggered susceptibili-
ty and the specific-heat coefficient y diverge. The
ground-state correlation {S,-S,) approaches —1. The
unstable fixed point is a new kind of fixed point at and
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around which a local description of the impurity and
conduction electron degrees of freedom in terms of a lo-
cal Fermi-liquid breakdown. [The renormalization group
flows are shown in Figs. 2(a)-2(c)].

The behavior in the very strongly ferromagnetic or an-
tiferromagnetic regimes |I,| >> Tk is straightforward and
was guessed at or supported by earlier calculations.>®
For comparison with earlier results, see Ref. 7. For
strong antiferromagnetic I, the two moments lock to a
singlet at a temperature well above Tx. This singlet is
then decoupled from the conduction electrons and may
be treated perturbatively. The surprise in the solution is
how slowly the behavior approaches this limit as |I,| /T
increases. For strong ferromagnetic coupling I, >>Tkg,
the two impurities form an S =1 state which undergoes a
two-channel Kondo renormalization to ultimately a sing-
let state for the whole system, but with {S;'S,) close to
the triplet value of .

Of the new results noted in paragraphs (a), (b), and (c)
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FIG. 1. Energy distribution of (a) the single-impurity Kondo
resonance, (b) the resonance behavior naively expected for two
interacting Kondo resonances, and (c) the actual resonance be-
havior found for two coupled Kondo resonances in Refs. 3 and
4.

above, especially interesting is the existence of the critical
point at a finite value of a coupling constant, noted in (c).
Our principal aim here is to give a physical description of
this critical point in terms of the passage between the two
radically different fixed points on either side of it.

II. m/2 PHASE SHIFT IN EACH CHANNEL

One would, of course, like to have a simple physical in-
terpretation of all the results. We have not succeeded in
this and must accept them as simply the results of a com-
plicated calculation (just as the J-— o fixed point at
T—0 is accepted for the single-impurity Kondo prob-
lem). We take special note of one of the results which is
crucial to the understanding of the “critical point”: The
phase shift in both the odd and the even parity channels
at T—0 is 7/2 for all values of coupling constants in
which the Kondo effect occurs (to the right of the critical
point in Fig. 2). This is a remarkable result which is
worth dwelling on.

Just as for the Kondo problem, the asymptotic low-
energy behavior for the two-impurity problem is expressi-
ble by an effective Hamiltonian consisting of a fixed-point
Hamiltonian H* and the leading irrelevant operators
about it which can be classified into one-electron Hamil-
tonian H'" and an interaction Hamiltonian H™,

HE(, ..., N)=H*+(HV+H"™)T . (6)

Consider H*. Recall that for the single-impurity prob-
lem Wilson constructs an effective one-dimensional prob-
lem such that H* is a free-electron Hamiltonian for all
odd numbers of lattice sites if the original Hamiltonian
has an even number of lattice sites and vice versa. This
means an electron is effectively lost as a ‘““bound state” or
that the asymptotic phase shift is 7 /2, as indeed required
by Friedel’s sum rule. Equivalently a resonance appears
at the chemical potential which is exactly half occupied
[see Fig. 1(a)]. With Wilson’s procedure the two-
impurity problem is expressed®* as two coupled one-
dimensional problems, one in the even parity channel and
the other in the odd parity channel. By Friedel’s theorem
the sum of the phase shifts in the two channels must be 7
or the total number of electrons lost must be two. One
would have expected the resonance behavior as in Fig.
1(b) or a phase shift larger than 7 /2 in one channel and
less than 7/2 in the other. Our result is that starting
with an even (odd) lattice, H* is that of noninteracting
electrons for an odd (even) lattice. The resonance behav-
ior is therefore as schematically shown in Fig. 1(c) with
phase shift 7/2 in each channel.

