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We have studied the decay of one- and two-dimensional sinusoidal grooves on rough and smooth
solid surfaces using Monte Carlo simulations of two-dimensional solid-on-solid models, employing
both Glauber and Kawasaki dynamics. The dependence of the lifetime of the grooves on their
wavelength and the time dependence of the average height (or amplitude) of the grooves are investi-
gated. Where possible, the results are compared with theory and/or experiment.

I. INTRODUCTION

The roughening transition on crystal surfaces has been
recognized and studied intensively in recent years.! ™3 It
is understood that below the roughening temperature T’y
the surface is smooth and facets can form,? while above
Ty the surface becomes rough and is not faceted.

More recently, the effects of roughening on growth ki-
netics have also been studied experimentally,* theoretical-
ly,>~7 the via computer simulations.® For example, the
decay of sinusoidal-shaped grooves scored on a solid sur-
face has been studied by Yamashita et al.* It is found
that the grooves keep their sinusoidal shape when decay-
ing at temperatures above Tr; below Ty, cusps develop

_in the profile. Phenomenological theories have been dev-
ised by several authors®>~7 in attempts to understand this
behavior. The emphasis in the theoretical work is on
how the lifetime of the grooves depends on their wave-
length and, below the roughening transition, how the
area of the developing flat (faceted) part of the surface
grows with time. The same phenomenon has been exam-
ined by Selke and Oitmaa® in simulations on the discrete
Gaussian model starting from an initial sinusoidally
grooved (in one dimension) surface. These authors also
study the dependence of the relaxation time on the tem-
perature and on the wavelength of the grooves.

In this paper, we report results of Monte Carlo (MC)
simulations using solid-on-solid (SOS) models with either
Kawasaki or Glauber dynamics. The simulations are
designed to study the decay of one- and two-dimensional
sinusoidal-shaped grooves on both smooth and rough sur-
faces emphasizing (1) the dependence of the decay rate on
the wavelength of the initial deformation and (2) the time
dependence of the decay. The results are compared,
where possible, to existing theoretical predictions and to
experimental results.

The remainder of this paper consists of Sec. II, which
contains a description of the model and Monte Carlo pro-
cedures along with a summary of related existing theoret-
ical predictions; Sec. III, presenting the results and dis-
cussion; and Sec. IV, which is a summary.

40

II. MODEL AND
THEORETICAL PREDICTIONS

We employ a SOS model with nearest-neighbor cou-
pling J on a two-dimensional square lattice. Thus we are
treating the surface of a three-dimensional solid. At each
lattice site i there is a variable 4; which is the position or
height of the interface at that site. Both the case of con-
tinuous h; and that in which the &; can be integers only
have been simulated. The Hamiltonian is

H=J 3 |h—h;|+ 3 1gh?, (1)
(i j) i

where (i,j) denotes that the sum is over nearest-
neighbor pairs of sites, and g represents the effect of a
gravitational field. In this paper we report principally re-
sults using g=0; the case of g0 was investigated to a
lesser extent. We anticipate reporting more fully on the
latter in a future publication.

Simulations were done using two different orientations
of the initial configuration of A;’s relative to the lattice.
One orientation is such that, for one-dimensional (1D)
grooves, lines of constant height are parallel to a {10}
direction. In this case the height at site (m,n) of the sim-
ple square lattice is given initially by

h(m,n)=hgysin(2mma /A) ; (2)
for 2D grooves it is given by
h(m,n)=hgsin(2rma /A )sin(2mwna /A) ; (3)

A is the wavelength and a is the nearest-neighbor distance
in the lattice. For the case of discrete heights, the values
of h(m,n) are rounded to the next lower (in magnitude)
integer.

The second orientation is such that lines of constant
height (for a 1D deformation) are parallel to a {11} direc-
tion of the simple square lattice; the initial configuration
of heights is

h(m,n)=hgysin[2m(m +n)a/V2A] ; 4)
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for 2D grooves it is
h(m,n)=hgsin[2m(m +n)a /V2A]
Xsin[27(m —n)a /V2A] . (5)

In the former case we use periodic boundary conditions
on a simple square lattice measuring L X L; in the latter
case, we use periodic boundary conditions along {11}
directions; in order to do so conveniently we redefine the
lattice as a centered square lattice measuring L’ X L' hav-
ing a square unit cell with a site at its center so that the
total number of sites is 2L'2. Relative to the centered
square lattice we employ periodic boundary conditions in
the usual way, i.e., along {10} directions. All of the re-
sults given in Sec. III were found using this second orien-
tation of the grooves; the first one was employed in cer-
tain instances to check that the results do not depend
qualitatively on orientation.

