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A quantum theory for the electronic states in doped semiconductors is given on the basis of the
Greens-function formalism by an extension of the bent-band theory. This semiclassical theory
neglects all quantum correction terms for the ease of summing up all terms of multisite and multiple
Born scatterings and therefore gives a poor explanation of impurity band tails observed in heavily
doped semiconductors. The present theory includes quantum correction terms of all orders in a
series expansion, and a formally exact solution is obtained for the one-particle Green s function by
an extension of the method developed previously for the bent-band model. By picking up dominant
terms for practicaL calculation, it is shown that the present theory gives a better explanation of ob-
served band tails but a worse explanation of observed low-temperature conductivities than the
bent-band theory. For obtaining a good explanation of the conductivities, it is assumed that there
are localized levels with degeneracy unity at energies below some value. By also taking into account
the exchange effect, experimental data of both the density of states and the low-temperature conduc-
tivity are shown to be well explained by the present theory.

I. INTRODUCTION

Electrical and optical properties of doped semiconduc-
tors are strongly affected by impurity band tails which
appear as a result of the impurity doping. The low-
temperature conductivity in a heavily doped semiconduc-
tor is a typical example and is of academic interest be-
cause electrons interact strongly with many impurities
simultaneously, as in the localization and declocalization
problem. Various theories' have been developed so far
in order to understand the conduction in the presence of
ionized impurities. Although the theories have turned
out to be useful ' at high temperatures and/or light dop-
ing levels, they cannot explain' the conduction at heavy
doping levels, especially at low temperatures. By even
more careful calculations, " the experimental depen-
dence of the low-temperature conductivity on the doping
level has not been satisfactorily explained. The reason
may be that the above calculations have been performed
neglecting important effects of the band tails, of the
simultaneous interaction of each electron with many im-
purities, and of the Born scatterings of higher than
second order.

As for the impurity band tails, there have been a num-
ber of calculations, starting with earlier calculations'
based on perturbation and propagator techniques. These
calculations have led to band tails which are cut off too
sharply. Kane' has calculated the density of states
(DOS) with the use of the Thomas-Fermi approach for
the Auctuating potential, obtaining a Gaussian tail. This
is a disadvantage because simple exponential tails are
often observed from experiments. ' ' As a quantum
counterpart of the semiclassical theory of Kane, Halperin
and Lax have offered a minimum counting method
which is rigorous only for sufficiently deep states. Sa-
yakanit and Glyde ' have improved the method with the

use of the variational principle but the theory has been
found ' to give a poor description of experiments.

On the other hand, a semiclassical approach has been
adopted by Bonch-Bruevich with the use of the bent-
band model (BB), which is useful for the potential vary-
ing slowly enough. Instead of solving directly the
differential equation as was done by Bonch-Bruevich, the
present author has reached the same result with the the
use of the diagram method, taking into account all terms
of multisite and multiple Born scatterings. With the use
of the one-particle Green s function obtained in this way,
the Auger recombination rate and the low-temperature
conductivity have been calculated. Despite the agree-
ment found between the calculations and experi-
ments, it has also been found22'23, 2s that the BB theory
gives values of the DOS much smaller than experimental
ones especially in the band-tail region. This directly
reAects the fact that a semiclassical approach of the BB
theory is not applicable especially at low energies, be-
cause the BB model is useful under a suKciently slow
spatial variation of the impurity potential at least in an
effective sense. Therefore, the agreement between the
theory and experiments on the electronic properties does
not have a solid basis.

A cure has been provided by the present author,
who has devised a semiempirical pseudopotential (SP) ap-
proach. In this theory, the BB theory is modified so as to
take into account the quantum effect with the use of a
semiempirical effective potential. It has turned out that
the theory gives a better explanation of the band tails ob-
served experimentally. However, a disadvantage is that
we have no solid basis supporting the SP approach. Thus
it seems that we still have no theory which satisfactorily
gives a quantitative explanation of electronic properties
of doped semiconductors in a coherent way.

Recently, the present author has shown that the
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two-particle Green s function is, within the framework of
the BB model, exactly obtainable with the use of the dia-
gram method. Thus we have both the one-particle
Green's function and the two-particle Green*s function,
so that the conductivity can be calculated more rigorous-
ly in this case than in the previous case of the BB

ory z5 It has been found ' that experimental data of
the low-temperature conductivity in Si and Ge are con-
siderably well explained by the BB theory at doping levels
above the metal-insulator transition. For the calculation,
the two-particle Green's function is rewritten as a sum of
the free part and the vertex part. The free part, which is
given in terms of the one-particle Green's function, has
been found to be a key factor determining the conductivi-
ty at heavy d.oping levels. However, experimentally ob-
served band tails are still inexplicable by the BB theory.
From this view point, therefore, there is a strong need for
a quantum-theoretical treatment as an alternative to the
BB model which provides a solid basis for the one-
particle Green's function.

The purpose of the present paper is to present a quan-
tum theory giving a rigorous calculation of the one-
particle Green's function. Here we take into account the
quantum correction terms which have been neglected in
the BB theory. Thus we go beyond the BB theory in a
direct way. The calculation is done by an extension of
the method developed for obtaining the two-particle
Green's function in the BB theory. All the terms
representing multisite and multiple Born scatterings are
summed up and a formal exact solution is obtained in a
series. Then a practical form of the solution is given by
picking up dominant terms in the series. With the use of
the one-particle Green's function obtained, the DOS is
calculated. The low-temperature conductivity is calculat-
ed from the free part and the vertex part of the two-
particle Green's function. The free part is given in terms
of the one-particle Green's function obtained by the
quantum theory. On the other hand, the vertex part,
whose contribution is not very important in the doping
range except in the close vicinity of the metal-insulator
transition, is given simply by the BB theory.

The quantum theory gives a stronger effect of the im-
purity doping than the BB theory, leading to larger
DOS's in the band-tail region and to shorter relaxation
time of carriers. As a result, the conductivities are small-
er in the quantum theory than in the BB theory. On the
other hand, the BB theory gives much smaller DOS's in
the band-tail region and somewhat smaller conductivities
than the respective experimental ones. Therefore, the
quantum theory gives a better description of the DOS
than the BB theory, while the former gives a much worse

I

description of the conductivity than the latter. For this
difhculty a cure is provided by assuming that we have lo-
calized states at energies below some critical value and
that each localized state can be occupied by only a single
electron irrespective of the spin multiplicity and the val-
ley number. We consider also various terms due to the
electron-electron repulsion via the Coulomb interaction
and the electron-electron attraction via the electron-
phonon interaction. It is shown that the above assump-
tion of the occupation is especially important in explain-
ing experimental data of the conductivity.

This paper is organized as follows. In Sec. II, a formal-
ly exact solution for the one-particle Green's function un-
der the quantum model is given, together with a more
tractable but approximate form of the function. These
functions are derived in Appendixes A and B. In Sec.
III, a practical method for calculating the DOS and the
conductivity is described. In Sec. IV, calculated results
of the DOS and the conductivity are shown and discussed
especially in relation to a new assumption adopted.

II. DERIVATION OF THE GREEN'S FUNCTION

I (r)= g U;(r —R„), (2.1)

where X,. is the number of the impurities assumed to be
of a single species and U;(r —R„) is a screened potential
due to an impurity at R„. With the use of the Fourier ex-
pansion

I (r)= QI (q)exp(jq r),
q

we obtain '

(2.2)

First we present a model for the analysis of the
electron-impurity interaction together with a general
principle for the calculation. Let us consider the Hamil-
tonian as a sum of those for the unperturbed-band elec-
trons, the electron-impurity interaction, the electron-
electron interaction, and the electron-phonon interaction,
details of which are found elsewhere. ' Starting with
bare interactions, we obtain screened interactions by the
many-body theoretical treatment. Based on these in-
teractions we go into the discussion of the retarded one-
particle Green's function G "(lk, lk', co), where l is the
band index, k and k' the wave vectors, and co the energy
parameter. Two wave vectors k and k' appear in the
presence of randomly distributed impurities, and a single
band index 1 appears as a result of neglecting the inter-
band scattering.