The implication of this result is that it is not meaning-
ful to speak of a Kondo effect for individual moments but
only of the Kondo effect for appropriate symmetry
channels—odd and even parity in this case. The result is
equivalent to the statement that the coefficient of all in-
terference terms between the odd and even channels such
as the third term in Eq. (3) or any others generated in the
intermediate stages of the renormalization group go to
zero at the fixed point. Note that since such terms multi-
ply the operator (S;—S,), matrix elements coupling the
S =0 and S =1 states of the two impurities vanish in the
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FIG. 2. (a) Schematic renormalization-group flows in the temperature —I,/Tx plane. (b) Schematic flow diagram in parameter
space for the antiferromagnetic regime. The two relevant parameters are the RKKY coupling I and the Kondo coupling J. Here
and in (c) the end points represent one or more of the parameters scaling to infinity. The curved line up the center represents the line
I=~2.2Ty, terminating at the unstable fixed point. All flows with initial parameters to one side or the other of this line terminate at
either the correlated Kondo effect (strong-coupling) fixed point or the locked-impurity singlet fixed point. (c) Schematic flow diagram
for the ferromagnetic regime J,, =(J, /J,)”2. The center diagonal is the flow for J, =J,, the independent impurities case. When
J.#J,, the flows deviate toward one of the marginally unstable fixed points. Flows terminate at the stable correlated Kondo effect
(strong-coupling) fixed point. As in (b), this diagram is schematic in the sense that it implies {$,-S,) is the same for all flows (here,
the implication is that it is zero), since all end at the same point. The fixed points are the same, but the correlations are not.

fixed-point Hamiltonian. This means

H*=H ¥even +H*odd , (7

free free

where Hy,,. are free-electron Hamiltonians and the super-
scripts refer to the parity of the free quasiparticles.?

III. CRITICAL POINT

The Hamiltonian of the two-impurity problem includ-
ing terms generated to any order in the renormalization
can be divided into (i) the subspace in which the two im-
purities are in a singlet state: Hg_,, S=8;+S,; (ii) the
subspace in which they are in a triplet state: Hg_,; and
(iii) the subspace connecting the former with the latter:
H_,.. Both the impurity S =0 and S =1 subspaces are
diagonal in the cumulative parity of the conduction-

electron states, while the mixing term is purely off diago-
nal in the cumulative parity of such states. Thus, in gen-
eral, we can write

Hgv__e:x(l) 0 0 Hmix
' 0 Hg‘_i_fio Hmix 0
" 0 Hp| [EEm o |0 @
Hmix 0 0 H§d=dI

where S refers only to the impurities and the even-odd
parity only to the conduction-electron states.

Hg _, is just the free-electron Hamiltonian; this sector
undergoes no Kondo renormalizations and has a phase
shift of zero. We also know that the low-temperature
fixed point of Hg_, is a free-electron Hamiltonian Hg_,
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with a total phase shift 7. From the discussion above, we
know that a phase shift of 7/2 occurs separately in the
even and odd parity channels implying that at the low-
temperature fixed point H_;, —H ., =0.

For large antiferromagnetic I,, —I,/Tx >>1, the
ground state of Hg_, lies lower than that of Hf_, and
for large ferromagnetic I,, I,/Tg >>1, the ground state
of H¢_, lies lower than that of HE_,. It follows that
there must exist a value of I, /T where the ground state
of Hf_, and HJ_, are degenerate. The unstable fixed
point (the critical point) exists at this special value
(I,/Tg).. This simple argument implies that at the fixed
point, the nondegenerate ground state with zero total axi-
al charge (see below), zero total spin, and even parity has
equal admixture of the impurity S =0 and S =1 states.
This leads to {S,-S,)=—1. This is indeed, within nu-
merical accuracy, found in the calculations.

Suppose one measures the staggered susceptibility Y, in
the problem by applying a field |H| that is antiparallel at
the two sites. X, is then the response to H-(S;—S,).
This term lifts the degeneracy between Hg_, and HS_,
to linear order in |H|. It follows that y, diverges at the
critical point, as calculated.

