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Evaluation of quasiparticle energies for semiconductors without inversion symmetry
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We have generalized the Fourier-space Hybertsen-Louie self-energy approach for quasiparticle
energies in semiconductors to cases without inversion symmetry. In the evaluation of the self-

energy operator, a complex four-dimensional Fourier space is used to carry out the double Fourier
transforms for time and spatial variables independently. The generalized plasmon-pole scheme for
including both local fields and dynamical effects is also properly extended to systems without an in-

version center. The quasiparticle energies for GaAs and A1As are calculated with use of this ap-
proach and results in agreement with experimental data are obtained.

I. INTRODUCTION

Although the Hohenberg-Kohn-Sham local-density ap-
proximation (LDA) has been extensively and successfully
used for many physical properties of solids, this theory
encounters major difhculties when applied to the calcula-
tion of energy band gaps. One of the diSculties arises
from the intrinsic limitation of the Kohn-Sham formula-
tion of the density-functional theory' (DFT) where the
ground-state properties are given accurately but the ei-
genvalues obtained using this theory have little direct
physical meaning. The Kohn-Sham band gap is generally
smaller than the true band gap by a finite amount attri-
buted to the discontinuity in the exchange-correlation po-
tential for adding an electron to the system. ' This
discontinuity is in general substantial. Moreover, owing
to the k dependence of the electronic self-energy, a simple
treatment such as the "scissors operator" approach
which just enlarges the fundamental gap is inadequate. '

In the LDA calculation, the exchange-correlation poten-
tial V„ is further replaced by a local-density operator
which eliminates nonlocal effects.

To calculate the band gap correctly, one approach is to
compute the ground-state energies for the X- and the
(N + 1 )-particle systems using Jastrow-Slater-type trial
wave functions. The excitation energies can then be ob-
tained from total-energy differences. ' An alternative
approach, employed here, is to use the quasiparticle con-
cept based on the Green's-function approach. " The
quasiparticles are defined within the context of a one-
particle Green's function such that each peak in the spec-
tr'al function which is su%ciently sharp defines a quasi-
particle energy. The quasiparticle approach allows a
direct computation of the exchange-correlation contribu-
tion to the electron excitation energy and is hence com-
paratively simple. It provides insight into the screening
behavior of the many-body system and the renormaliza-
tion of quasiparticle properties. For an inhomogeneous
system, the quasiparticle energies and wave functions are
obtained by solving

(T+ V,„,+ Vt, )%„q(r)

+ f d r'X(r, r', E„z)%'„k(r')=E„z'P„z(r),

where T is the kinetic energy operator, V,„, is the exter-
nal potential due to the ions, Vh is the average Coulomb
or Hartree potential of the electrons, and X is the elec-
tron self-energy operator. The many-body effects of ex-
change and correlation among electrons are contained in
X which is in general a nonlocal, energy-dependent, non-
Hermitian operator. Hence the eigenvalue in Eq. (1),
E„z, is complex, and its imaginary part gives the lifetime
of the quasiparticle.

Recently, various approximations have been made to
carry out the calculation for X."' ' ' Here, we will
adopt the Hybertsen and Louie approach which uses the
Hedin GS'approximation with dynamical screening and
includes local-field effects. A generalized plasmon-pole
approximation is used for the screened Coulomb interac-
tion 8'. This approach has been successfully applied to
determine the band structures for the bulk materials dia-
mond, Ge, Si, and LiF, for As adatoms on Ge and Si sur-
faces, ' and for the Ge/Si interface' with an overall ac-
curacy of 0.1 —0.2 eV for the band gaps. Subsequently, a
similar approach was taken by Godby et al. using a
method for evaluating 8' by a finite sampling at the
imaginary-frequency axis and by von der Linden and
Horsch' using empirical pseudopotentials with 8' ob-
tained using plasmon poles given by the eigenvalues of
the static dielectric matrix.

In this paper, we will extend the Hybertsen-Louie
scheme to semiconductors without an inversion center
and apply it to bulk GaAs and AlAs. Applications of the
method to the GaAs-A1As interfaces and superlattices
have also been performed and will be discussed in a sub-
sequent paper. This paper is organized as follows. In
Sec. II, we review the Green's-function approach and the
G 8 approximation. In Sec. III, the dynamically
screened Coulomb interaction 8' and the generalized
plasmon-pole model for systems without inversion sym-
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metry are discussed. The computational details are given
in Sec. IV and this approach is applied to the calculation
of band gaps for GaAs and AlAs in Sec. V. Section VI
contains a brief summary.