Let us consider the impurity potential I"(r) given by

oo n

6 (lk, lk', )=6 (lk, ) . b(k —k')+ g g + G
n =1 q&q2 q„m =1

m n

lk —g q;co I(q ) 6 g q —k+k'
o;=1 m =1

(2.3)

where b(x ) is defined as A(x ) =1 if x =0 and b(x ) =0 otherwise with x as a scalar or a vector; 60 (lkco) is the free-
particle Green's function

G0 (lk, co) = 1

a) Et(k)+j —0+ (2.4)
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(2.5)

with E&(k) as the unperturbed band energy. Let us suppress l and ((i in G", Go, and E( hereafter. With the use of Eq.
(2.2), Eq. (2.3) is rewritten as

1 00

6 (k,k')=Go (k)—f drexp[ —j(k—k') r] g [Go (k+jV)I (r)]",
V n=0

where V =()/()r and V is the crystal volume. A symbolic
expression for Eq. (2.5) is

6 (k k') =6 (k)—fdr exp[ —j(k —k') r]1

where Gp I and Gp Ok are the abbreviations of
60 (k)l (r) and 60 (k)Ok(V). With the use of the expan-
sion

n

X co E(k—+j V)+j 0+

co E(k—+j V ) —I (r)+ jO+

(2.6)

1

1 —GpR r —GpROk

we write G (k, k') as

1 —6 I 1 —6 r
L

(2.11)

Because 6 (k, k') depends on the impurity sites R„'s
through I (r), we take an ensemble average ' of
6 (k, k') over the impurity sites, which is defined as

6'(k, k )= y 1~„(k,k'),
n=p

(2.12)

Ok( V )=E(k+j V ) E(k), —

G (k, k')!s rewritten as

G (k, k')=Go(k) —fdrexp[ —j(k —k') r]
1

(2.9)

X, (2.10)
1

1 —GRr —GROk
'

(6 (k, k')) = V ' fdR, dR~ dR!v 6 (k, k')

=6 (k)b, (k —k') . (2.7)

The last step of this' equation comes from the fact that
the space uniformity, which is lost under random distri-
bution of the impurities giving krak, is restored under
the average distribution giving the momentum conserva-
tion k =k'. 6 (k) is the retarded Green's function in the
average impurity distribution, for which the rule of the
diagram method is known '. Owing to k=k' in Eq. (2.7),
we have

(6 (k, k')) =—f drexp[ —j(k —k').r]1

V

1

co E(k+j V )
—1(r)+j0+—

(2.8)

In view of this relation, we write 6 (k, k') as equal to the
right-hand side of Eq. (2.8) without average notation
hereafter.

De6ning the operator

where

K„(k,k')=Gg(k) —fdrexp[ —j(k—k').r]1

X GRok
1 —6 I 1 —G

n

(2.13)

It should be noted that the term of n =0 contains no spa-
tial derivative. The special case where we neglect the
terms of n & 1 and retain only the term of n =0 gives the
BB approach which is useful for the impurity potential
varying slowly enough. The calculations of the one-
particle and the two-particle Green's functions based on
the BB model have been given previously as a semiclas-
sical approach. In the quantum theory we include now
all the terms of n & 1.

The average Green's function can be given from Eq.
(2.12) in the form

6 (k) = g K„(k),
n=0

(2.14)

(X„(k,k )) =Sr„(k)~(k—k ) . (2.15)

Especially K(i(k) is the Green's function in the BB model
given by

where X„(k) is defined through an ensemble average of
K„(k,k') as

1(.o(k)= —f ds exp +n, fdrtexp[ —js. U,.(r)]—1I
J p GR(k)

(2.16)

where n; is the impurity concentration N; /V. By an extension of the BB theory for the two-particle Green's function
as shown in Appendix A, K„(k) for n ~ 1 is given by

jsp n

~„(k)=j " ' f dsoexp —

~ fd ro5(ro) Qo Gt((l )

Jsm n n

ds exp z & fdr 5(r )O„g V&
(i GR (k)

n

Xexp n. dr exp —j U r+r s —1
m=0

(2.17)
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where Vi =d/'dry and O~(gi Vt) should be placed
from the left to the right in the increasing order of m.
Thus Eq. (2.14) under Eqs. (2.16) and (2.17) ofFers a for-
mally exact solution for the one-particle Green's function
describing the electron-impuri'ty interactive states. Into
those equations, other interaction e6'ects are incorporated
by replacing Go (k) in Eqs. (2.16) and (2.17) with Gi (k)
given by

gR(k)— 1

co —E(k) —X (k)
(2.18)

where X (k) is the self-energy due to those interactions,
e.g., the electorn-electron interaction and the electron-
phonon interaction.

Let us find a practical formula for G (k) from Eqs.
(2.14), (2.16), and (2.17) by assuming spherical symmetry
of Ui(r) [ =—U, (r )] and the unperturbed band energy of
the form

2mD
(2.20)

we then rewrite k' simply as k hereafter. Now by sum-
ming up dominant terms under approximations as shown
in Appendix 8, we obtain

the unperturbed band edge, A the Planck constant divid-
ed by 2m, and k=(k„,k~, k, ). Then the density-of-states
mass ma, the conductivity mass mz, and an averaged
mass mR are defined by ma=(mimii) mc (2m| '

+mii ')/3, and m '=(2m 'i +mii 'i )/(3m'i ), re-
spectively. It is convenient to define also k'=(k', k~, k,')
under k„'=(m elm i)'i k„,k» =(mD/mi)'i k, and k,'

=(mD/mii)' k, . All the functions of k which have been
considered hitherto are expressed as the functions of k',
for example, 6 (k) is rewritten as 6 (k'). Noting the
relations fdk= Jdk' and

E(k)= (k„+k )+ k,
2 m " " m

II

(2.19)
0

6(k)= —.f dt exp R +h(t)
J 0 gR(k)

(2.21)

given in terms of the transverse mass mz and the longitu-
dinal mass mi,' hereafter co and E(k) are measured from

l

where

. t3 A2, t2 A2 A2
h(t)=n; fdr exp jtU(r)—j —iVU;(r)i +— V U;(r) jt k—.VU, (r) —1

3 2m 2 2m 2m
(2.22)

As pointed out, k in Eqs. (2.21) and (2.22) is used as k'. lt
is seen that in the classical limit of mc ~~ and mz~ ~
we have 6 (k) in the BBmodel.

III. PRACTICAL METHOD FOR CALCULATION

A practical method for calculating the DOS and the
conductivity is given considering various interactions un-
der the Thomas-Fermi screening. Assuming singly ion-
ized impurities of one species, we obtain

XR=n, fdr U(r) . (3.2)

where e is the electronic charge, E'p the static dielectric
constants due to the host lattice, and A. the inverse
screening length. The interaction between electrons at r&

and rz is given by U(r, —rz) = —UI(r, —r2). As the self-
energy in Eq. (2.18) we first consider only the Coulomb
term of the lowest order in the screened electron-electron
interaction. We have

2

U;(r) = — exp( A, r ), —
cps

(3.1) Then the practical formulas for computing the one-
particle Green's function are given by

G (k, ai)=G (Q, k)/Ei (3.3)

6 (Q, k)= —f dgexp[j gQ+yg, (g, k )],
J 0

(3.4)

gi(g, k)= —jg+ f dx x IH(x, k)exp[F(x)] —1 j, (3.5)

a, ~k' 1+F(x)=j exp( —x)—j exp( —x )x 6
a, k,g —exp( —x ),4 x

(3.6)

H(k, x ) = sin ,'aFkg exp( —x—)2 1+x
,'aFk g exp( —x—)2 1+x

x' (3.7)



3094 MASUMI TAKESHIMA

where y=4mn;/A, , Ez=e A, /eo, a&=A col(mce ), aF
=4 eo/(mme ), and X"„(k,co)=X (k, co) —X&.

For the calculation of the DOS, p(co) and the conduc-
tivity o., we consider a multivalley semiconductor with
the number of the valley v and the temperature 0 K. For
convenience in a later discussion, we assume a general
case where the degeneracy is a function of the energy co

given by f(co). In the usual method for calculations, the
degeneracy due to the spin multiplicity 2 and to the num-
ber of the valley v is given by f(co)=2v. Thus we replace
2v appearing in the usual expressions as for the DOS, the
conductivity, and the inverse screening length with f(co).
First the DOS and the inverse screening length are deter-
mined from

f deep(co)=n; . (3.1 1)

Actually, k is given as a sum of the free part and the ver-
tex part and Eq. (3.10) has been obtained by neglecting
the vertex part. Because G (k, co) depends on A, , Eqs.
(3.9)—(3.11) are solved for A, .

The conductivity is given as a sum of the free part o.
&

and the vertex part o.2, i.e., o. =o.j+o.2, each part comes
from the respective part of the two-particle Green's func-
tion. By modification of the expression in Ref. 28, we
have

o, = f(coF )fdk ED(k)
3'(2n) mc

p(co)= — f(ci))fdkImG (k, co)
1

vr(2m )'

and

f dk f de f(co)im[G (k, co) j
eo(2m. )' oo

Here, coF is the Fermi level determined from

(3.9)

(3.10)

X [ImG (k, co~) j (3.12)

for a cubic crystal. In order to calculate 0.
2 we need the

two-particle Green's function in the quantum theory,
which is not available in the present paper. Therefore we
use the expression for o 2 in the BB theory in view of the
finding that the contribution of o.