The time evolution of the system is simulated by stan-
dard MC methods with Glauber or Kawasaki dynamics
corresponding to nonconserved and conserved material,
respectively. We monitored the relaxation of the initial
configuration by using both the average height of the
nonuniformities, A(¢), and the interface width, w(z).
These are defined as

Fm=%§wﬁ%ﬂm 6)

and
1 172
w()= |+ 3 (A () —zX1)] , @

where N is the total number of lattice sites, the sum is
over all sites i of the lattice, and z(¢) is the instantaneous
average position of the interface,

zm=%§mm. ®)

For Glauber dynamics, z(¢) may deviate from zero be-
cause of fluctuations in the sum of the 4;’s and so must be
included in Egs. (6) and (7). For Kawasaki dynamics it is
always zero and therefore superfluous in these equations.
A simple measure of the rate of relaxation, which we
shall call the lifetime, may be obtained from either A (¢)
or w(¢) by defining

E(T)"“E(OO)Ef[}—I—(O)—E(OO)] 9)
or
w(r)—w(w)=fl[w(0)—w(w)], (10)

where f is some fraction such as 1/e (e =2.7183...) and
7 depends_on f; h(») and w() are the equilibrium
values of h and w, attained as t— . Our simulations
show that the behaviors of 4(¢) and w (¢) are qualitatively
the same, and therefore we have reported only results
found from w(¢) in Sec. III.

In the simulations we use lattices ranging in size L’
from 20X20 to 200X 200. The system size is chosen so
as to be commensurate with the initial value of A. We

ran numerous tests to determine the dependence of the
results on system size. It was always possible to use
sufficienty large lattices that the size dependence is so
small as to be of no consequence for any quantity of in-
terest with the exception of the equilibrium width of the
interface at T > T For g=0, this width is limited solely
by the lattice size, being proportional to V'InL’. Conse-
quently, when determining 7 from Eq. (10), one must use
the value of w ( ) appropriate for the particular value of
L' at which the simulation was done.

For Glauber dynamics, a Monte Carlo “move” consist-
ed of an attempted change of the height at a site i by an
amount 8k; chosen randomly on the interval |8A;] <0.5
for continuously varying k; and chosen as 8h;==1 for
discrete h;. With Kawasaki dynamics, the attempted
changes in h; were accompanied by an equal and opposite
change in the height at some neighboring site j. Relaxa-
tion is very slow in this case; therefore, to reduce the re-
laxation times, j was allowed to be as much as a third-
neighbor site of i, necessitating the use of 18 sublattices in
order to produce fully vectorizable code for running on
the Ohio Supercomputer Center Cray.

In order to obtain reasonably smooth curves of w(?)
and A (1), as well as reliable values of 7, several MC runs,
typically five to 20, were done for a given set of parame-
ters. For T > Ty, separate runs were done to determine
the equilibrium width w ( « ) as a function of L’.

The kinetics of rough surfaces, i.e., 7> T, have been
studied in detail by Mullins.® He finds that, for hy <<A,
the lifetime of sinusoidal grooves will be proportional to
A% where a=2 if the decay is dominated by the
evaporation-condensation mechanism, and a=4 if it is
dominated by the surface diffusion mechanism. In our
simulations these mechanisms correspond, respectively,
to Glauber dynamics and to Kawasaki dynamics.

Mullins’ predictions are in agreement with those from
a critical dynamics study of the discrete Gaussian mod-
el® ! if there is a single mode dominating the relaxation
process and if noise is not included. The condition of a
single mode is the same as requiring that the groove keep
the sinusoidal shape and a fixed wavelength throughout
the relaxation process. Moreover, the height or width of
the groove is predicted to decrease as an exponential
function of the time in this case.