II. GREEN'S FUNCTION
AND 6W APPROXIMATION

where 6=0+ and

W(r, r';E)= J d r" e '(r, r";E)v(r",r'), (3)

with the bare Coulomb potential v(r", r')=e /~r" —r'~

and e is the time-ordered dielectric screening function.
For nonmagnetic systems with time-reversal symme-

try, both 'P„z(r) and its complex conjugate, %„*z(r), are
solutions of Eq. (1) with the same energy, E Hence, a.
real eigenfunction corresponding to this eigenenergy can
always be constructed to reduce the evaluation of the
quasiparticle excitation spectrum to an evaluation of the
real part of the generally complex energy E or,
equivalently, to the expectation value for the real part of
X. To examine the physical meaning of X, we decompose
X into two terms,

X=X„,+X, h,
where the first term is given by the real part of the
Green's function times the real part of the screened
Coulomb interaction and the second term is from the
product of the two corresponding imaginary parts and in-
tegrated over an internal energy variable. The screened
exchange part, X„„arises from the poles of the Green's
function, and the Coulomb-hole part, X„h, from the poles
of the screened interaction 8'. A detailed discussion for

In the framework of the Green's-function approach,
particlelike excitations in an N-particle system are
governed by the quasiparticle equation, Eq. (1), via
Dyson's equation. The detailed formalism of the quasi-
particle theory for electron systems has been discussed in
the review of Hedin and Lundqvist. "

Our goal is to evaluate X in Eq. (1). However, X is re-
lated to the interacting Green's function G, the dynami-
cally screened Coulomb interaction W, the irreducible
polarizability P, and the vertex function I, I = 1

+5X/5V, where V is the total average potential. These
quantities need to be evaluated in a self-consistent
fashion. The approach of Hedin' which is adopted here
is to generate for X a perturbation series in 8'. The first
term in the series expansion so generated with respect to
W is the GS'approximation (i.e., X=iGW) where vertex
corrections are neglected (I =1). Since G is the dressed
Green's function and 8'is the screened Coulomb interac-
tion, this procedure has a special advantage. The first-
order term already contains part of the infinite expansion
in terms of the bare Green's function and bare Coulomb
interaction which yields a better convergence. In energy
space, the explicit form for X is

X(r, r', E)=i e ' G(r, r';E E')IV(r, r';—E'),dE'
77

( y„„~X(E„)—V„, " ~
e„)

(6)

where V„, (r) is the LDA exchange-correlation poten-
tial and 1t„z is the LDA wave function. Numerically, we
find that the quasiparticle wave functions are very close
to their LDA counterparts. If one expands the quasipar-
ticle wave function in terms of the LDA wave functions,
the higher-order terms in the resultant expansion of Eq.
(6) will be negligible. The many-body correction, which
is the second term in Eq. (6), can therefore be replaced by
its first-order term, (P„k~(X—V„, )~g„k).

III. DYNAMICALLY SCREENED INTERACTION

The calculation of the screened Coulomb interaction 8'
requires the full dielectric matrix e '(r, r', E) which has
separate dependences on the spatial variables r and r'.
As mentioned earlier, this leads to local-field effects, i.e.,
the screening varies on an atomic scale due to the charge
inhomogeneity in semiconductors. The screened interac-
tion 8'is given by the time-ordered'dielectric matrix e
via Eq. (3). The time-ordered dielectric matrix is further
related to the linear-response retarded dielectric
matrix —their real parts are the same but their imaginary
parts differ by a sign for negative frequencies. Our stra-
tegy is to calculate as accurately as possible the static
dielectric matrix e '(r, r', E =0). Then we use the ana-
lytic properties of the retarded dielectric matrix to obtain
a generalized plasmon-pole model which approximates
the screening and the screened Coulomb interaction 8'at
finite frequencies.

X„,and X„h is given in Ref. 4 in terms of the spectral
functions for G and 8'.