2 to o. is not very im-
portant in the range except in the close vicinity of the
metal-insulator transition. We have

2 x Q~
o z=

3 f(coF )f 'dx f dQ[imG (Q,P, ;x )
—ImG ~(Q, P„oo )]

2~ &~c 0

2 2k
X 1 cos x

X

4k . k 2k 2k
sin 2—x + 1+cos x

xA, A,
(3.13)

Here p, is some large quantity of the order of 10 (we use p, =30 in this paper), Q~ =coF/Ez, k =(D./aD )(QF —Q)'
and

G (Q,p„'x)= —.f dgexp[jgQ+yp(g, p„'x)],
J 0

where

(3.14)

(+p, g —p,
p(g, p„x ) = jg+ —f dx' exp j, ,

'
exp( Ix' ——,'xl )+J, ,

'
exp( —lx'+ —,'xl ) —1

4~ 2lx' —
—,'xl ' 2lx'+ —,'xl (3.15)

g+p, g
—p,+g (3.16)

x' and x are the three-dimensional dimensionless vectors.
In Eq. (3.13); x, is defined as a quantity large enough
for ImG (Q,p, ;x, ) to be practically the same as
ImG (Q,p, ; ~ ). Note that we have

Uz. (q, co)= U(q, ai)+g(q, a~)L)0(q, ai),

where

Uo(q)
Uz(q, co) =

~r q~

(3.18)

(3.19)

with Pq a~)= g IM (q)l',
ET q, co

(3.20)

g(g)= —jg+ f dx x exp j exp( —x) —1

(3.17)

Now we consider the electron-electron interaction,
Uz ( q, co ) (q is the wave vector), as a sum of the Coulomb
repulsion and the attraction due to the electron-phonon
interaction. We have

Do(q, co)= (3.21)
co —6) h+ j0 ~+~„h+j0

with Uo(q)=4~e /q . Here Uo(q)/V and Uz(q)/V are
the Fourier components of the bare interaction
e /Ir& —rzl and of the screened interaction, respectively,
between electrons at r, and rz, M (q) the matrix element
for the electron-phonon interaction in the phonon mode
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v, Do(q, co) the free-particle Green's function for the pho-
non, and eT(q, co) the sum of the free-carrier screening
and antiscreening due to the Coulomb interaction and the
electron-phonon interaction, respectively. In Do(q, co),

coph is the phonon energy which is assumed to be constant
and equal for all phonon modes. As for eT(q, co), we have

——0

G (k, co )

&r(q, co) =&(q, co) —&ODD(q co)y(q) g IM (q)l (3.22)

correcting an error in Ref. 30 as for this equation, where

e(q, co) is the sum of the free-carrier screening and the
screening due to the host lattice; Vy(q) comes from the
polarization diagram for the free-carrier screening. %'ith
the use of the Thomas-Fermi approximation and with the
neglect of the retardation effect in the screening, we have
A, = —4~e y(0)/eo and e(q, co)=eo(1+1, /q ), so that
we obtain

&ea
=&0

eok,1—
4~e

E2
+ npo

CI C
(3.25)

FICi. 1. Diagrams representing the terms of the electron-
electron interaction in the lowest order in UT(q, co).

2 Cog
e (q, O)=e 1+ —,y IM.(q)l'

27Te coph
(3.23)

(3.26)

~efF
eT(q, O) =edi 1+

q
(3.24)

Considering the acoustic phonon scattering (M„), the
nonpolar optical phonon scattering (M„~, ), and the polar
optical phonon scattering (M, ), we give
lM„l =:- co h/(2c&), lM„& l =E„~ co h/(2c), and
lM, ~ l

=2me cosh/(e*q ), where =„is the acoustic defor-
mation potential, E„, the nonpolar optical deformation
potential, c& the longitudinal spherical average elastic
constant, c the averaged elastic constant, and (e*)
=e„'—eo

' with e„as the high-frequency dielectric con-
stant due to the host lattice. Then Eq. (3.23) is rewritten
as

Equation (3.24) gives the modified form of the Thomas-
Fermi screening, where the electron-electron attraction
via the electron-phonon interaction leads to the
antiscreening in contrast to the case of the Coulomb
repulsion. We use e,z and A,,z in place of eo and I,, respec-
tively, in the calculations.

Now X„(k,co) in Eq. (3.8) is given with the use of Eq.
(3.18) considering the diagrams shown in Fig. l. As for
Fig. 1(a), we omit the term of the electron-electron repul-
sion, i.e., the first term in Eq. (3.18), because this term has
already been included in Eq. (3.4) in terms of Eq. (3.2).
As for Fig. 1(b), we include the Coulomb-hole term com-
ing from the plasmon pole. As a result we obtain X„as
a sum of X„(n= 1,2, 3,4), where

X,=n;[U (0,0)—U(0, 0)], (3.27)

X2= g I dco Ur(q, O)lmG (k —q, co),~V
2 2

X3= — g ReG (k —q, co —co, ),~p 4me R

2~
q eoq'co,

(3.28)

(3.29)

2

p"
2

ReGR(k —q, ~—~1)+ 2

'
2ReGR(k —q, ~—~ph)

C01 COph COph 671
(3.30)

Here co is the plasma frequency given by
=4vre n;A/(eornc) and f=co(c1o+q /A, )+[E(q)] .
Equations (3.28) —(3.30) have been given for the original
coordinate system of q and k, as used in Eq. (2.19). In
practical calculations, q and k are rewritten in the new
coordinate system, as defined just below Eq. (2.19). In
obtaining Eqs. (3.28) —(3.30) we have neglected the imagi-
nary part of X„'s, whose effects are negligibly small as
compared with that of the impurity scattering. Equation
(3.27) and Eqs. (3.28) —(3.30) come from Figs. 1(a) and

I

1(b), respectively. Equations (3.29) and (3.30) come from
the first term and the second term, respectively, of Eq.
(3.18), taking into account the poles of eT' and of Do.
Actually we use Go in place of 6 in all the equations for
simplicity.

The dependence of the conductivity on the impurity
species having the same valency in a given material is
considered, as has been discussed . We consider isocoric
and nonisocoric impurities which have the same cores
and the different cores as that for the host lattice, respec-
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tively. In order to take into account the core effect, we
consider mD to depend on the energy as in the method of
Ref. 29. We give energy-dependent mD(co) as

mD ( co ) —772D, co co~
(3.31)

mD(co) =mD+ (mD —mn )exp

where Eb is the binding energy of an isolated impurity,

e A,
co, = y+X„, (3.32)

E'p

with X, being defined as the shift of the band at an ener-
gy (e A, /eo)y due to X„(k,co), and

Eb (nonisocore)
mD mDEb(isocore)

(3.33)

IV. RESULTS AND DISCUSSIQN

In this section the theory in the previous sections is ap-
plied to various materials at 0 K. Especially, important
parameters used for the calculations such as
mz, mD, mz, and Eb are shown in Table I. For materi-
als where experimental data of Eb are not found,
mD =ma is assumed and Eb is calculated from

for a multivalley semiconductor. The values of Eb's are
obtained from experimental data on isocoric and noniso-
coric impurities. For the valence band, we calculate mD
directly from mz =Pi col(aDe ) with aD calculated from
Eb =e /(2eoaD ) with the use of Eb obtained from experi-
mental data. With the use of mz(co) in place of mD in
various expressions such as Eqs. (3.12) and (3.13), the
DOS and the conductivity are calculated.

E& =e /(2eoaD). Experimental data on some of the pa-
rameters and other parameters concerning the electron-
phonon interaction are found in Refs. 8, 9, 35, and 36.

The resistivity is calculated as a function of the doping
level up to the critical value n, for the metal-insulator
transition. Here, n, is obtained from experimental data
or from the relation

aD n,' =0.25

with aD =A' eo/(mDe ) unless experimental data are
available.

First of all we discuss the calculation of the DOS and
the conductivity for which the usual degeneracy of
f(co)=2v is assumed. In order to compare the present
calculation with the previous ones we use m j =m

~~

=my
=mD =0.48 especially for p-type GaAs, take X„=O, and
neglect the effect of the electron-phonon interaction. Fig-
ure 2 shows the DOS for p-type GaAs under
n, =5.4X10' cm with co=0 at the unperturbed band
edge. The solid line and the dashed line show the results
of the present theory and of the BB theory, respectively.
The solid circles show experimental data, which have
been obtained for Zn-doped GaAs from tunneling experi-
ments at 4.2 K. The data are plotted so that an experi-
mental value at an energy lying suf5ciently deep in the
band may fit the value in the present theory. It is seen
that the DOS in the present theory is a few times larger
than that in the BB theory especially in the range of
co (0. Thus the present theory explains the experimental
results better than the BB theory. However, the peak
found in the experimental data is not obtained in both
theories. The reason may be that we have used-the aver-
age Green's function.