Simple arguments from critical dynamics theory!° also
allow the determination of gravitational effects on the
lifetime of the grooves in the case of T'>Ty,. For the
specific case of the discrete Gaussian model with
nearest-neighbor interactions, it is predicted' that

T~ (11
J'q"t+g
for Glauber dynamics, and
1 (12)

T~————————
q2(J1q2+g)

for Kawasaki dynamics; ¢ =27 /A; J' is the intercolumn
interaction (in the discrete Gaussian model), and g is as in
Eq. (1).

If T <Tg, the sinusoidal shape of the groove is no
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longer stable. An increasing number of modes play a role
during the dynamical evolution of the system toward
equilibrium, leading to the development of cusps in the
profile. Consequently, the theories mentioned above are
invalid. Phenomenological theories considering the in-
teraction and diffusion of steps and kinks have been
developed for this relaxation in the case of conserved sur-
face material.>® There is a prediction that, for the partic-
ular case of g0, the relaxation time is proportional to
A3/g for 2D grooves; for 1D grooves there are no predic-
tions, to the best of our knowledge.

Also for T < Ty, in the late stages of the relaxation
process, many modes are playing a role. The process is
characterized by a broad distribution of relaxation times,
and, as a consequence, the time dependence of w () is ex-
pected to have the stretched-exponential form*'2

w(t)—w(oo)~exp[—(t/7)°] (13)

with exponent x < 1. If 7 is extracted from the behavior
at sufficiently long times, it is expected to have a simple
power-law dependence on the initial wavelength A, 7~ A7,
in the limit A— .

III. RESULTS AND DISCUSSION

We present first our results for T > T;. We have done
simulations using continuous h; so that the surface is
rough'® at any T> 0. In Fig. 1, we show in a log-log plot
the wavelength dependence of the lifetime for both 1D
and 2D grooves with Glauber dynamics at T'=0.4J /k,
and hy=4. Times are measured in Monte Carlo steps per
site (mcs). The lifetimes shown in the figure are extracted
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FIG. 1. The logarithm of r (mcs) is plotted against that of
A/a for the case of Glauber dynamics, continuous height vari-
ables, and T =0.4J /k (T > Ty ), and both one-dimensional (+)
and two-dimensional () grooves with h,=4.0. The lifetime is
determined using f=0.67 for d=1 and f=0.47 for d=2. The
straight line has a slope of 2.

from w(¢) by Eq. (10) with f=0.67 and 0.47 for 1D and
2D grooves, respectively. It is clear that 7 scales very
nearly as A? in agreement with theoretical predictions.
We also extracted 7 from other values of f; all choices
lead to the same result, i.e., a =2. More generally, for A
large enough in comparison with the initial amplitude of
the grooves, w (¢) obeys a scaling relation of the form

Wea()=F (1 /A%) , (14)

where w, . (t)=[w(t)—w(w)]/[w(0)—w(«)]. In Fig.
2, In(w,.4) is plotted against 2ta®/A? with A/V2a=75
and 100 for 1D grooves and with A /v2a=60 and 100 for
2D grooves; hy and T are as in Fig. 1. The curves are
roughly linear over a considerable range of time, display-
ing the essentially exponential character of the decay.
We had expected a priori, on the basis of the theoretical
predictions described in the previous section, that w 4(¢)
would be more nearly an exponential, i.e., that the curves
in Fig. 1 would be closer to straight lines. We did addi-
tional simulations (results not shown) to test whether the
deviation could be a size effect, a consequence of not be-
ing sufficiently in the limit A >>h, or the result of having
allowed a maximum |8k;|=0.5 which is too large in com-
parison with A itself. None of these appears to be the
explanation; we are unsure what is the reason for the de-
viation from simple exponential behavior, although it
could simply be that the underlying theories are mean-
field approximations (when noise is neglected in the criti-
cal dynamics calculation) and that fluctuations are re-
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FIG. 2. For Glauber dynamics, continuous height variables,
and T=0.4J/k (T > Tg), the logarithm of w.,q is plotted
against 2ta%/A? using 1D and 2D grooves with h,=4.0. For
one-dimensional Grooves, A/V2a=75 (solid line) and 100 (dot-
ted line); for two-dimensional grooves, A/V 2a=60 (solid line)
and 100 (dotted line).
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sponsible for the deviation from simple exponential be-
havior in our results. As for the scaling law expressed by
Eq. (14), it is supported by the fact that in Fig. 2, the
curves for different wavelengths but the same groove di-
mension are very nearly superposed except where w(?) is
close to w(o); here the effect of small fluctuations in
w(t) is considerable; also w (o) is known only approxi-
mately from our simulations.