The calculated divergence in the coefficient ¥ of the
linear specific heat is a more subtle matter. The diver-
gence means that infinitely many degrees of freedom are
affected at the critical point, unlike away from it where
the low-temperature problem is quite local. Alternatively
the degeneracy implies a singular density of states of exci-
tations as w—0. We believe this is the physical basis for
the divergence of the specific heat.

An analytically soluble model which also has a critical
point is an S=1 impurity interacting with two
conduction-electron channels with coupling constants J,
and J,. Nozieres and Blandin® had conjectured a critical
point for J, /J,=1. This critical point was discovered in

a Wilson renormalization-group calculation by Cragg,
Lloyd, and Nozieres,'® who also found the even-odd lat-
tice degeneracy. Subsequently, the model was solved!! by
the Bethe ansatz. The specific-heat coefficient ¥ was
found to diverge at the critical point. '

The divergence of the specific-heat coefficient means
that a Fermi-liquid description of the low-temperature
properties breaks down near the critical point. In the
temperature coupling-constant plane the flows will look
as in Fig. 2(a).

IV. EXPANSION ABOUT THE CRITICAL POINT

The breakdown of the Fermi-liquid description is evi-
dent in the study of the leading operators about the low-
temperature fixed point H'V and H™™. H'V is written

HY=t,(flfre +H.e)Ht,(flof 1, +He),  ©)

where f;, and f;, are the annihilation operators in the
Wilson representation for the odd and the even
conduction-electron channel, respectively. For the
single-impurity one-channel problem t=D /T2, where
T? is the “zero temperature” Kondo temperature. For
I,=0 one has (S,'S,)=0, t,=t,=t. For any finite I,
ferromagnetic or antiferromagnetic, ¢, and t,>¢ in the
“Kondo regime”, I,/Tx > —2.2. This reflects the in-
creased matrix element for hopping of the quasiparticles
when the spins on the two sites are correlated, i.e.,
(8,'S,)#0. Near the critical point ¢, and ¢, diverge.
The interesting dependence of ¢,, on I,/Tkx has been
given.*

While the single-impurity Kondo effect has just one in-
teraction term asymptotically, the two-impurity problem
has in general five interaction terms. This was also noted
by Yamada and Yosida'? and by Schlottmann,?

Hint: 2 Up(n0p —1)2+ er (nOe —1)(n00_1)+ 2 (fgeofge~af00—0f000+H'c') +Jeof(.§eaf0e 'fg)oafOO . (10)

p=e0

Here ng, =3 f gpa fopo- The simplifications introduced
in the model solved, in which the interaction between the
even and odd channel is effectively a & function in space,
induce an additional symmetry, axial charge. Axial
charge j is a three-dimensional axial vector quantity
which is conserved in the one-impurity problem.* In par-
ticular, :

it= 3 (v,

n

p=eo0
iT=GHT, (11
=3 M far i e — 1)

p=eo0

With this symmetry, the third and fourth terms in (9) are
required to have equal coefficients, and H™ can be

[
rewritten as

HM= 2 4Upj(z)<2)+4erjOe'j00+4JeoSOe'SOO - (12)

p=eo0

As noted earlier,* weak universality provides only two
relationships between the seven coefficients required to
characterize the low-temperature properties of the two-
impurity problem: U,/t,=const=1, U, /t,=const=1.
This means that the universality (all low-temperature
propertics expressible in terms of a single parameter T§)
of the single-impurity Kondo problem has been lost.
Near the unstable fixed point J,,—0, implying an addi-
tional symmetry of the critical point, the conservation of
s, and s, separately, instead of just their sum.