Figure 3 shows comparison of the present theory (solid

TABLE I. Material parameters.

Material

Ge
Ge
Ge
Si
Si
Si
Si
GaAs
InP
GaSb
Ge
Ge
Ge
Ge
Si
Si
Si
GaAs
GaP
InP
InSb

Dopant

P
As
Sb
P
As
Sb
Bi
n type
n type
n type
Al
B
In
Ga
Al
B
Ga
Zn
Zn
Zn
Zn

m '

0.12
0.12
0.12
0.26
0.26
0.26
0.26
0.067
0.082
0.042
0.31
0.31
0.31
0.31
0.49
0.49
0.49
0.48
0.54
0.65
0.40

mD'

0.22
0.22
0.22
0.33
0.33
0.33
0.33
0.067
0.082
0.042
0.36
0.36
0.36
0.36
0.53
0.53
0.53
0.48
O.S4
0.65
0.40

0.21
0.22
0.17
0.33
0.39
0.31
0.50
0.067
0.082
0.042
0.18
0.18
0.20
0.19
0.54
0.44
0.68
0.37
0.56
0.35
0.21

15.4
15.4
15.4
11.4
11.4
11.4
11.4
12.8
12.4
15.7
15.4
15.4
15.4
15.4
11.4
11.4
11.4
12.8
10.8
12.4
17.9

Eb (meV)

12.0
12.7
9.7

45.3
53.5
43
69

10.2
10.4
11.2
11.0
57
46
71
30.8
62
31
9.0

'The mass is in unit of the electron mass in Uacuo.
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FIG. 2. DOS's vs the energy which are obtained for p-type
GaAs with the acceptor concentration of 5.4X 10' crn by the
present theory (solid line}, by the BB theory (dashed line), and
from experiments (solid circles).

line) with earlier calculations ~ based on various other
theories for the DOS in p-type GaAs at 0 K with
n, =1.6X10' cm . The latter theories are the BB
theory (dotted line), Kane's theory (dotted-dashed line),
and the Halperin —Lax —Sa-yakanit —Glyde theory
(dashed line). All these theories are found to give much
smaller values of the DOS than the present theory in the
range co (0.

Now the present theory is applied to the calculation of
the conductivity in n-type Ge and n-type Si at 0 K, for
which experimental data at 4.2 K are available. We use
material parameters in Table I and take X, =0. We con-
sider only isocoric impurities, i.e., As in Ge and P in Si.
Figure 4 shows the resistivity plotted versus the doping
level exceeding the critical value for the metal-insulator
transition on Ge:As. The solid line and the dashed line
show the results of the present theory and the BB theory,
respectively. Experimental data are shown by the open
rectangles' and the open triangles. As is seen, al-
though the BB theory explains considerably well the ex-
perimental data, the present theory gives a worse ex-
planation of the data.

The above situation is seen also in other materials such
as n-type Si. Figure 5 shows the resistivity plotted versus
the doping level exceeding the critical value for the
metal-insulator transition on Si:P. The solid line and the
dashed line show the results of the present theory and the
BB theory, respectively. The solid circles show experi-
mental data. ' As is seen, the present theory gives a
worse explanation of the experimental data than the BB
theory.

As has been seen above, the present theory gives larger
DOS s in the band-tail region and larger resistivities than
the BB theory. This is a consistent result in the respect
that an increased eft'ect of the impurity scattering in the
present theory leads to increased DOS's and increased
resistivities as compared with the case of the BB theory.
The increased DOS has been found to better explain the
experimental data. However, a difticulty is that the BB
theory better explains the experimental data of the con-

IO

IO

Ge: As

PRESENT THEORY

BB THEORY
o EXPERiMENT

20
IO

I0
I

E
O

O
bl
O

IO

IO

IO

0. I 0.05 0 —0.05 -0.IO -O. I 5
( eV)

IO

I0 17 I018 10 2

t s & s I l I I I t I I I l

FIG. 3. DOS's.vs the energy which are obtained for p-type
CiaAs with the acceptor concentration of 1.6X 10' cm by the
present theory (solid line), by the BB theory (dotted line), by the
Kane's theory (dotted-dashed line), and by the
Halperin —I.ax —Sa-yakanit —Glyde theory (dashed line).

DONOR CONCENTRATION (cm ~)

FIG. 4. Resistivities vs the donor concentration which are
obtained for Ge:As by the present theory {solid line), by the BB
theory (dashed line), and from experiments (open triangles and
open rectangles).
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FIG. 5. Resistivities vs the donor concentration which are
obtained for Si:P by the present theory (solid line), by the BB
theory (dashed line), and from experiments (solid circles).

ductivity than the present theory. This is curious from
the viewpoint that the present theory is more rigorous
than the BB theory. On the other hand, it is found that
the SP theory ' gives nearly the same DOS as the
present theory. It is found also that the SP theory gives a
worse explanation of experimental results on some elec-
tronic properties such as the conductivity, the Auger
recombination, and the intervalence band absorption
than the BB theory. The SP theory is another approach
giving the quantum correction to the BB model. There-
fore, the difficulty stated above is common to both the
quantum and the SP approaches giving the quantum
correction.

The decrease of the conductivity in the quantum
theory relative to that in the BB theory occurs through
the decrease of the Fermi level resulting from the in-
crease of the DOS in the band-tail region and through the
decrease of the peak height of —ImG (Q, k) resulting
from the increase of the width of the function; an inverse
relation between the peak height and the width is under-
stood from the relation

—f dQ ImG (Q, k)=m (4.1)

for a given k. In order to give a satisfactory explanation
of experiments still within the framework of the quantum
theory, therefore, there should be some situation where
the DOS, especially in the band-tail region, is smaller,
still remaining close to the experimental one. This situa-
tion, which might seem contradictory, is found by consid-
ering both localized states at low energies and X„given
as a sum of Eqs. (3.27) —(3.30). Thus the theory is im-
proved as is seen below.

Although the quantum theory never leads directly to

localized states, it is considered that the localization
occurs at energies below some critical value. The reason
why the theory does not lead to the localization may be
the use of the vertex part of the two-particle Green's
function simply in the BB theory and of the ensemble-
averaged Green's function. In view of this it is assumed
that we have localized states at energies below some criti-
cal value and that the degeneracy for each localized state
is unity in place of 2v. The latter assumption is based on
the same situation found on localized donors and accep-
tors. The critical energy for the localization lies in be-
tween the band edge and the ground level of an isolated
impurity. The band shift due to the Coulomb term of the
electron-electron interaction is found to be (e k/eo)y by
hypothetically setting U, (r) to be zero in Eq. (2.22) and
by neglecting X, . In considering X„, therefore, the shift-
ed band edge is at co, given by Eq. (3.32) as measured
from the unperturbed band edge. The critical energy for
the localization is assumed to lie in between co, and
co, Eb. F—or co )co, we have f(co) =2v while for
co(co, Eb we —have f(co)=1. An abrupt jump from 2v
to 1 may occur at a critical energy in between co, and
co, —Eb. However, only because we have no precise in-
formation of the critical energy, we assume a somewhat
gradual variation off(co) according to

f(co)=2v, co~co,
(4.2)

f (co) = 1+(2v—1)exp

We use this new definition of f(co) and consider X"„ for
the improved calculation below. The effect of X„ is to
cause the shift of the DOS towards a lower energy region
as compared with the case of neglected X„. This shift
tends to compensate for the decrease of the DOS under
f(co) above. The efFect of the electron-phonon interac-
tion is considered. Let us cail hereafter the improved
theory above and the theory before the improvement as
the present theory and the previous theory, respectively.

First we compare the present theory with experiments
on the resistivity in materials for which experimental
data at low temperatures are available. Figures 6—8
show the resistivities as functions of the doping level
which are obtained from the present theory (lines) with
experiments (points). In Fig. 6, the solid line, the open
triangles, and the open rectangles' are for Ge:As, the
dashed line, the solid triangles, the solid rectangles, '

and the solid circles are for Ge:Sb, and the dotted line is
for Ge:P. In Fig. 7, the solid line and the solid circles '

are for Si:P, the dashed line and the open circles are for
Si:As, the dotted-dashed line is for Si:Sb, and the dotted
line is for Si:Bi. In Fig. 8, the solid line is for Ge:Ga,
Ge:In, Ge:Al, and Ge:B, and the solid circles are for
Ge:G-a. It is seen that agreement between the theory and
experiments is considerably good for all the materials
shown.