For Kawasaki dynamics and continuous heights, we
find again that 7~A% this time with a quite accurately
equal to 4 for both 1D and 2D grooves. Figure 3 is a
log-log plot of T versus A /a for one- and two-dimensional
grooves using f=0.67 and 0.70, respectively; T =0.4J /k
and h,=4.0. Figure 4 shows In(w,.4) versus 4ta*/A* for
both one- and two-dimensional grooves with A/V'2a =24
and 30. Also, T and h are as in Fig. 3; from this plot the
scaling is clear (except again at long times where fluctua-
tions make accurate comparison difficult); also, one sees
that, as we found for Glauber dynamics, the relaxation is
more or less, but certainly not precisely, exponential.

We turn next to presentation of our results at tempera-
tures T < T, for which the height variables A; are neces-
sarily discrete. For our system, Tx =1.24J /k and for all
practical purposes, relative to the results of interest, the
equilibrium surface is flat, i.e., w( o« )=0; for example, at
T =0.4J /k where most of the simulations have been
done, the equilibrium value of w is about 0.009 layers.
Both Glauber and Kawasaki dynamics have been em-
ployed, and in both cases, w(¢?) is far from a simple ex-
ponential function. In particular, in the case of con-
served material (Kawasaki dynamics), w(z) falls off very
slowly at long times for both one- and two-dimensional
grooves. One way to think of the reason for this behavior
is that, in order for the surface to become flat on the
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FIG. 3. The same as Fig. 1 except using Kawasaki dynamics
and f=0.67 for 1D (+) and 0.70 for 2D ([1) grooves. The
straight lines have slopes of 4.
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FIG. 4. For Kawasaki dynamics, continuous height vari-
ables, and T'=0.4J /k (T > Ty), the logarithm of w4 is plotted
against 4ta*/A* using 1D and 2D grooves with h,=4.0;
A/V2a=24 (dotted line) and 30 (solid line) in both cases.

atomic scale, every ‘“‘particle” above the surface has to
find a “hole” into which it can go. At long times, there
are still some leftover particles and holes at different loca-
tions on the surface, and they must diffuse and find each

T T 7T

red )

In(w

-2.0 JJAAILAAAIAAAAIL-:\-AA

0.000 0.001 0.002 0.003 0.004
8ta®/\°

FIG. 5. For Kawasaki dynamics, discrete height variables,
and T=0.4J/k (T <Tg), the logarithm of w.4 is plotted
against 8ta®/A® using 2D grooves and ho=5.5; A./V2a=6 (solid
line), 12 (dashed line), and 15 (dotted line).
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other in order to ‘“‘annihilate.” The situation in this limit
is not unlike that of having two species of particles, 4
and B, which can diffuse and which react to give an inert
object when they come into contact with each other.!3
We are currently involved in simulations of this
phenomenon in a somewhat different context; details will
be published elsewhere.'* In the case of nonconserved
materials, the situation is different and is equivalent to
having particles 4 and B which can be both created and
annihilated individually. As far as we know, there are no
predictions of the time dependence of the densities of A
and B in this case.

Figure 5 presents In[w,.4(¢)] versus 8ta®/A° for con-
served order-parameter dynamics, 2D  grooves,
T =0.4J /k, hy=5.5, and A/V'2a equal to 6, 12, and 15.
For the two larger wavelengths in particular, the curves
are roughly superposed, suggesting that the relaxation
times scale approximately as A® for large enough wave-
length. The shape of the curves in these two cases indi-
cates a crossover from an initial exponential regime to a
long-time stretched-exponential behavior as more modes
enter into the relaxation. Constraints on computer
resources preclude our making any very quantitative
statements and, in particular, from extensive study of the
behavior at much longer times and/or larger wave-
lengths. We did look at one particular wavelength,
A=12V2a, at considerably longer times than what is
shown in Fig. 5. Figure 6 shows In[ —In(w_4)] versus
In (8ta®/A%); at the longest times the curve approximates
a straight line with a slope x between + and 1, consistent
with stretched-exponential behavior, w ~exp(—at”*).
The deviation from straight-line behavior in the long-
time regime is most likely a size effect; the simulations
were done on a system with L’'=48.