The Green's function can be constructed from the
quasiparticle wave functions and eigenenergies. These
quasiparticle wave functions %„z(r) form a complete set
of functions which in principle could be nonorthogonal.
The explicit expression for the Green's function is

+„&(r)+„*&(r')
G (r, r', E)=g

nk ~~nk

where 5„k=0+ for E„k&EF, 6„k=0 for E„k)EF and
EF is the Fermi energy. The quasiparticle energy is, in
general, complex. In the following calculation, however,
we neglect the imaginary part and approximate the spec-
tral function by 6 functions on the real axis. This is a
reasonable approximation for quasiparticles near the Fer-
mi level with long lifetimes.

There are two important aspects of the 68'
approximation —the local-field effect from the nonlocali-
ty of the screened Coulomb interaction and the dynami-
cal screening effect from the energy dependence of the
self-energy operator. Both effects are omitted in LDA
calculations. In our discussions we concentrate to a large
extent on how these effects give rise to results differing
from the LDA calculations. For this reason, we will ex-
press the quasiparticle energy as the corresponding LDA
value plus a correction from a many-body correction
term, X(E„z)—V„, . Hence,
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A. Spatial Fourier transformation
and static dielectric matrix

In our approach, the quasiparticle calculation [i.e., the
solution of Eq. (1)] will be carried out in Fourier space,
which is the obvious choice for periodic systems. The
dielectric matrix should also be formulated in the same
space. Our convention for the Fourier transform is

W(r, r';co)= ~~ e ' + "W (q, co)eGG'
q, G, G'

where j=&—1, co is the energy variable, G is a recipro-
cal lattice vector, q is a wave vector in the first Brillouin
zone, and

WGG (q, co) =coo (q, co)U (q+G') .

Before taking the Fourier transform, any function g in
this formalism is considered as a scalar function with
real-space variables, r and r', and a time variable t. The
spatial Fourier transform is considered independent of
the Fourier transform of the time variable. Each trans-
form brings the function g into a two-dimensional space,

f s. , +, f—s.
n, n'k ~n', k+q nk

x (q ~

&''&+o"
~q

x(q„, ,~e&'&+ "~@„„),
where f (s) denotes the fermion occupation factors and s
denotes the LDA eigenvalues. From Eqs. (10) and (11),
the static dielectric matrix is computed as outlined previ-
ously' and inverted to give eGo.(q, co=0). To obtain the
cu-dependent dielectric matrix, we made use of a general-
ized plasmon-pole model given in the following section.

B. Generalized plasmon-pole model

The use of the generalized plasmon-pole (GPP) model
is based on the physical observation that e2 oo.(q, co), the
imaginary part of the time-Fourier-transformed inverse
dielectric function e ', is generally a peaked function of
co. Accordingly, one may approximate the time-ordered
e, 'by

e2 oo (q, co) = Aoo (q)[5(co—cooo (q))
1 0 —5(co+cooo (q) )], (12)

Therefore, the double Fourier transforms of function g
are equivalent to a direct product of two 2 X 2 matrices,

1 0 1 0
0 j 0 i

Hence, the Fourier components of the doubly
transformed function g are defined on the four-
dimensional space spanned by (1,j,i, ij) where the imagi-
nary number j is used for spatial variables in order to
avoid confusion with the imaginary number i used for the
time variable t. The real and imaginary parts resulting
from the usual time transform of the function g will be
denoted by subscripts 1 and 2 and both will have real and
imaginary spatial Fourier components. The case in
which the system has inversion symmetry is a special case
where the spatial Fourier transform is real and the four-
dimensional space is reduce to two dimensions.

The time Fourier-transformed random-phase-approx-
imation (RPA) irreducible polarizability (the independent
particle polarizability) P is defined as

I

P(r, r', co) = —i J e ' "G (r, r';co —co')G(r', r; o'),

where 5=0+. The dielectric matrix eoG(q, co) in the
RPA is related to the polarizability P by

coo(q co)=5oG —U(q+G)Po& (q, co) .