Figure 9 shows comparison of the result in the present
theory using X„(solid line) with those in the same theory
especially under the neglect of X„(the dotted-dashed
line), in the previous theory (dashed line), and in the BB
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FIG. 6. Resistivities vs the donor concentration which are
obtained by the present theory (lines) and from experiments
(points) for Ge:As (solid line, open triangles, open rectangles),
for Ge:Sb (dashed line, solid circles, solid triangles, solid rectan-

gles), and for Ge:P (dotted line).

theory (dotted line) on the resistivity in Ge:As; the open
triangles and the open rectangles show the same experi-
mental data as shown in Fig. 6. It is seen that the present
theory gives the best explanation of the experimental data
and that the contribution of X„ to the conductivity is
significant but small as compared with that of f(co)%2v.

FIG. 8. Resistivities vs the acceptor concentration which are
obtained by the present theory (solid line) for Ge:Ga, Ge:In, Ge,
Al, and Ge:B, and from experiments on Ge:Ga (solid circles).

This situation is the same for other materials. Thus the
present theory is most useful for explaining the experi-
mental data of the resistivity. Stimulated by the success,
the resistivities in the present theory are shown also in
Figs. 10—12 for p-type Si, n-type III-V compounds, and
p-type III-V compounds, respectively.

Figure 13 shows the DOS's in p-type GaAs doped with
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FIG. 7. Resistivities vs the donor concentration which are
obtained by the present theory (lines) and from experiments
(points) for Si:P (sohd line, solid circles), for Si:As (dashed line,
open circles), for Si:Sb (dotted-dashed line), and for Si:Bi (dotted
line).

Io l7
10 IOI9 P
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FIG. 9. Resistivities vs the donor concentration which are
obtained for Ge:As by the present theory with (solid line) and

without (dotted-dashed line) X, , by the previous theory (dashed

line), by the BB theory (dotted line), and from experiments

(open triangles, open rectangles).
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FIG. 10. Resistivities vs the acceptor concentration which
are obtained for p-type Si doped with 8, Al, and Ga by the
present theory.

Zn under n; =5.4X10' cm as functions of the energy
co. The solid line, the dashed line, and the dotted line
show results in the present theory, in the previous theory,
and in the BB theory, respectively. The solid circles
show the same experimental data as shown in Fig. 2. It is
seen that the present theory gives the results closest to
the experimental data.

Figure 14 shows the DOS's calculated from the present
theory for p-type GaAs with n; =5.4X10' cm under
various assumptions. The dashed line, the dotted line,
and the solid line show the results obtained by neglecting
the phonon effects, by neglecting X„,and by including all
these effects, respectively. Correspondingly to the cases
of the solid line, the dashed line, and the dotted line, we

lO)8
)
OI9 )0"

ACCEPTOR CONCENTRATION ( cm )

FIG. 12. Resistivities vs the acceptor concentration which
are obtained for Zn-doped p-type III-V compounds of InSb,
InP, GaAs, and GaP by the present theory.

GaAs: Zn

find the resistivities 0.024, 0.027, and 0.036 0 cm, respec-
tively, together with co+=11.8, 27.2, and 36.2 meV, re-
spectively. In view of this result and of results in Fig. 13,
the phonon effect as well as that of X„ is not negligible.
Especially, the result in Fig. 13 that the DOS at ~(0 is
larger in the present theory than in the previous theory is
ascribed to the inclusion of X, , which causes the band to
shift towards a lower energy region.
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FIG. 11. Resistivities vs the donor concentration which are
obtained for n-type III-V compounds of GaSb, GaAs, and InP
by the present theory.

FIG. 13. DOS's vs the energy which are obtained for p-type
GaAs doped with Zn at the level of 5.4X10' cm by the
present theory (solid line), by the previous theory (dashed line),
by the BB theory (dotted line), and from experiments (solid cir-
cles).
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FIG. 14. DOS's vs the energy which are obtained for p-type
GaAs doped with Zn at the level of 5.4X10' cm by the
present theory, neglecting the phonon effect (dashed line) or X„
(dotted line), and taking into account all the effects (solid line).

. Although the present theory has been found to give a
considerably good explanation of experiments, there are
still many shortcomings in the theory. First, Eq. (3.10)
for A, has been given by neglecting the vertex part of the
two-particle Green's function. This neglected part might
be important around the metal-insulator transition, possi-
bly reducing A.. However, the Thomas-Fermi approxima-
tion, where the screening is described simply by A, , is sup-
ported by the results of the calculation made also under
the Lindhart potential. It is found that the resistivities
calculated under the Lindhart potential with the use of X
given by Eq. (3.10} are practically the same as those un-
der the Thomas-Fermi potential. Second, the vertex part
of the conductivity o.

2 has been calculated simply in the
BB model, and not in the quantum model. Because o.

2 is
I

an important parameter describing the localization, the
quantum theoretical calculation of o.

2 may be important
especially around the metal-insulator transition or at en-
ergies below some value. Third, the Careen's function has
been calculated under an ensemble average over the im-
purity sites assuming uniform probability of the distribu-
tion. This procedure gives the smoothing of the random
impurity distribution so that the effect of isolated impuri-
ties or small clusters of them cannot be included correct-
ly. In fact, the calculated DOS shows simply a monoton-
ic decrease with decreasing ~ in the range ~ &0 where
the experimental DOS shows a peak in contrast, as
shown in Fig. 13.

The above shortcomings altogether may lead to the
failure of the theory in describing the localization. In
fact, the theory never shows a rapid decrease of the con-
ductivity to zero with decreasing impurity concentration
even around the metal-insulator transition observed ex-
perimentally. The semiempirical form of f (co) is provid-
ed as a simple cure for the shortcoming. Naturally, there
is a considerable uncertainty in the semiempirical deter-
mination of f(co), as the fourth shortcoming of the
theory. Further, we have not taken into account the re-
quirement that the decrease of f (co} to values less than
2v in the range cu & co, should be compensated by the in-
crease of f (co) to values larger than 2v in the range
~&co, . As a result the Fermi level is overestimated,
which may inAuence the calculated conductivity.
Despite the above shortcomings, the calculations based
on the assumed form of f (co) have been found to lead to
considerably satisfactory results. It is concluded there-
fore that the quantum theory of electronic properties
based on the one-particle Green's function is useful under
the assumption of localized states with the use of the
semiempirical form of the energy-dependent degeneracy
although the development of a more rigorous theory still
remains as a future program.
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APPENDIX A: CALCULATION OF THE EC„(k) ENTERING G "(k)

We derive an expression for the one-particle Careen's function G (k), calculating IC, (k) and IC2(k), and then extend-
ing the calculation to X„(k) for n ~ 3 as follows.

First we calculate IC&(k) in Eq. (2.14). Using a new definition 0 (k+jV) =E(k+jV)—E(k) for convenience, let us
start with

K, (k, k') =[Go (k) j —g g dr exp[ —j(k —k') r][GO (k)l (r)] 0 (k+jV)[GO (k)l (r)]", (A 1)
m =On =0

which is obtained from Eq. (2.13). With the use of Eq. (2.2), the above equation is rewritten as

It, (k, k')=[G (k)]' g g g g &(Q +P„+k—k')0 (k —P„) + [G (k)l (q„)] g [G, (k)l (p )j,
m =0 n =0q&q2 -q p&p2 p„ @=1 v=1

(A2)

where Q, P„, q„, and p are the wave vectors with Q=g„&q„and P„=g"
& p . The terms of K&(k) which are ob-

tained from this relation by taking on ensemble average of K
&
(k, k ) are diagrammatically shown in Fig. 15, where the
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solid lines show Go (k), the crosses the impurity sites with each site assigned with N;, and the dotted lines the electron-
impurity interaction U;(q)/V defined as

U, (r)=—g U, (q)exp(jq r) .1

V
(A3)

U, (q„
V

m

H(Q, P„)=b(Q +P„) g
@=1

especially for n =0 as an example we define H(Q, O)=h(Q }g„ i [U, (q„)/V]. Then the diagram in Fig. 15 gives a
term for K, (k) as

The upper line and the lower line in Fig. 15 come from the factors g„ i [Go (k)l"(q„)] and g", i [Go (k)l (p„)], re-
spectively, in Eq. (A2). As shown in the figure, the impurity sites are classified into three groups. In one group denoted
b =1, each impurity site is connected to both the upper solid line and the lower solid line via the interaction lines. In
the other groups, b =2 or b =3, each impurity site is connected either to the upper solid line or to the lower solid line,
respectively. We write the number of the impurity sites in a group b as ab (b =1,2, 3).