Figure 7 shows the same as Fig. 5 but for 1D grooves
and A/V'2a=6, 12, and 18. There appears to be quite a
bit of structure in the decay for the larger wavelengths;
perhaps this is evidence for the introduction of more and
more contributing modes. For long times, we see again
behavior consistent with stretched-exponential decay
with 7 scaling approximately as A°.

Using nonconserved order parameter, discrete 4;, and
T <Tpg, we find that for two-dimensional grooves the de-
cay appears to be a function of ¢ /A%, but only at relative-
ly short times. In Fig. 8 we show the logarithm of w4 as
a function of 2ta?/A* at T=0.4J/k, h,=5.5, and
A/V'2a=60, 90, and 120. The decay is clearly not a sim-
ple exponential and the curves superpose well only at
short times. Additional short-time simulations were done
using T =0.4J/k, hy=5.0, and wavelengths between
20V/2a and 200V 2a. Figure 9 is a log-log plot of 7, with
W, q(7)=0.3, versus A /a; the data tend to fall on a line of
slope 2 which is also shown. Hence we may infer that the
relaxation time scales as A2 in the relatively short-time re-
gime.

Quite different behavior arises at long times in particu-
lar for 1D grooves, nonconserved order parameter, and
T <Tg. Whereas the relaxation of w in the d=2 case
“speeds up” at longer times in some sense as shown by
Fig. 8, we find that for d=1, it slows down, producing a
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FIG. 6. For Kawasaki dynamics, discrete height variables,
and T=04J/k (T <Tg), we show In[—In(w.s)] vs
In(8za®/A%) using A/V2a=12, 2D grooves, and hy=5.5

tail in w_4(¢) reminiscent of the results for conserved or-
der parameter, cf. Figs. 5 and 7. In Fig. 10 we show the
logarithm of w,4 as a function of 4ta*/A* for
T =0.4J /k, hy=5.5, and A/V2a=20 and 40. There is
some evidence, from these results and further simulations
with other wavelengths, that at short times the relaxation
time scales as A’. The shape of the curves in Fig. 10
presumably signals the importance of multiple modes in
the relaxation process.
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FIG. 7. The same as Fig. 5 except for 1D grooves with
A/V'2a=6 (solid line), 12 (dashed line), and 18 (dotted line).
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Finally, we have also done some simulations employing
discrete h; and temperatures well above the roughening
temperature. The results are unexceptionally consistent
with those using continuous A; (described above) provid-
ed the initial amplitude A is much smaller than A.

Less attention was paid to the shapes of the decaying
profiles in our work than to the behavior of the lifetime.
We did examine profiles in some specific cases both above
and below the roughening temperature. The results were
consistent with extant published results from simulations®
and theory.” That is, the profiles tend to remain roughly
sinusoidal for T > T and develop terraces for T' < Ty, at
least at relatively short times. At longer times, fluctua-
tions destroy the initial simple periodic character of the
grooves.

In the presence of a gravitational field, we have, for
T > T, the predictions of Egs. (11) and (12) for Glauber
and Kawasaki dynamics. These suggest that one plot, re-
spectively, 7~ ! and Azl against A2 with g0 and see
whether the result is a straight line. This is done in Fig.
11 with appropriate scaling of 7 and A. For all cases
shown, T =0.4J /k and h;=4.0. The results for noncon-
served material are at d=1, g =0.02J, and f=0.67, and
at d=2, g =0.03J, and f=0.47; those for conserved ma-
terial are at d=1, g =1.0J, and f=0.75, and at d=2,
g =1.0J, and f=0.70. The simulation results fit straight
lines quite well at the larger values of A in each case, con-
sistent with expectations based on theory. We have also
done limited simulations at T < Ty (i.e., discrete h; and
T =0.4J /k) with g##0. We plan to pursue this work and
report on it when we have a more complete picture and a
better understanding of the relevant underlying physics.
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FIG. 8. For Glauber dynamics, discrete height variables,
T =0.4J /k (T <Tg), the logarithm of w4 is plotted against
2ta’/A? using 2D grooves and h,=5.5; A=V"2a=60 (dotted
line), 90 (dashed line), and 120 (solid line).
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FIG. 9. For Glauber dynamics, discrete height variables, and
T =0.4J /k (T < Ty), the logarithm of 7 is plotted against that
of A/a using hy=5.5 and 2D grooves; T is determined using
f=0.3.