Since the static dielectric matrix is a ground-state proper-
ty, our calculation for the static polarizability can be per-
formed within the LDA approximation via the Adler-
Wiser formalism, '

where A and co are the amplitude and frequency for the
plasmon poles, respectively. For cases where there is not
a well-defined single peak, direct calculations showed that
e2 Go(q, co) tends to be small and fiuctuates in sign as a
function of co. Equation (12) suggests that A can be
complex for systems without inversion symmetry but 6
should be real. In Ref. 4, 3 and 6 are determined from
the Kramers-Kronig relations and the generalized ver-
sion of the Johnson f-sum rules ' derived for the retarded
dielectric matrices. It can be shown that these relations
and sum rules also hold for systems without inversion
symmetry as long as these systems are nonmagnetic.
Hence,

2 1
e, oo (q, co=0) =5&G.+ —P dco —e2 oo (q, co),

7T 0 CO

(13)

and

8 co coep oo ( q, co )
0

vr q (q+G) (q+G') p(G —G')
~q+G~' p(o)

where p(G) is the Fourier transform of the ground-state
charge density and co is the classical plasma frequency.
Since Eqs. (13) and (14) are given for frequency ranges in
which the time-ordered and the retarded dielectric ma-
trices are identical, no distinction has been made between
the two.

We note that Eq. (13), the Kramers-Kronig relation,
connects the inverse frequency moment of ez

' to the stat-
ic el ' whereas Eq. (14), the generalized f-sum rule, re-
lates the first moment of e2

' to the ground-state charge
density. This set of coupled equations in general cannot
be satisfied by Eq. (12), the single-plasmon-pole approxi-
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p(G —G')
Ei GG'(q~ CO 0)

0.

It is important to realize that the high-frequency com-
ponents of e2, although small, give finite contributions
to the generalized f-sum rule, Eq. (14), because of the in-
creasing weighting factor of co as co~~. Hence, the

mation for ez
' with the requirement that co is real. The

physical reason is that the static linear response and the
spatial-charge distribution are different physical quanti-
ties and could be spatially out of phase. In another word,

low-frequency components of ez
' generally cannot be

separated from the high-frequency components in Eq.
(14), which makes it difficult to use a single-pole approxi-
mation. It is, however, not the case for the Kramers-
Kronig relation since in this case, the weighting factor is
1/co. To handle these difficulties, we use a minimal two-5
function approximation for ez and keep the high-
frequency term in Eq. (14). The 5 function which con-
tributes to the self-energy calculation is, however, solely
the low-frequency one corresponding to the usual
plasmon pole.

Hence, we write

e2 GG (q, co) —I AGG (q)[5(co—
COGG. (q)) —5(co+~GG (q))]+BGG (q)[5(co CO GG

—(q) ) —5(co+co GG.(q))]J QGG.(q),
(15)

where

We then define

i (q+G) (q+G') p(G —G')
iq+Gi' p(0)

0 .( )GG' q
& ( )

Jkoo ~q~
GG'q e

5GG ei GG'(q ~
(17)

(18)

where A, GG, (q) )0. Combining Eq. (15) with Eqs. (13)
and (14), the following coupled equations are obtained,

~ GG, (q) EGG. (q)+
COGG (q) CO GG (q) ~GG (q)

tion procedure have to be omitted. For systems without
inversion symmetry, this would imply no phase difference
between the static inverse dielectric matrix and the
charge density, which is probably not a bad approxima-
tion for GaAs but could be less accurate for materials
with larger ionicities. A more optimal scheme without
the drawbacks of the above two models was recently
developed and will be discussed elsewhere. Neverthe-
less, the evaluation of the self-energy operator generally
involves a sum over frequencies in the screened Coulomb
interaction, and usually the fine details of the frequency
dependence are not important.

IV. CQMPUTATIQNAL DETAILS

~GG (q)~GG (q)+&GG (q)~ GG (q) = —
—,'~ (19)

Equations (18) and (19) are solved subject to the symme-
try requirements on ez

' for A and co under the condi-
tions that co '~ ~ but Bco ' remains finite. This yields

1/2
XGG (q)

cos[PGG'(q) l
(20)

AGG (q)= —— e
2 EGG(q)cos[PGG(q)]

(21)

There are no adjustable parameters used in this general-
ized plasmon-pole model. More general features for the
model have been discussed in Ref. 4.

Recently, von der Linden and Horsch' proposed a
different scheme for applying the plasmon-pole approxi-
mation, i.e., utilizing the diagonal representation of
e, GG (q, co=0). This scheme has the advantage of
avoiding the possible imaginary solution of Eq. (20).
Only X poles are used where % is the dimension of the
static dielectric matrix. This model, however, suffers
from the difficulty that in general e, '(q, co =0) and
AGG. (q) cannot be simultaneously diagonalized so that all
the off-diagonal terms of QGG. (q) after the diagonaliza-

We use ab initio pseudopotentials in the scalar-
relativistic form which greatly simplify the calculations.
However, this approach introduces small error because of
the improper treatment of the core-valence exchange and
the core-polarization contribution to X using a LDA
frozen core. The errors for GaAs and AlAs are some-
what larger than those for Si because of the relatively
larger cores of Ga and Al, and the softer core of Ga. But
the results should be comparable to Ge. The size of
these effects has been estimated using atomic calculations
to be about 0.3 eV for transitions between states having
pure p character and pure s character. This extreme case
corresponds to the minimum direct gap in Ge.