Given H'V'+H™ one can calculate the uniform and
the staggered susceptibilities X, and Y,, respectively, in
the mean-field approximation, as was done for the single-
impurity problem by Blandin and Nozieres.” We find
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X0=X8[1_X8(Ue+Uo——2Jeo)] ’ (13)
XW:XZ[I—X((;(:;er_Jeo)] ’ (14)

where x{ is the susceptibility from the one-electron term
alone. Near the unstable fixed point U,, U,— — o,
U,—+o(U,lI|U,l, |U,| ~[(I,/Tg)—(I,/Tg),172),
and J,,—0. Here the subscript ¢ stands for the value at
the critical point. Equations (12) and (13) are, of course,
only valid in the mean-field region. However, they pre-
dict behavior consistent with y,— o, as found numeri-
cally. They also predict Y,—0. There are large errors in
the determination of x, near the critical point, but y,=0
is consistent with numerical accuracy.

V. IMPURITY SPIN-SPIN CORRELATION

The renormalization-group equations for the Hamil-
tonian in the Kondo regime lead to a fixed point which
contains no information about {S,-S,), and is, in fact, in-
distinguishable from the fixed point obtained starting
from I,=0. The effect of I, is seen in the deviations
from the fixed point and thus in all observable properties.
In the renormalization-group equation for the correlation
function (S,-S,) the effect of I, is seen at the fixed point;
its ground-state (fixed-point) value depends on I, no
matter how small I,/Tg is. Since the fixed point is
characterized by J,,J, scaling to infinity, a finite ground-
state value for (S-S, ) is only possible if one thinks of I,
also as scaling to infinity and in the same fashion as J,
and J, as far as the renormalization-group recursion for
(S,-S,) is concerned.'*

VI. OTHER METHODS

Much was learned in the Kondo problem by perturba-
tion theory,15 poor man’s scaling,16 and Gellman-Low re-
normalization equations about the high-temperature
weak-coupling fixed point. Considerable effort with such
methods was expended by Abrahams, Varma, and
Zawadowski!” in the two-impurity Kondo problem.
These methods, however, flounder. The most interesting
difficulty that appears is that in any order of perturbation
theory, logarithmically divergent diagrams appear which
cannot be generated from any divergent diagrams in the
previous order. All such diagrams appear to have the
feature that the Kondo effect at one site is interrupted by
the spin flip between the two sites induced by their mutu-
al interaction. Two low-order examples of such a dia-
gram are given (Fig. 3).

With this sort of thing it is not clear how to proceed.
Perturbation theory, however, provides the answer as to
why the scale for the physical behavior in the two-
impurity problem is set by I,/Tx. The crucial point is
that around the high-temperature—local-moment fixed
point, I, is the coefficient of a relevant operator; pertur-
bation calculations yield corrections pI2D /w, where D is

" the bandwidth and p is the density of states. On the oth-
er hand J is a marginal operator yielding corrections

1&

—_—
TIME

FIG. 3. Low-order diagrams leading to logarithmic correc-
tions to the effective interaction between impurities 1 and 2,
which are not generated by previous orders in perturbation
theory. The dashed lines are the pseudofermion propagators for
the impurities, full lines represent the propagators for the con-
duction electrons, and the wiggly lines represent the RKKY in-
teraction.

pJ*InD /. For the two parameters to affect physical
quantities comparably, I, must be compared to a quanti-
ty which is exponentially smaller than J. Hence I, /Ty
sets the scale.

Another method which fails for the two-impurity prob-
lem for very related reasons is the path-integral represen-
tation.!®® The spin flips at successive times at one site
{t1;] and at the other sites {#,;} become interrelated in a
manner which has proved impossible to handle
mathematically. A phasé relationship of the Kondo
effect at the two sites is indicated. Such a phase relation-
ship seems to be the essence of the correlated Kondo
effect. Bethe ansatz methods also appear inapplicable be-
cause of the coupling between channels. At the moment
it appears the full low-temperature solution can only be
obtained via Wilson’s numerical renormalization
methods used in Refs. 3 and 4. Mean-field methods of
the large-N variety are known to reproduce key features
of the correct solution to the single-impurity Kondo
problem; when applied to the interacting two-impurity
Kondo problem, they give!® results different from the
solutions of Refs. 3 and 4.
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