The calculation is quite similar to that for the two-particle Green s function in the BBapproach. Let us define

U;(p, )
(A4)

3 Qb

S(M, N)=[GO (k)] + + g b(Q+P)O~(k —P) g (N;) ' Q H(Qg, PI, )
(q)(p) b=1 c=1

(A5)

where Qz (P&~ ) is the sum of q's (p's) with the -number of q's (p's) being m&, (n&, ) for the interaction lines connect-
ed to the impurity site c in the group b, Q (P) is the sum of all q's (p's), g~ ~~ ~

means the summation over all q's and
p's, M (N) represents all m&, 's (nb, 's), and M (N) is the sum of all m&, 's (n&, 's). Especially we have m z, =0 and n z, =0
together with P2o=0 and Qzo=0. With the use of Eq. (A4),

1b(q)= — drexp(jq r),
V (A6)

fdr[ U~(r)] = V
U(q )

b(q, +qz+ +q ) g
@=1

(A7)

and

b(Q+P)O~(k —P) =—fdr exp(jQ r)O&(k+ jV)exp(jP. r},1
(A8)

we obtain after some manipulation

3 a
Qb

S(M, N)=[G (k)] f dp, 5(p if}dp25(p )0 k+j Q (n;) ' f2)r, g (u&, ) "(v&, )
" (A9)

P2 b=1 c =1

under the definition of u&, =Go (k)U (r&, +p, ) for 5 =1 and 2, u&, =1, u&, =Go (k) U~(r&, +p2) for b =1 and 3, and

Uz, =1; n; is the impurity concentration N~/Vand we define Sr, =g, i dr&, . We take uz, =U2, =1 in view of the fact
that we have no corresponding diagrams in Fig. 15.

Defining K, (k) by

K, (k)=[GO (k)] fdp, 5(p, ) fdp25(p2)O~ k+j K, (k),
~P2

(A10)

we have

Qg
3 00 . pg, b

K, (k)= + g, g'P(M, M) g'P(N, N) f2)r, + (u, ) "'(U, )
"

ab 0 ~b. N c=1
(A 1 1)

where

P (M, M) =M!
t

A rr
b =1 c=1

(A12)

and gM means the summation over all m&, 's under the restriction m&, 1; these situations are the same for P(N, N)
and gN. It is easy to see that
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b=l c=lM

2 ab

g'P(M, M) II II (ug, ) "=
M, +M2 ——M ~1'~2' M, b=l c=lM2

ab

(M„M, ) g'P(M, M ) II II (u, ) ", (A13)

alwhere MI=(m~&, m, z, . . . , m«}, M&=+, ' &m&„and gM means the summation over mi, 's for a given MI under

m&, ~ 1. We make use of the relation for MI with I = 1 and 2
a m Mg'P(M„M~) ff (u„) "=g ( —1)"g (u„+u + +u )

I p=1 @=0 (n)
(A14)

where M&=( m&, mz, . . . , m, },M&=g„'
& m„, a =a& (1 =1 or 2), each u„(a=1,2, . . . , a —p) takes some one out of8

u&'s (P=1,2, . . . , a), and g~„~ means the summation over all possible choices of u„'s out of u&'s under the restriction
a

that u„with smaller a is equal to u& with smaller P. It should be noted that the right-hand side of Eq. (A14) is zero if
a

we hypothetically take MI in the range 1 &MI ~a —1. Therefore, M& (I =1,2) in Eq. (A13} is allowed, after the substi-
tution of Eq. (A14) into Eq. (A13), to be in the range M& ~ 1 although actually Eq. (A13) makes sense only in the range
M& ~ a. As a result, M and N in Eq. (Al 1) are in the range M ~ 2 and N + 2. After some manipulation we obtain

E)(k)= II
b=l

a&

fnr.
ab 0 b. M=2N=2(m)(n) p&=0

a2 I'2 M

u, + g u~
o=1 o=l

a( vl

X U&n + X U3n
o=1 o=1

v3=0v) =0

'M
~2

u2
o=l

"tm
o=1

a v3 3a —v
1

"in
o=l

U3n a

00 oo a —1
1

a —12 a —1
1 a3 —1

g ( —1) ' g ( —I) ' g ( —I) ' g ( —1) '

(A1S)

where g~ &~„~ means the summation over all possible ways of choosing u, (0 =1,2, . . . , a, —p, ) and U,„0' a

( o = 1,2, . . . , a, —v, ). We have no summations over p3 and v3 corresponding to the fact that we have no diagrams giv-

ing u3, and v2, in Fig. 15.
In Eq. (A15) the summation over M and N in the range M ~ 2 and N ~ 2 can be extended to that in the range M ~ 1

and N ~ 1 because the terms for M = 1 and/or N =1 are absolutely zero. With the use of the relation

1 ~ Jsds exp (1—u)
gR(k} o gR(k)

(A16)

where u =go (k) U with U as a real quantity, we obtain after performing the summation over M and N

K, (k) = 1

~gR(k)

23~(&)b
II X ', fnr. X

b =1 ab=0 (m)(n)

where

a —1
1

a —12 a —1
1

a —13

X g ( —1)"' g ( —1)"' g (
—1) ' g ( —1) 'f ds, f ds2exp (s&+s2)

„=o I =o .=o .=o o ' go«)
1 2 1 3

X I [(F„—1)(F,2 —1)—1][(F2)—1)(F23—1)—1]—1I, (A17)

JS1I lb =exP
gR(k)

J$2
I'2b =exP

gR(k)

ab I'b

ubm
o=l

ab Vb

Vbn
a=1

(b =1,2),

(b =1,3) .

(A18)

The sufBx b in F» and F21, indicates that the integration variables r&, (c = 1,2, . . . , a& ) for the integral

J2)r, =11, & f dr&, are contained in F&& and Fzz. Thus F&& and F2& are linked in the sense that both are subject to
b

the common integration, while F,z and F23 are not linked to any others. Noting this situation, Eq. (A17) is found to be
given in terms of the factors

(n )
b ng 1

H, (s„)=g, g g (
—1) ' f2)r, [F&&(a„—p~) —1] (A19)

ab b (m pb
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with P= 1 and 2, and

(n ) i a&
—1 a&

—1

Hz(si, sz)= g g g (
—1) ' g (

—1) 'f2)r, [Fii(ai —pi) —1][Fzi(ai —vi) —1],
a, =0 ~&' (m)(n) p, =o v) =0

where F» and Fzb are expressed as functions of ab —
pb and ab —vb, respectively, noting Eq. (A18). Actually H, (s& ) is

independent of p, and Hz(s „sz ) depends on p, and pz. We find

H, (s) =exp[ n; Vh i (s)]

with

h i(s) =—fdrI exp[ —jsU, (r)]—1I .1

(A21)

(A22)

As for Hz(s, ,sz ), after slight modification as

(n;) ' a& a&

Hz( 1 sz) X ) g g ( 1) X ( ) f+ o Fll(P1)F21( vl)

a& 0 &
' (m)(n) p&= I

we obtain

a& a&
—

m& a&
—

m&
1Hz(s„sz)= g (n; V) '

0 p 0 p mi mz m3!(a, —m, —mz —m3).
1 } 2 3

(A23)

under a
&

—m
&

—mz —m3 ~ 0, where

X[hz(s, ,sz)+1] '[ —h, (s, ) —1] '[ —h, (sz) —1] (A24)

hz(s„sz)= —fdrIexp[ —jU;(r+pi)s, —jU, (r+pz)sz] —1I .1

The summation over m „m2, and m 3 is easily performed one by one, starting from that over m 3. We obtain

Hz(s i, sz) =expI n; V[hz(si sz) —h i(si )—h i(s»] I .

Equation (A17) is calculated with the use of Eqs. (A21), (A22), (A25), and (A26). The quantity in the curly brackets of
Eq (A17). is given by (Fii —1)(Fiz —1)(Fzi —1)(Fz3—1) neglecting the residual terms which vanish in the limit of
V~ ~ because of a factor exp( n; V) —involved. Then, Eq. (A17) is found to contain a factor
Hi(s, )H, (sz)Hz(si, sz)=exp[n; Vhz(s„sz)]. We obtain

Ki(k)=
jgR(k)

2

f Qo Qo

dsi dszexp (s, +sz )+n; Vh z(s i,sz )
0 0 GR(k)

(A27)

This equation indicates that only the linked diagrams as in the case of b =1 in Fig. 15 contributes to I7i (k). We finally
obtain

t

E,(k)=j 'fdp, 5(p, )f dpz5(pz) f ds, f ds, exp ~ (s, +s, ) 0 k+j
0 0 GR(k) ~P2

Xexp n; fdrIexp[ —jU;(r+pi)s, jU;(r+p—z)sz] —1I (A28)

Now we extend the calculation for n = 1 given above to that for Xz(k) and further to that for E„(k)with n ~ 3. Let
us start with

Qo Qo Qo

Kz(k, k')=[Go (k)] —g g g f drexP[ —j(k—k').r][GO (k)I (r)]'0 (k+ jV)
l=0 m =0 n =0

X [GO (k)I (r)] 0~(k+ jV)[go (k)I (r)]",
which is obtained from Eq. (2.13). Equation (A29) is rewritten as

(A29)
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b=7

FIG. 15. Diagrams representing the terms for the electron-
impurity interaction in K& (k), where the solid lines show

Go (k), the crosses the impurity sites with each site assigned
with N;, and the dotted lines the electron-impurity interaction
U;(q)/V with various q's.