IV. SUMMARY

In this paper we have presented results for the healing
of scratched solid surfaces using Monte Carlo simulations
of a two-dimensional SOS model. We have used both
conserved and nonconserved order-parameter dynamics
corresponding, respectively, to surface diffusion and
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FIG. 10. For Glauber dynamics, discrete height variables,
and T=0.4J/k (T <Tyg), the logarithm of w4 is plotted
against 4za*/A* for 1D grooves and ho=5.5; A/V'2a=20 (solid
line) and 40 (dashed line).
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FIG. 11. Scaled inverse relaxation times (for Glauber dynam-
ics) or scaled inverse relaxation times multiplied by scaled wave-
length squared (for Kawasaki dynamics) are plotted against the
scaled inverse wavelength squared for several cases with applied
gravitational fields. In every case, continuous height variables
(hy=4.0) and T=0.4J/k (T >Tg) are employed so that
T >Tg. The specific cases are 1D grooves (+), g =0.02J,
f=0.67, Glauber dynamics, 7,=500 mcs, A,/V 2a=200; 2D
grooves (X), g =0.03J, f=0.47, Glauber dynamics, 7=600
mes, Ay/V2a=200; 1D grooves (O), g=1.0J, f=0.75,
Kawasaki dynamics, 7,=8000 mcs, A,/V22=72; and 2D
grooves (%), g =1.0J, f=0.70, Kawasaki dynamics, 7,=5000
mes, Ag/V2a=72.

evaporation-condensation mechanisms, and have done
simulations both above and below the roughening tem-
perature of the surface. In the case of T > Ty, we have
let the height variables of the model vary continuously so
that T =0.

At T > Ty, we find that for initial configurations of ei-
ther one- or two-dimensional sinusoidal-shaped grooves,
the relaxation is predominantly, but not precisely, ex-
ponential in character with a lifetime proportional to A2
for nonconserved order parameter and to A* for con-
served order parameter. These conclusions are consistent
with the predictions of Mullins® and of critical dynamics
theory. The deviations from simple exponential behavior
are ascribed to fluctuations present in the simulations but

not in the theories. Our results are summarized by Figs.
1-4.

For T < Ty, the situation is considerably more com-
plex. With conserved order-parameter dynamics, relaxa-
tion is very slow for both d=1 and d=2 grooves and the
rate of relaxation appears to scale roughly as A® for the
largest times and wavelengths that we were able to treat.
We should include a caveat that these were not large
enough to be conclusive. There is ample evidence that
multiple relaxation modes are playing important roles,
which may lead to behavior of w,4(¢?) that is often re-
ferred to as a “stretched exponential”’. A characteristic
property of this relaxation is a long tail in w_.4(?) at large
times. This behavior may be seen in Figs. 5-7. With
nonconserved order-parameter dynamics and one-
dimensional grooves, the behavior is similar in that there
is a long tail in w,.4(¢) and evidence for the importance of
more than one decay mode, as shown by Fig. 10. We
note that Selke and Oitmaa® report exponential decay of
their profiles below T. However, they study the decay
of a particular Fourier coefficient of the profile, i.e., of a
single mode, rather than of some average of all modes (as
we do); we believe this is the source of the difference be-
tween our respective results.

Furthermore, for d=2 grooves and nonconserved or-
der parameter, we do not find a long-time tail on w_4(?).
Rather, the logarithm of w4 falls more precipitously at
larger times than small ones and so the relaxation is rela-
tively rapid. At the shorter times, the relaxation rate
scales as A2, the same as for nonconserved order parame-
ter and T >Tgx. These conclusions may be extracted
from Figs. 8 and 9.

We have also considered the effect of a gravitational
field on the relaxation rates. For T > Ty, one has an ex-
plicit prediction from critical dynamics theory that the
relaxation time should behave according to Egs. (11) and
(12). Owur simulation results for this case, summarized in
Fig. 11, are consistent with the predictions for the larger
values of the wavelength. The deviations at shorter A are
probably a consequence of the discrete lattice and also of
the fact that the theory is valid only for A, <<A.
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