To calculate the quasiparticle energies, Eq. (1) is con-
verted into matrix form by expansion of the quasiparticle
wave functions using the LDA basis. Initially, the wave
functions and eigenvalues are calculated by approximat-
ing X by the LDA Green's functions and the screened
Coulomb interaction 8' given by the GPP model. The
Green's functions and the Hartree potentials in Eq. (1) in
principle should be updated iteratively to self-
consistency. We, however, use the fact that the LDA
wave functions are almost identical to the quasiparticle
wave functions so that updating the wave functions are
unnecessary. Hence, only the quasiparticle energies in
the Green's functions [Eq. (5)] are updated. The errors in
replacing the quasiparticle wave functions by the LDA
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wave functions have been estimated to be less than a few
hundredth of an eV. Therefore, Eq. (6) can be approxi-
mated by

E.,= ".« "+&~.kl~(~..)l~..&-&~..lv."."~~..&

with

& &„ I&(&)I@„&=
& p„ I&„„(E)lg„&

+&/„„~&,. (&)Iq„„&, (23)

(22) where

OCC

&y„,l~„„(~)ly„„&=—y y s,+
n, q, G, G (E —E„g q)' —SoG(q)

v (q+ Cy')

(24)

and

n~ q, G,G'@Go'(q)[E —E. k —q ~QQ'(q)]

X&@..~e'"+ "~@. .—,&&@. .—,~e
'"+ "~0..& .n&, k q n&, k —

q (25)

The LDA calculations are carried out using a plane-
wave basis with energy cutoffs of 16 Ry for the Hamil-
tonian and 64 Ry for the charge densities for GaAs and
A1As. These cutoffs are chosen to ensure convergence of
the LDA spectrum (the direct gaps are converged to
within 0.02 eV). Summations over the Brillouin zone for
the LDA charge density and potentials were performed
using a 10-special-point scheme. In some cases, the
Ceperley-Alder exchange-correlation potential is used,
although, in principle, the von Barth and Hedin correla-
tion energy should be used to be consistent with the
RPA approximation for X. This has no effect on band
gaps and excitation energies since the difference is just a
constant shift of the quasiparticle energies relative to the
reference LDA eigenvalues.

The sum over Umklapp process G and Cx' in Eqs. (24)
and (25) requires a cutoff G,„so that ~q+Ci~ ~ G,„. In
the calculation of X for GaAs and A1As, G,„=9 Ry,
and 100 lowest bands for n

&
are used. The sum over the

irreducible Brillouin zone for X is carried out at several
different sets of q points (3,10,14) including q=0 and the
results are found to be converged for 10 q points. We es-
timate that the final results for the GR'quasiparticle en-
ergies are converged to within a few hundredths of an eV

for the above cutoffs. The special treatment for the static
dielectric matrix for q —+0 follows the method outlined in
Ref. 4.

V. GaAs AND AlAs BAND GAPS

In the calculation of quasiparticle energy gaps for bulk
GaAs and A1As, experimental values for the crystal
volumes were used. The GR' quasiparticle energies for
the high-symmetry points, I, X, and L, are summarized
in Table I for GaAs and Table II for A1As. The spin-
orbit splittings were calculated using the first-order per-
turbation as outlined in Ref. 30. These splittings are in
good agreement with the experimental data.

The G8'quasiparticle calculation provides a dramatic
improvement over the LDA results for the band gaps.
Compared with the experimental values, most of the re-
sults agree to within -0.2 eV. In contrast, the LDA
values can be in error by more than 1 eV and are con-
sistently too small. The gap between the I and I minima
for AlAs has not been measured directly. A recent 68
quasiparticle calculation ' predicted that this gap is 3.03
eV. Our present value, 2.79 eV, is smaller but in better
agreement with the value extrapolated from alloy data,
2.54 eV. The largest discrepancy between the quasipar-

TABLE I. LDA eigenvalues, present GR quasiparticle energies, and many-body corrections {5=E —e ) for GaAs in eV.
Spin-orbit splittings are included. Experimental energy gaps are given by Ref. 29. Quasiparticle energies and many-body corrections
from Ref. 31 [Godby, Schliiter, and Sham (GSS)] are also included.