FIG. 16. Diagrams representing the terms for the electron-
impurity interaction in EC2(k), where the circles show Go(k),
the crosses the impurity sites with each site assigned with N;,
and the double-dotted lines bunches of the interaction lines
U;(q)/V with various q's.

K, (k, k')= [Gg(k}]' g g
i=0m =On=Oqlq2 qI pip2'''p t t - t

Xb(Qi+P +T„+k—k'}O~(k —P —T„)O (k —T„)

X g [Go(k)l (q )] g [Go(k)1(p„)]Q [G,"(k)I (t„)], (A30)

where Q&, P, T„,qz, p„, and t are the wave vectors with Q&=gt„, qz, P =g„,p„, and T„=g"„,t,. The terms
of Xz(k) which are obtained from this relation by taking an ensemble average of Kz(k, k ) are schematically shown in
Fig. 16. Here we have three solid lines of Go (k) s called L line, M line, and N line, which come from the factors

, [Go (k)1'(qz)], 11„,[Go (k)I (p„)], and 11,"=, [Go (k)I'(q )], respectively. Those lines are represented by L,
M, and N, respectively, in Fig. 16. The double-dotted lines represent bunches of the integration lines U, (q)/V, through
which the solid lines are connected to each other through the crosses representing the impurity sites assigned with N;.
For the group denoted b = 1, each impurity site is connected to three lines L„M, and N. For the groups b =2, 3, and 4,
each impurity site is connected to two solid lines chosen out of the three lines. For groups b =5, 6, and 7, the three
lines are mutually independent.

As an extension of Eq. (A4) we define

H(Qi, P,T„)=b,(Qi+P +T„)g U;(qi ) ~ U;(p„)
V „1 V

U;(t. )

V
(A31)

Then the diagrams in Fig. 16 give a term of Kz(k) analogously to Eq. (A5) as

S(L,M, N) =[Go (k)] + + + g 6(Q+P+T)O (k —P —T)Oq(k —T)
(q)(p)(t)

7 Qb

X + (N; )
" + H(Qbi, Pb, T,„)

b=1 c=1
(A32)

under the definition of L,L, Q, and some others similar to that given just below Eq. (A5). In.a way analogous to the
process from Eq. (A6) to (A16), we obtain

&2(k)=[GO(k)] fdp, 5(p, )f dp25(p2) f dp35(p3)O k+j +j 0 k+j Ã2(k)
Bp2 Bp3 Bp3

(A33)

with
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1
F7z k =

jg~(k)

3 7

b=1 ab 0 (l)(m)(n)

Qb 1

XII X(—1

bEL A'b 0 bEM Pb 0

a —1b

g (
—1)'

X f "ds& f dsz f dszexp z (s&+sz+s3}
0 0 0 GB(k)

II (F,—1)—1 II (F —1)—1 —1 (A34)

where

beL b&M be%

(A35)

F1 b b

F1& exp X aha (b EL)
GR(k)

jg b

Fz~ =exp ~ g Ub (b eM),
gzt(k) Itl

jZ ~b ~b

F3' exp zt g w,„(bEN)
gzt(k) n

w't" "b.=go(k)U(rb, +pi» Ub, =go(k)U(r~, +pz)~ and to&, =go (k)U(r~, +pz); (I), (m), and (n) in Eq. (A34) refer
to I, m, and n, respectively, in Eq. (A35). In Eqs. (A34) and (A35), b EL (M or N) means that b runs over the dia-
g~~ms in Fig. 16, containing L (M or N) line, i.e., b =1,3,4, 5 for b EL, b =1,2, 4, 6 for b ~M and b =1,2, 3, 7 for

Thus, referring to Fig. 16, the rule for obtaining Eq. (A34) is evident and the extension to a general case of
K„(k) is straightforward.

Equation (A34) is given in terms of H
&

as in Eq. (A19), Hz as in Eq. (A20), and

(n;) '

Hz(s&, sz, ss)= g, g g g g f2)r, [F&&(a& —1,, ) —1][Fz,(a& —
p&)

—1][F»(a,—v&) —1],
a& =0 1 (l)(m)(n) A, &=0 @1=0v] =0

where F», Fz&, and Fz& are expressed as functions of a&
—

A&, at,
—

p&, and a&
—v&, respectively, noting Eq. (A7).

Analogously to the case of H&, we find

(A36)

7 1

Hz(s&, sz, s&)= g (n; V) ' II
a& =0 b =1 mb=-0 a1—

b=1
mb

Xg a, —g m„g a, —g m~ g 'a, —g m~
beL bEM bGN

X[hz(s»sz, s~)+ll [—hz(sz, sz) —1] '[ —hz(s&, s&) —1] '[ —hz(s»sz) —1]

X[h, (s, )+1] '[h, (sz)+1] '[h, (s, )+1] (A37)

where g(x ) = 1 and x ~ 0 and g(x ) =0 otherwise, and

1
hz(s„sz, s~)= —f dr exp —j g U;(r+p&)s& —1

l=1
(A38)

Equation (A37) becomes

H&(s&, sz, s&)=exp[n; V[h&(s&, sz, sz) —hz(sz, sz) —hz(sz, s&) —hz(s&, sz) —h&(s&) —h&(sz) —h&(s&)]J . (A39)

Now we neglect the terms in Eq. (A34) which vanish in the limit of V~ ~ due to the factor exp( n; V) involved. —
Then the quantity in the large square brackets of Eq. (A34) is given as the product of four (F» —1) s with b HL times
the product of four (Fz& —1) s with b EM times the product of four (F» —1) s with b EN. This situation is similar for
a general case of I7„(k); we construct the product of (Fb —1) with all b s allowable for a given solid line i
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( = 1,2, . . . , n) and then obtain the product of all those products. Equation (A34) is found to contain the product of the
factors, i.e.,

H3($1 p$2&$3 )Hp($2&$3 )Hp($3psi )Hp($1, S2 )Hi($1 )H1($2 )H1($3 ) (A40)

Each factor comes from one of the diagrams in Fig. 16 and the factors are placed from the left to the right in the in-
creasing order of b for the corresponding diagrams. Note that we have s1, s2, and s3 correspondingly to the I, M, and
N lines, respectively. From Eq. (A40) we obtain

K~(k)=
'3

oo OO oo Jd$1 d$3 d$3exp ($1+$3+$3)+n ~ VI13($1 $2 $3)
jgo (k) o o o gR(k)

(A41)

As a result we have

T

K2(k) = j f dsi f ds2 f ds3exp R (si+s2+s3) f dp15(pi )fdp25(p2) fdp35(p3)
0 0 0 gR(k)

XO k+j +j 0 k+j8 . 8 . 8
~P2 dp3 P3

r I

3

exp n; fdr exp —j y U(r+pI} —1

1=1
(A42)

On the basis of the discussions given for K, (k) and K2(k), we can obtain K„(k) easily. As an extension of Eq. (A33),
we start with

m =1 ~m1=2 1=2

n+1 - n+1 n+1
K„(k)=[G (k)]"+'fdp, 5(p, ) g f dp 5(p ) g 0 k+j K„(k) . (A43)

In the diagrams for K„(k) as in Figs. 15 and 16, there are n + 1 solid lines, for which we consider all possible combina-
tions of various number of the solid lines connected to one impurity site by the interaction lines. For the moment we do
not consider the number of the interaction lines, as in Fig. 16. Then we have ("+') ways of connecting m solid lines (in-
cluding m = 1 as in the case of b =5, 6, and 7 in Fig. 16). The number of all those ways, i.e., the groups b's, is

n+1 n +1
X

m=1
2n+1

max (A44)

On the other hand, we have ( ) ways of finding m solid lines connected to a given solid line, so that the number of all
those ways is

n n
2n

m=0

including also the case where the given solid line is unconnected. In place of four in Eq. (A34), we have 2 factors
( —1) "(F&b —1) for a given solid line l (1 ~ l ~n+1) and for such various groups b (1 ~ b ~ b,„)as contain the

lb

solid line l. Neglecting the terms which vanish in the limit of V—+ ao due to the factor exp( n; V) involv—ed, we obtain
T