Methods

LDA
Present work
GSS'
Experiment
5(present)
5(ASS)

'Reference 31.

0.0( —0.34)
0.0( —0.34)
0.0( —0.34)
0.0( —0.34)
0.0
0.0

0.38
1.29
1.47
1.52
0.91
0.91

X5,
—2.71{—2.79)
—2.79( —2.87)
—2.73( —2.80)
—2.78( —2. 85 )—0.08
—0.07

Xi.
1.32
2.05
2.08
2.01
0.73
0.70

L3„
—1.16( —1.37)
—1.19(—1.40)
—1.11(—1.32)
—1.19(—1.40)
—0.03
—0.04

L),
0.88
1.69
1.82
1.84
0.81
0.78

~15v ~1c

0.38
1.29
1.47
1.52

X5„-X),

4.04
4.90
4.81
4.94

L3,-L ),

2.04
2.89
2.93
3.01
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TABLE II. LDA eigenvalues, present GW quasiparticle energies, and many-body corrections {5=E""—e" ) for AlAs in eV.
Spin-orbit splittings are included. Experimental energy gaps are given by Ref. 29. Quasiparticle energies and many-body corrections
from Ref. 31 [Godby, Schliiter, and Sham (GSS)] are also included.

Methods

LDA
Present work
GSS'
Experiment
5(present)
5{GSS)

'Reference 31.
Reference 32.

~15v

0.0( —0.30)
0.0{—0.30)
0.0( —0.28)
0.0( —0.28)
0.0
0.0

1.82
2.75
3.26
3.11
0.93
0.93

X5,
—2.21( —2.34)
—2.35( —2.48 )—2.34( —2.49)
—,2.30( —2.45)
—0.14
—0.13

X„
1.28
2.08
2.09
2.24
0.80
0.81

L3„
—0.86( —1.04)
—0.93( —1.11)
—0.88( —1.08)
—1.31(—1 ~ 51)
—0.07
—0.08

Li,
1.95
2.79
3.03
2.54
0.84
0.90

I is -I
&

1.82
2.75
3.26
3.11

Xq, -X),

3.49
4.43
4.43
4.54

L3,-L i.c

2.79
3.72
3.91
3.80

ticle and the measured gaps is for the direct gap at I .
This can be understood since the core corrections are
largest for the pure s-like excited state as discussed ear-
lier. We note from these tables that the disagreement for,
the direct gap of A1As is larger than that for GaAs.
Since the minimum gap for A1As is an indirect gap (I to
X) and since the A1As samples are hygroscopic and usual-
ly difficult to handle, we expect a larger uncertainty for
the measured direct-gap value for A1As. Our GPP model
far evaluating the screened Coulomb interaction 8' is

computationally simpler than the method used by Godby
et al. which samples 8' along the imaginary frequency
axis. However, the many-body correction terms
(5=Eq~ —E" ) shown in Tables I and II are still in

agreement with those calculated by Godby et al. ' to
within a few hundredths of an eV. Hence, the scheme
presented here can be applied to more complicated sys-
tems such as surfaces and interfaces. The quasiparticle
gap values for I and I. points are larger in Ref. 31 than
in the present results. Their values are closer to the ex-
perimental values at I „and L.„for GaAs and at I i, for
A1As. We believe the agreement is somewhat fortuitous
and the differences between the two sets of results arise
from a difFerence in the convergence of the LDA eigen-
values g in the two calculations. We found a 12 Ry
energy cutoff, which is used in Ref. 31, is not large
enough for convergent results for c, even though the

many-body correction terms at this cutoff are already
converged.

VI. SUMMARY

We have extended the Fourier-space Hybertsen-Louie
quasiparticle self-energy approach to semiconductors
without an inversion center by using a complex four-
dimensional Fourier-space formalism. A generalized
plasmon-pole scheme for including both local fields and
dynamical effects is introduced. The quasiparticle ener-
gies and many-body corrections to the LDA eigenvalues
for GaAs and A1As are calculated using this approach
and are in good agreement with the experimental data
and other quasiparticle calculations.
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