K„(k)= 1

gR(k)

n+1 bmax ab(n;) ' n+1
f2)r, g g f ds,

ab 0 b. 1=1 (c) Ib

(A45)

where P represents the product of m factors and we define

J$1 b Ib

Fg, =exp R g tlbq (A46)
Go «)

with u/, =Go (k)U;(rb, +p&); (c) in Eq. (A45) refers to c in Eq. (4.18) meaning all possible choices of c 's. Then K„(k)
is given in terms of the factors

oa (n) n+1ab

IbH (s, ,s, , . . . , s, )= g, Q gg f2)r, P g( —1) "(F,„—1)
ab =0 b 1=1 (c) Alb Ib

(A47)

where 6 denotes the group of the connected m solid lines I„l2, . . . , I picked out of the n + 1 solid lines. Defining
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=1 Pl

h (sI, si, si )=—fdr exp —j g U;(r+pI )si —1
V

(A48)

we find

Nl Pl
H (st, s&, . . . , sl )=exp n; V g ( —1) '

&
hl

1=1
(A49)

where h, is a symbolic expression for the function defined by Eq. (A48); (P)hl means simply that the number of hI's is

(I ) with all h&'s being difFerent.
As in Eq. (A40), K„(k) contains the product of the factors as

n+1 (n+1)n(H )
m=1

(A50)

which is also a symbolical expression meaning simply that the number of H 's for a given m is ("+') with all H 's be-
ing different. Use of Eq. (A49) in Eq. (A50} gives a form of exp(n; VS) with

i

n+1 /+1 m mS=g g( —1) '
( h,

m =1 - -1=1

=h„+1 . (A51)

As a result we obtain

' n+1
X„(k)=

GR(k) f dsl f dsz f ds„+Iexp (sl +$2+ +s )
0 0 0 GR(k)

+11 VAn+I($), $2 . . . , s +I } (A52)

from which E.(k) is obtained. With a slight change of notation we have Eq. (2.17).

APPENDIX 8: APPROXIMATIONS YIELDING
TRACTABLE G "(k)

We put expression (2.14) under Eqs. (2.16) and (2.17)
for the one-particle Green's function into a more tract-
able but approximate form. Let us restrict the discussion
hereafter to the case where U, (r) is spherically sym-
metric, so that we write U, (r) as U, (r) Then. we. replace
O~ in Eq. (2.17) approximately with

from a numerical result for anisotropic mass.
Now we pick up typical terms in IC„(k) by defin&ng

$2P" (r)= —j ~V' U(r)~ g s&
2~v

g2 g2 n

+ V U, (r) jk VU;(r) g —si,
2m~ Pl F

0„=— gp, '+j k.gp, ,

where k is in the new coordinate system; here we have
considered an average over all the directions. Strictly,
Eq. (Bl) is useful for K, (k) and for some factors in
K„(k). Approximate validity of using Eq. (Bl) is found

the operator X„(r)upon a function F(r) as

J„F(r ) = n; fdr exp jU; (r) g si F (—r),
1=0

and S„by

(B3)

E„(k)=j ' Q f "ds,e p s,
G,~(k)

n

exp n; fdr exp —j g U;(r)s
rn =0

—1 S„.
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fdrexp —jg U, (r)s& exp[ j—U;(r)s ]=0 . (BS)

First we have S0= 1 and

S, =2,(r)P, (r) .

Next we have

(86)

The problem is now to examine S„by noting the relation tegers between 1 and n without repeated choices of the
same number, and g~ ~

means the summation over all

possible ways; we define b,(x)=1 for x =0 and 6(x)=0
otherwise.

In order to proceed further, we define new variables
t =+& sI for all integers m in the range 0~m ~n
Then K„(k) is given in terms of t s. We obtain (using t
in place of to )

Sz= [S2(r)Pz(r)][Sz(r)P, (r)]

+Jz(r)Pz(r)P, (r)+ (87)

where the ellipsis represents residual terms.
For a typical form of U, ( r) such as the Thomas-Fermi

screened Coulomb potential, the first term and the second
term in Eq. (87) are finite and infinite, respectively. The
infiniteness of the second term is related to the divergence
of U;(r) at r ~0. On the other hand, the contribution of
U, (r) at large values of r is larger to the first term than to
the second term. The residual terms in Eq. (87}such as

'2

S„(r) (VU, (r)~ s,s22'

K (k)= —.f dt exp tJ
J 0 6R(k)

+n, fdr[ exp[ jU, (r—)t]

—1I T„(t), (89)

where

T„(t,)= f'dt, f 'dt, f™'dt„s„. (810)

S„(r)=J(r)=n; fdr exp[ jU (r)t]— (811)

and

Here, S„ is given in terms of the integration operator

v= 1 A. = 1 (m ) p=l

(88)

where [P(r„)] " is a symbolic expression for the product
of m„ factors of P" (r„) with m picked out from the in-

are intermediate between the first and the second terms.
The situation in K2(k} is similar to that in K„(k) with
n ~ 3, so that we pick up only the terms similar to the
first and the second terms in Eq. (87). We obtain

n v v v

S„=g g S„(rz) g g [P(r„)] "b, g m„n—

fiP" (r)= —j ~VU;(r)) t
C

+ V U, (r) jk .VU—;(r) t
27?l mF

From Eq. (88) we obtain

n v

T„(t)= g + S(ri }R„(r„r2,. . . , r„t),
v=1 A, =1

where

(812)

(813)

R„(ri,r, . . . , r,;t)=f dti f dt f dt„g Q [P" (r )] "b g m& n—
0 0 (rn ) @=1 p=l

P

This equation is rewritten as

(814)

R„(r„rz, . . . , r;, t}=f dt, f dt2 f" dt„g g P (r„)
0 0 0 '1

1

(815)

With the use of Eq. (812) we find

V

R„(ri,r2, . . . , r;t)=, g B(r„,t)

where we define

g2 g, 3

B(r,t)= —j IV U(r )I'—P' 2~ P & P 3C

n

With the use of Eqs. (81), (89), and (812}we obtain

6(k}=—.f dt exp t
J 0 GR(k)

+n; fdr[ exp[ jU;(r)t]—
—1 j T(t), (818)

g2 g2 t2+ V„U;(r„}—j k V„U;(r& }

(817)

where

oo
~

n v

T(t)= g, g + 2(r&)
n =0 . v=1

'n

(819)
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with the abbreviation B„=B(r„,r); the term for n =0 in
the equation is unity.

The summation in Eq. (819) is performed by rewriting
the equation as

n AT(t)= g g g, Q S(r„)(B„)"
n =0 v=1(m } & @=2 p'

gn
,

=exp' .
n~

(821)

For the residual part in T(t), we consider the case of
m& =n m—( ~0), mz=m ( ~2), and m„(p~3)=0, ob-
taining the second partial sum

g n —m(B )m

J(r2) g g, =expAS(r)[expB(r, t)
n m m. .

Xb,

hami

n—(820) —B(r, t) 1]—.

(822)

where A =W r, )B
&

=J(r)B (r, r ). We first consider the
case of m

&
=n and m„(p & 2)=0, obtaining the first par-

tial sum in T(t):

For the rest of the sum we consider the case of
m, =n —m2 —m3 ( 0), mz 2, m3 m2, and m„
(p ~ 4) =0, obtaining the third partial sum

'(B2) '(B3)
S(rz)&(r, ) g

4 2 (n —m2 —m3) m2 m3
2 3™2

(B ) '(B3)
=exp& J'(r2)2(r3)

m =2m =m m2!m 3!
2 3 2

Nl2

—1
oo= —,exp A J(r2) S(r3)

24 2 m2!
2

oo

,
+

=2 m3! m2.
3

= —,exp' {S(r)[expB (r, t) B(r, t) —1]j
2 . ——1

(823)

The last step is reached by neglecting the second term in the large parentheses in the second to last step. This is a crude
approximation adopted on the basis that in the large parentheses the first term is equal to or larger in magnitude than
the second term. In a similar way we obtain the m +1th partial sum for m ~ 3 as

1
exp A {J(r )[expB ( r, t) B(r, t) —1—]jm!

using the approximation as in Eq. (823). The sum of the terms in Eqs. (821)—(824) gives

T(t)=exp{ A +S(r)[expB(r, t) B(r, t) 1]j . ——

The final form of G (k) is

(824)

(825)

G (k)= —.f dt exp t+n, fdr{exp[ jU, (r)t+B. (r—, t)]—1 jJ 0 GR(1 )
(826)

where

2
t2 g2 g2

B(r, t)= —j— ~V U;(r)~ +— V U;(r) jk VU;(r)—
c 2 2mc mF

(827)
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